
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

November 2016, Vol. 59 112201:1–112201:20

doi: 10.1007/s11432-016-5568-y

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

A framework for stability analysis of high-order

nonlinear systems based on the CMAC method

Tiantian JIANG* & Hongxin WU

Science and Technology on Space Intelligent Control Laboratory,

Beijing Institute of Control Engineering, Beijing 100190, China

Received January 21, 2016; accepted March 16, 2016; published online September 30, 2016

Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of

relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In

particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency

condition for quantitatively describing modeling errors corresponding to a group of characteristic models together

with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make

output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic

model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of high-

order nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results

provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay

certain theoretical foundations for practical applications of the CMAC method.
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1 Introduction

A model that is derived for facilitating controller design by taking into account plant dynamic properties,

environmental characteristics, and control performance requirements can be called a characteristic model

of a plant provided that the model and the plant are equivalent in output [1]. Generally, the resulting

characteristic model can be represented by some low-order, time-varying difference equation, making low-

order controller design easier. The characteristic model-based golden-section adaptive control (GSAC)

method originally proposed in the 1990s by Wu, is a widely used low-order control law with simplicity

of design, convenience of adjustment, and strong robustness [2, 3]. Until now, the idea of characteristic

model-based adaptive control (CMAC) has been applied successfully to more than 400 systems belonging

to 11 kinds of engineering plants in the fields of astronautics and industry (see, e.g., [4–8]). In particu-

lar, during reentry of the Shenzhou spacecraft and automatic rendezvous and docking of the Shenzhou

spacecraft with Tiangong-1, control precision reached the top level in the world [1, 3, 4, 7].

*Corresponding author (email: jiangtt@amss.ac.cn)



Jiang T T, et al. Sci China Inf Sci November 2016 Vol. 59 112201:2

Apart from these practical applications, much progress has also been made in the theoretical research

on the CMAC method. Among this work, related stability issues have been discussed actively. As cor-

nerstone research, Xie and Wu proved the asymptotic stability of second-order, linear, time-invariant

characteristic models under the golden-section controller with time-invariant parameters [9]. For charac-

teristic models with time-varying parameters, various stability conditions in both the SISO and MIMO

cases, corresponding to different adaptive control methods, were proposed by Wu and his co-workers by

virtue of Lyapunov stability theory [1, 10, 11]. In addition, two practical engineering systems were inves-

tigated in [12, 13] and, in each case, the explicit characteristic model-based control law, together with

the stability of the corresponding characteristic model under this controller, was presented. Moreover,

on the basis of the above work, the stability of the closed-loop system composed of the plant and the

CMAC was further investigated. Technically, such closed-loop stability issues are more complicated, as

the characteristic modeling process has to be involved in the stability analysis. In recent work [14], the

characteristic model-based pole placement method was developed to stabilize a class of SISO systems

while the corresponding stability condition imposed on the modeling error was stringent. Following the

existing framework for stabilization of sampled-data systems via their approximate discrete-time models

(see, e.g., [15, 16]), closed-loop stability under the GSAC law was proved in [17] for a class of nonlinear

systems with a relative degree of two and exponentially stable zero dynamics. Nevertheless, the persistent

excitation (PE) condition was required. By introducing new techniques to remove the PE condition, our

recent work [18] developed a group of sufficient conditions for stabilization of a class of second-order non-

linear systems via the GSAC which depend only on plant properties, controller parameters, and sampling

period. As a consequence, all of the above work represents a case-by-case study in the sense that each

stability result is achieved based on a certain specific characteristic model, along with some characteristic

model-based controllers, that lacks generality and portability.

In this paper, from a more general perspective, we further investigate the above closed-loop stability

issue, aiming to establish a framework used for analyzing the stability of some high-order nonlinear

systems under the CMAC scheme. Specifically, for a class of high-order minimum-phase nonlinear systems

of relative degree two, with a group of characteristic models in general form and certain kinds of sampled-

data output feedback controllers based on such characteristic models, a framework will be established

corresponding to the following basic question: “if this group of characteristic models can be stabilized

by a characteristic model-based sampled-data output feedback controller, then under what condition can

such a controller stabilize this class of high-order nonlinear systems?”

