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Abstract Considering the optimal control problem about the control system of the special Euclidean group

whose output only depends on its input is meaningful in practical applications. The optimal control considered

here is described as the output matrix is as close as possible to the target matrix by adjusting the system input.

The geodesic distance is adopted as the measure of the difference between the output matrix and the target

matrix, and the trajectory of the control input obtained in the process is achieved. Furthermore, some numerical

simulations are shown to illustrate our outcomes based on the natural gradient descent algorithm for optimizing

the control system of the special Euclidean group.
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1 Introduction

The general linear group GL(n,R) with a differentiable structure is a manifold. It has attracted more

and more attention not only in the study of theory but also in the study of application recently. The

optimal control for the system consisting of the matrix groups is widely studied for various applications

such as in biomedicine, signal processing, robotics control [1–4].

In this paper, the optimal control problem on the special Euclidean group SE(3) [5] will be discussed

using the natural gradient method [6,7]. In fact, the traditional gradient does not represent the steepest

descent direction in the Riemannian space while the natural gradient does since the latter overcomes the

problem of poor convergence of the former. Moreover, S. Amari has proved that the natural gradient

is asymptotically Fisher-efficient for the maximum likelihood estimation, implying that it has the same

performance as the optimal batch estimation of the parameters. Based on the advantages of the natural

gradient algorithm, researchers can solve various problems more effectively in different fields such as

neural network, optimal control [8–10].
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The paper is organized as follows. Firstly, some basic definitions and results about the general linear

group GL(n,R) and the special Euclidean group SE(n) are introduced without proofs since the detailed

information can be referred to in many references [5,11]. With the help of the left invariant metric on the

general linear group, the geodesics and their distances between any two points not far away on the special

Euclidean group has been introduced [11]. Secondly, for simplicity, the control system is described as

follows: suppose that the output is only determined by the control input; the geodesic distance between

the output matrix and the target matrix is taken as the cost function and the natural gradient descent

algorithm is proposed to evaluate control trajectory of the input matrix when the output matrix changes

from the initial value to the final one. Finally, two cases whether the target matrix lies on the output

matrix manifold or not are considered as examples in the simulations to illustrate our discussions.

2 Geometric structure of the special Euclidean group SE(n)

In this section, basic materials including some definitions and results about the general linear group

GL(n,R) and the special Euclidean group SE(n) are reviewed. These will be used throughout the paper.

The general linear group GL(n,R) consisting of all invertible n× n matrices with real entries is home-

omorphic to R
n×n. Thus it has a differentiable manifold structure. The group multiplication of GL(n,R)

is the usual matrix multiplication, the inverse map of the group multiplication takes a matrix A to its

inverse A−1, and the identity of the group is the identity matrix I. The Lie algebra gl(n,R) of GL(n,R)

turns out to be the set of n× n real matrices.

All the other real matrix Lie groups are the subgroups of GL(n,R), whose group operators are subgroup

restrictions of the ones on GL(n,R). The exponential mapping is the mapping

exp : gl(n,R) → GL(n,R),

X �→
∞∑

n=0

Xn

n!
, X ∈ gl(n,R).

(1)

It is well known that exp(X) exp(Y ) = exp(X + Y ) if X and Y commute.

The logarithms of A in GL(n,R) are solutions of the matrix equation expX = A [12]. When A does

not have eigenvalues in the (closed) negative real line, there exists a unique real logarithm, called the

principal logarithm and denoted by logA when the special condition is satisfied.

Furthermore, if ‖ A− I ‖ < 1, where ‖ . ‖ is the given matrix norm and I denotes the identity matrix,

then the series
∑∞

n=1(−1)n+1 (A−I)n

n converges to logA, and therefore

log(A) =
∞∑

n=1

(−1)n+1 (A− I)n

n
(2)

is obtained. In general, log(AB) �= log(A) + log(B). Another important fact is that [12]

log(A−1BA) = A−1(logB)A.

This fact is also true when log in the above is replaced with an analytic matrix function.

For simplicity, assume that all matrices for the matrix-valued function log(· ) exist throughout this

paper. The exponential mapping and the logarithmic mapping provide a method to transform information

between the Lie group and the Lie algebra. Moreover, the Lie algebra is a linear space which is easier to

deal with than the Lie group so that it is a useful tool of studying the Lie group.