To that end, we have to overcome two major difficulties. Firstly, compared to the second-order case

without internal dynamics, the coupling between internal and external states in the high-order case makes

stability analysis more complicated since the stability of both states has to be established simultaneously.

Even for minimum-phase systems, it is not acceptable to ignore the coupling between internal and external

states groundlessly when designing the controller and demonstrating the stability of the closed-loop

system. Secondly, as characteristic model-based controller design essentially belongs to the discrete-

time design (DTD) approach for sampled-data systems [15], the corresponding closed-loop system has a

hybrid structure, making the analyses more difficult. Moreover, regarding the DTD method, we want

to emphasize that, although Nes̆ić et al. have established a framework for the stability of sampled-data

systems via their approximate discrete-time models, this framework cannot be inherited to solve our

stability issue. One reason for this is that the Nes̆ić’s framework is founded on the basis of sampled-

data state feedback controllers while, in CMAC, we consider sampled-data output feedback. Besides,

in Nes̆ić’s framework, uniform boundedness with respect to the sampling period is a basic requirement

for the applied sampled-data controller. Nevertheless, CMAC laws such as typical GSAC cannot meet

this requirement. Consequently, new techniques must be introduced to overcome these difficulties. Also,

noticing that many practical plants may be described by minimum-phase models with a relative degree

of two (see, e.g., [19,20]), it is of great significance, both theoretically and practically, to investigate this

issue.

In the subsequent parts, we will formulate the problem in Section 2. Our main results including both

a general framework for stability analysis and specific closed-loop stability results, together with their
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detailed proofs, are presented in Section 3. A numerical example is given in Section 4. Finally, Section 5

concludes this paper with some final remarks.

Notations. In the following discussion, we use the common definitions of class K and K∞ given in [21].

R denotes the set of real numbers, R+ the set of nonnegative real numbers, and N the set of natural

numbers. ‖ · ‖ is the Euclidean vector norm or the spectral matrix norm, and ‖ · ‖1 the sum vector norm

(or l1 norm) [22]. 0m×n denotes the m-by-n zero matrix, and In the n-dimensional identity matrix. For

any matrix M ∈ R
n×n, λi(M) (i = 1, . . . , n) denotes the ith eigenvalue of M . Let T > 0 be the sampling

period, •(k) , •(t)|t=kT , k ∈ N. For any given function κ(t), t ∈ Dκ, the expression κ(t) = O(1), t ∈ Dκ

means that there exists a positive constant Mκ > 0 such that |κ(t)| 6 Mκ, ∀t ∈ Dκ.

2 Problem formulation

We consider the following high-order SISO nonlinear system of relative degree two:















ẋ = Ax+B [a(x, z) + b(x, z)u+ d(t)] ,

ż = f0(x, z),

y = Cx,

t > 0, (1)

where x = [x1 x2]
T ∈ R

2 and z ∈ R
m are the state variables, u ∈ R is the control input, y ∈ R is

the measured output, a(x, z), b(x, z), and f0(x, z) are nonlinear functions that may contain unknown

dynamics, and d(t) is an external disturbance. In addition, the triple (A,B,C) is as follows:

A =

[

0 1

0 0

]

, B =

[

0

1

]

, C = [ 1 0 ] .

Throughout the paper, we need the following assumptions:

Assumption 1. The unknown function a(x, z) is differentiable and globally Lipschitz. Moreover, there

exists L > 0 such that for any (xT, zT)T, (xT
∗ , z

T
∗ )

T ∈ R
m+2,

|a(x, z)− a(x∗, z∗)| 6 L (‖x− x∗‖1 + ‖z − z∗‖1) . (2)

Assumption 2. The unknown control gain b(x, z) is continuous, belongs to a bounded interval which

does not contain 0, and has a known sign. Also, the disturbance d(t) is bounded. Without loss of

generality, let b, b̄, and d be positive constants satisfying

0 < b 6 b(x, z) 6 b̄, ∀(x, z), sup
t>0

|d(t)| 6 d. (3)

Assumption 3. There exists a continuously differentiable function Vz(z) : R
m → R+ such that

c1‖z‖
2 6 Vz(z) 6 c2‖z‖

2, V̇z(z) 6 −c3‖z‖
2 + c4‖x‖

2, ∀x ∈ R
2, z ∈ R

m, (4)

where ci > 0 (i = 1, . . . , 4) are positive constants.