Definition 1. For the general linear group GL(n,R), the left translation LA at A ∈ GL(n,R) is defined

by LA(B) = AB for every B ∈ GL(n,R) and the tangent mapping is obtained as (LA)∗X = AX for every

X ∈ TAGL(n,R). The right translation and the corresponding tangent mapping are similarly defined as

the left translation. The left invariant metric is given by

〈X,Y 〉A =
〈
A−1X,A−1Y

〉
I
, (3)

with X,Y ∈ TAGL(n,R), where 〈A−1X,A−1Y 〉I := tr((A−1X)TA−1Y ) is the Frobenius inner product.
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Similarly, the right invariant metric can be defined. It has been proved that there exists the left

invariant metrics on all matrix Lie groups so that Definition 1 is well defined. Furthermore, compact Lie

groups possess bi-invariant metrics. That is to say the left invariant metric on it is the right invariant

metric simultaneously. It is worthy to note that the Euclidean group is noncompact [13].

Let γ : [0, 1] → GL(n,R) be a sufficiently smooth curve on GL(n,R). It is the geodesic when it satisfies

the second-order differentiable equation γ̈(t)+Γγ(t)(γ̇(t), γ̇(t)) = 0 with a suitable parametrization, where

the one over-dot and two over-dot denote the first and second derivatives with respect to the parameter

t respectively and Γ.(·, ·) stands for the Christoffel operator.

Definition 2. Let γ : [0, 1] → GL(n,R) be a geodesic. The length of γ(t) is defined by

L :=

∫ 1

0

√
〈γ̇(t), γ̇(t)〉γ(t)dt =

∫ 1

0

√
tr{(γ(t)−1γ̇(t))Tγ(t)−1γ̇(t)}dt. (4)

The geodesic distance between two matrices A and B on GL(n,R) is expressed as

d(A,B) := inf{L(γ)|γ : [0, 1] → GL(n,R) with γ(0) = A, γ(1) = B}. (5)

According to the Hopf-Rinow theorem [14], there exists a geodesic connecting any two points on the

completely connected Lie group and the geodesic can extend to infinite. Although the special Euclidean

group is not complete, there still exists a geodesic connecting two points which are not so far.

The special Euclidean group SE(n) in GL(n,R) is the semidirect product of the special orthogonal

group SO(n) with R
n itself [11, 13], that is, SE(n) = SO(n) � R

n. The representation of elements of

SE(n) is

SE(n) =

{(
A b

0 1

) ∣∣∣∣A ∈ SO(n), b ∈ R
n

}
. (6)

On a Lie group, the tangent space at the group identity defines a Lie algebra. The Lie algebra se(n)

of SE(n) can be denoted by

se(n) =

{(
X v

0 0

) ∣∣∣∣X ∈ so(n), v ∈ R
n

}
. (7)

Specially, SE(n) becomes SE(3) when n = 3 [5]. SE(3) is the special Euclidean group of rigid body

transformations in three dimensional space denoted by

SE(3) =

{(
R d

0 1

) ∣∣∣∣R ∈ R
3×3, d ∈ R

3, RTR = I, det(R) = 1

}
. (8)

It is easy to show that SE(3) is a group for the standard matrix multiplication and that it is a manifold.

It is therefore a Lie group.

The Lie algebra of SE(3), denoted by se(3), is given by

se(3) =

{(
Ω v

0 0

) ∣∣∣∣Ω ∈ R
3×3, v ∈ R

3, ΩT = −Ω

}
. (9)

A 3×3 skew-symmetric matrix Ω can be uniquely identified with a vector ω ∈ R
3 so that for an arbitrary

vector x ∈ R
3, Ωx = ω × x, where × is the vector cross product operation in R

3.

Denote U, V ∈ SE(n) by

U =

(
A1 b1

0 1

)
, V =

(
A2 b2

0 1

)
. (10)

Taking the corresponding exponential mappings on manifold SO(n) and vector space R
n into consid-

eration, the geodesic γU,V connecting U and V on the Lie group SE(n) is given by [11]

γU,V (t) =

(
A1(A

T
1 A2)

T b1 + (b2 − b1)t

0 1

)
, t ∈ [0, 1]. (11)
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Control input x M(x) System F

Figure 1 The considered control system.

Based on (1) and (11), the following lemma is obtained [11].

Lemma 1. The geodesic distance between two points U and V on SE(n) induced by the left invariant

metric (3) is given by

d(U, V ) = (‖ log(AT
1 A2)‖2F + ‖b2 − b1‖2F )

1
2 . (12)

3 The control on the special Euclidean group SE(n)

As mentioned in the first section, the purpose of control is to control the system input so that the

output approximates the target to the greatest extent. There are lots of ways to describe the concept

‘approximate’ in practical problems in order to measure the distance between the output and the target

[9, 15]. In this paper, the geodesic distance on manifold SE(n) is chosen as a cost function to solve the

control problem on SE(n).

Suppose that F is the considered control system with the input variable x and the output matrix

M(x) [9,16–18], where x plays the role of vector-valued parameter and the output manifold N = {M(x)}
is a submanifold of SE(n) (See Figure 1).

Our goal is to design the input x so that the output matrix M(x) is as close as possible to the target

matrix T which is also a element of SE(n) and give the learning trajectory of the control input x while

the output matrix develops from the initial matrix M(x1) to the optimal matrix M(x∗).
In order to achieve the above purpose, two important problems should be considered as follows:

I. Define a distance function to measure the difference between the output matrix and the target matrix

of the system.

II. Describe the learning trajectory of input x so as to make the final output matrix of the system

approximate to the target matrix as close as possible.

As discussed in Section 2, the geodesic distance (12) is adopted to measure the difference between the

matrix M(x) and the target matrix T . Therefore, the cost function J(x) is defined as

J(x) = d2M(x)∈N(M(x), T ), (13)

consequently, the optimal point x∗ on the system is obtained by

x∗ = arg min
M(x)∈N

J(x), (14)

where

N = {M(x)|x = (x1, x2, . . . , xm) ∈ Θ ⊂ R
k} (15)

is the output matrix manifold.

Next, consider the control problem proposed above by using the method of the natural gradient descent

algorithm. Note that there are two cases of the control problem according to the target matrix T lies

on manifold N or not and the natural gradient algorithm is suitable for both cases. For the purpose of

getting the gradient on manifold SE(n), we introduce a lemma as follows.

Lemma 2 ([13]). Let X(t) be a matrix-valued function of the real variable t and A,B be constant

valued matrices. Suppose X(t) is an invertible matrix which does not have eigenvalues on the closed

negative real line for all t in its domain, then the following equations hold:

d

dt
tr
(
X(t)TX(t)

)
= 2 tr

(
X(t)T

d

dt
X(t)

)
,

d

dt
tr(logX(t)) = tr

(
X(t)−1 d

dt
X(t)

)
,

d

dt
tr(AX(t)B) = tr

(
A

d

dt
X(t)B

)
.

(16)
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Whether the target matrix T belongs to the output manifold N or not, we always take the advantage

of the geodesic equation as trajectory and the negative gradient of the cost function J(x) as the direction

to give the iterative formula. Moreover, readers can refer to [8–11,19, 20] for details.

The iterative formula is displayed as the following theorem using the natural gradient descent algorithm

on SE(n).

Theorem 1. Let the output matrix M(x), which is corresponding to the control input variable x, and

the target matrix T be points on a submanifold of SE(n). Here M(x) and T are in the form of

M(x) =

(
Ax bx

0 1

)
, T =

(
AT bT

0 1

)
, (17)

where
Ax ∈ SO(n), bx ∈ R

n,

AT ∈ SO(n), bT ∈ R
n.

(18)

Suppose the submanifold is an m-dimensional manifold, the coordinates of Ax and AT are (x1, x2, . . . , xk)

and (x1
0, x

2
0, . . . , x

k
0), the coordinates of bx and bT are (xk+1, . . . , xm) and (xk+1

0 , . . . , xm
0 ) (k < m), respec-

tively. Thus, the control input x and the target T can be denoted by the coordinates (x1, x2, . . . , xm)

and (x1
0, x

2
0, . . . , x

m
0 ).

Then, the cost function of the iterative process based on the geodesic distance is given by

J(xt) = ‖ log(AT
TAx)‖2F + ‖bT − bx‖2F , (19)

where

xt+1 = xt − ηG(xt)
−1∇J(xt). (20)

G(xt)
−1 is the inverse of the Riemannian metric G(xt) at the point xt and η is the step length. The

components of the gradient ∇J(xt) satisfy

∂

∂xi
t

J(xt) =

⎧
⎨

⎩
2 tr

(
log(AT

TAxt)A
T
xt

∂
∂xi

t
Axt

)
, i = 1, 2, . . . , k,

2(xi
t − xi

0), i = k + 1, . . . ,m.
(21)

Proof. As in [7], let Pt and Pt+1 be two points on a submanifold of SE(n) named N for convenient in

this proof. Corresponding to the functions J(xt) and J(xt+1), whose coordinates are given by xt and

xt+1 respectively.

Assume that the vector
−−−−→
PtPt+1 ∈ TPtN has a fixed length expressed as ‖−−−−→PtPt+1‖2 = ε2 and the positive

number ε is small enough. Denote
−−−−→
PtPt+1 = εv, and v = aT∇J(x) ∈ TPtN can be treated as a tangent

vector of TPtN at Pt, where a is a constant vector. Suppose that the tangent vector v satisfies the

following constraints

|v|2 = 〈v,v〉 = aTG(xt)a = 1, (22)

then the relation between J(xt) and J(xt+1) can be denoted by

J(xt+1) = J(xt) + εaT∇J(xt). (23)

Now we search for the vector a = (a1, a2, . . . , am)T which minimizes (23) under the constraint (22).

Setting the Lagrange function

F (a) = J(xt) + εaT∇J(xt) + λ(aTG(xt)a− 1), (24)

and from this expression, we get

a = − ε

2λ
G(xt)

−1∇J(xt). (25)

Let η = ε
2λ , then the iterative formula (20) is obtained.
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Furthermore, combining Theorem 1 and Lemma 2, the components of ∇J(xt) are shown as

∂

∂xi
t

J(xt) = 2 tr

(
log(AT

TAxt)
∂

∂xi
t

(
log(AT

TAxt)
))

= 2 tr

(
log(AT

TAxt)A
T
xt

∂

∂xi
t

Axt

)
, i = 1, 2, . . . , k, (26)

and
∂

∂xi
t

J(xt) =
∂

∂xi
t

(xi
t − xi

0)
2 = 2(xi

t − xi
0), i = k + 1, . . . ,m.

Based on the discussion above, the algorithm for the optimal control problem on SE(n) is obtained as

follows.

For the coordinate (x1, x2, . . . , xm) of the considered special Euclidean group system, the natural

gradient descent algorithm is given by:

Algorithm 1 Optimal control on special Euclidean group

• 1. Set (x1
1, x

2
1, . . . , x

m
1 ) as the coordinate of the initial output matrix M(x1) and choose a tolerance ε > 0 and the

step-length η > 0;

• 2. Compute the gradient of the cost function �J(xt);

• 3. If ‖�J(xt)‖F < ε then stop;

• 4. Update xt+1 = xt − ηG(xt)−1�J(xt) and go to step 2.

Remark 1. If the target matrix lies on the output matrix manifold N, a geodesic connecting the initial

output matrix M(x1) and the optimal output matrix M(x∗) can always be found on N, so does the

optimal output matrix M(x∗) and the target matrix T . Therefore, Algorithm 1 realizes the optimal

trajectory of the control input variable x.

Remark 2. If the target matrix T doesn’t lie on the output matrix manifold N but on manifold SE(n),

the geodesics between T and the output matrix M(x) on N are measured by the geodesics on SE(n).

In the iterative process, from the initial output matrix M(x1) to the optimal output matrix M(x∗), the
minimal distance between T and manifold N is obtained. In fact, the optimal output matrix M(x∗) is the
geodesic projection of T on N. The optimal trajectory of the control input variable x using Algorithm 1

can be realized.

4 Numerical simulations

In this section, some examples are given to illustrate our results about the control trajectory on the

special Euclidean matrix system SE(3) based on the natural gradient descent algorithm for cases that

whether the target matrix belongs to the output matrix manifold N or not respectively.

In order to express the designed control system, we consider the rigid body motion of the object on

SE(3). Suppose that the coordinate of the center of gravity of the rigid body is cRO ∈ R
3, and the

optimal trajectory from the configuration U to V is the curve C(t) such that

(
C(t)

1

)
= γU,V (t)

(
cRO

1

)
, (27)

where t ∈ [0, 1] and γU,V (t) denotes the geodesic connecting U and V on SE(3).

4.1 The case that the target matrix is on the output matrix manifold

If the target matrix T is on the output matrix manifold N , then the rigid body can move in the whole

manifold, which means it can approach the target along the geodesic in the submanifold N (See Figure 2).

Example 1. Suppose that the target matrix T belongs to the output manifold N1, which is in the

following form

N1 =

{(
A b

0 1

)∣∣∣∣A ∈ SO(3), b ∈ R
3

}
, (28)
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M(x*) SE(3) 

N 

M(x1)

T 

Figure 2 (Color online) Control system for T on N.

Table 1 The relation between algorithm efficiency and step length

Step length Iteration Step length Iteration

0.1 140 0.6 63

0.2 73 0.7 95

0.3 56 0.8 231

0.4 47 0.9 1000

0.5 52

where

A =

⎛

⎜⎜⎝

cosωx cosωy − sinωx cosωz − cosωx sinωy sinωz sinωx sinωz − cosωx sinωy cosωz

sinωx cosωy cosωx cosωz − sinωx sinωy sinωz − cosωx sinωz − sinωx sinωy cosωz

sinωy cosωy sinωz cosωy cosωz

⎞

⎟⎟⎠ ,

bT = (vx, vy, vz).

(29)

ωx, ωy, ωz represent the Euler angles along x-axis, y-axis and z-axis, respectively.

Remark 3. To study conveniently, the following conventions are made throughout these numerical

examples not just this example:

(1) The rigid body is represented by the segment p+ tq, where p = (0, 0, 0)T and q = (0.1, 0.1, 0.1)T.

(2) The initial values ω0 = (ω0
x, ω

0
y, ω

0
z) and v0 = (v0x, v

0
y , v

0
z) are chosen as (0, π

3 ,
π
6 ) and (0.1, 0.2, 0.1)

respectively.

(3) The target values ω1 = (ω1
x, ω

1
y, ω

1
z) and v1 = (v1x, v

1
y, v

1
z) are selected as (π4 ,

π
4 ,

π
4 ) and (0.2, 0.3, 0.4).

Therefore, the initial location of the rigid body is S = p0 + tq0, where p0 = (0.1, 0.2, 0.1)T and

q0 = (0.0317, 0.2366, 0.2549)T. Besides, the target location of the rigid body is T = p1 + tq1, where

p1 = (0.2, 0.3, 0.4)T and q1 = (0.1793, 0.2793, 0.5707)T. In the whole section, t ∈ [0, 1] exists for all

corresponding expressions.

In fact, the rigid object can move in the whole output manifold N1 freely. According to Algorithm 1, the

trajectory of the input ω0,v0 from the initial location S of the rigid body to the final location is achieved

(See Figure 3) and the parameters of the optimal control output are ω∗ = (0.7854, 0.7854, 0.7854), v∗ =

(0.2, 0.3, 0.4) with the error tolerance 10−4 and step length 0.1. In this example, the metric matrix in

(20) is diag(2I, I), where I denotes the 3-ordered identity matrix.

Furthermore, the efficiency and convergence of Algorithm 1 are obtained under the step length η =

0.1, 0.2, 0.4 respectively (See Figure 4). More results about numerical experiments are shown in Table 1

with the different step length and the same error tolerance.

4.2 The case that the target matrix is not on the output matrix manifold

Here, we consider the case that the target matrix T is not on the output matrix manifold N but on

manifold SE(3) (See Figure 5). In this case, the geodesics between T and the points on N are measured
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Figure 3 (Color online) Trajectories of the rigid object

motion on N1.
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Figure 4 (Color online) Convergence of natural gradient.
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Figure 5 (Color online) Control system for T outside of N.

by the geodesics on SE(3). Once given an initial control input variable x1, we have the initial output

matrix M(x1) on N, the geodesic between T and M(x1) exists and the next point on N is generated

according to (20). And this iterative process (from the initial output matrix M(x1) to the optimal

output matrix M(x∗)) continues until the distance between T and manifold N is minimal within the

given error. In fact, the optimal output point M(x∗) on N is the geodesic projection of T on N. In the

process, the Riemannian metric matrix G used in the natural gradient Algorithm 1 must be the metric

on N rather than SE(3) in order to ensure that the new points produced by iteration are still on N. Four

examples are used to explain the situation.

Remark 4. In the following four examples, the trajectories of the input (ω0,v0) from the initial output

location S (according to M(x1)) of the rigid body to the final output location (according to M(x∗))
are obtained denoted by the green trajectories and the geodesic projection trajectories from the target

matrixes T to manifolds are exhibited as the black ones in the figures.

Example 2. When the system keeps the parameter b = (0.1, 0.2, 0.1)T in (29) invariant, the output

matrix manifold is denoted by N2. The optimal output parameters ω∗ = (0.7854, 0.7854, 0.7853) and

v∗ = (0.1, 0.2, 0.1) are achieved according to our proposed method. Here, the metric matrix in (20) is

diag(2I,0), where I and 0 denote the 3-ordered identity matrix and the 3-ordered null matrix respectively.

The associated information, namely, the rigid body rotates on the manifold N2, can be illustrated in

Figure 6.

Example 3. Similarly, when we consider the parameter ω = (0, π
3 ,

π
6 )

T in (29) fixed, the output matrix

manifold is called N3, whose metric matrix is diag(0, I), where I and 0 denote the 3-ordered identity

matrix and the 3-ordered null matrix respectively. The optimal output of the control system can be

denoted by parameters ω∗ = (0, 1.0472, 0.5236) and v∗ = (0.2, 0.3, 0.4) (See Figure 7). From this figure,

we find that the rigid body only translates when restricted to manifold N3.
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Figure 6 (Color online) Trajectories of the rigid object

motion on N2.
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Figure 7 (Color online) Trajectories of the rigid object

motion on N3.
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Figure 8 (Color online) Trajectories of the rigid object

motion on N4.
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Figure 9 (Color online) Trajectories of the rigid object

motion on N5.

Example 4. Let the output matrix manifold N4 be a manifold with ωz = π
6 , vy = 0.2 and vz = 0.1 in

(29) denoted by

N4 =

{(
A b

0 1

)∣∣∣∣A ∈ SO(3), b ∈ R
3

}
,

where

A =

⎛

⎜⎜⎝

cosωx cosωy −
√
3
2 sinωx − 1

2 cosωx sinωy
1
2 sinωx −

√
3
2 cosωx sinωy

sinωx cosωy

√
3
2 cosωx − 1

2 sinωx sinωy − 1
2 cosωx −

√
3
2 sinωx sinωy

sinωy
1
2 cosωy

√
3
2 cosωy

⎞

⎟⎟⎠ ,

bT = (vx, 0.2, 0.2),

here the metric matrix on N4 is diag(2, 2, 0, 1, 0, 0). The optimal output is represented by the parameters

ω∗ = (0.7854, 0.7853, 0.5236) and v∗ = (0.2, 0.2, 0.1). In Figure 8, we identify that the rigid body

restricted on N4 keeps rotating and translating when moving towards the given target.

Example 5. For the fixed parameters in (29)

ωx ∈
[
−π

6
,
π

3

]
, ωy ∈

[
0,

π

2

]
, ωz ∈

[
−π

6
,
π

6

]
,

vx ∈ [0, 0.3] , vy ∈ [0.15, 0.25] , vz ∈ [0, 0.3] ,
(30)

the output matrix manifold is namedN5. The optimal output parameters are ω∗ = (0.7854, 0.7853, 0.5236)

and v∗ = (0.2, 0.2489, 0.2999). In this example, the metric matrix is diag(2k1, 2k2, 2k3, k4, k5, k6), where

ki = 1 when the corresponding coordinate belongs to the given interval and ki = 0 for others (i = 1, . . . , 6).

In fact, the motion of the rigid body is too complex to be described on manifold N5 (See Figure 9).
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5 Conclusion

An application of the natural gradient descent algorithm is applied to solve the control problem on the

special Euclidean group. To discuss the descent direction problem on manifold SE(n), we choose the

geodesic distance as the cost function, the geodesic equation as the trajectory and the natural gradient

as the gradient direction to give the iterative formula. Among them, the geodesic distance is induced by

the left invariant matric. Two kinds of cases are considered on the optimal control problem: one is for

the case that the target matrix belongs to the output matrix manifold; the other is the situation that

the target matrix doesn’t lie on the output matrix manifold but on SE(n). At the end of the paper,

simulations are given to illustrate our results efficiently.
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