Remark 1. Notice that the external dynamics of system (1) has integrators in a series structure,

which appears to limit the applicable scope of what we can obtain in this paper. Nevertheless, for affine

nonlinear systems in general form ζ̇ = f(ζ)+g(ζ)u, y = h(ζ), we know from input-output linearization

theory (see [21,23]) that it can be transformed into the system (1) by a change of variables (x, z)=Tζ(ζ),

provided that such systems have relative degree two and satisfy certain conditions. Hence, many systems

in the above general form can also be dealt with by the method we propose in this paper.

Remark 2. Assumption 3 ensures that the system ż = f0(x, z) with input x is input-to-state stable

(ISS), and that its solution satisfies ‖z(t)‖ 6
√

c2/c1 exp [−(c3t)/(2c2)] ‖z(0)‖+ cz sup06τ6t ‖x(τ)‖, ∀t >

0, where cz =
√

c2c4/(c1c3).
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Here we consider the output tracking problem for a minimum-phase uncertain nonlinear system (1).

More specifically, our control objective is to develop a sampled-data output feedback controller to make

sure that, for all initial states in any given compact set, the state signals (x(t), z(t)) are bounded, and

the output y(t) tracks the reference trajectory generated from the target system

ẋ∗(t) = Amx∗(t) +Br(t), y∗(t) = Cx∗(t), t > 0, (5)

where x∗(t) = [x∗
1(t) x

∗
2(t)]

T ∈ R
2 is the state, r(t) ∈ R is the input signal satisfying |r(t)| 6 r̄ with r̄ > 0

as a known constant, and Am is a Hurwitz matrix defined by

Am =

[

0 1

−k1 − k2

]

∈ R
2×2. (6)

Hence, it is evident that the trajectories of the target system (5) are bounded for any bounded initial

states that satisfy

sup
t>0

‖x∗(t)‖ 6 M∗, (7)

where M∗ > 0 is a constant that depends on the parameters {Am, r̄} and the initial values x∗(0).

Note that this output tracking problem can be converted into a stabilizing one for the correspond-

ing error system, making it convenient to design the controller and analyze control performance. By

setting ei = xi − x∗
i (i = 1, 2), ye = y − y∗, and combining (1) and (5), we have error dynamics is as

follows:

ė1(t) = e2(t), ė2(t) = ae(e1, e2, z, t) + be(e1, e2, z, t)u(t), ż(t) = fe
0 (e1, e2, z, t), ye(t) = e1(t), (8)

where be(e1, e2, z, t) , b(e1 + x∗
1(t), e2 + x∗

2(t), z), f
e
0 (e1, e2, z, t) , f0(e1 + x∗

1(t), e2 + x∗
2(t), z), and

ae(e1, e2, z, t) , a(e1 + x∗
1(t), e2 + x∗

2(t), z) + k1x
∗
1(t) + k2x

∗
2(t)− r(t) + d(t), (9)

in which a(·), b(·), f0(·), and d(t) are given in (1), and r(t), k1, k2 are given in (5) and (6), respectively.

Moreover, according to Assumptions 1 and 2, and from (7) and (9), it is not difficult to verify that the

nonlinear function ae(·) defined by (9) has the following properties:

(A1) ae(e1, e2, z, t) is globally Lipschitz in (e1, e2, z) uniformly in t. Also, for any (e′1, e
′
2, z

′) and

(e′′1 , e
′′
2 , z

′′),

|ae(e
′
1, e

′
2, z

′, t)− ae(e
′′
1 , e

′′
2 , z

′′, t)| = |a(e′1 + x∗
1(t), e

′
2 + x∗

2(t), z
′, t)− a(e′′1 + x∗

1(t), e
′′
2 + x∗

2(t), z
′′, t)|

6 L(|e′1 − e′′1 |+ |e′2 − e′′2 |+ ‖z′ − z′′‖1), ∀t > 0. (10)

(A2) ae(0, 0, 0, t) is uniformly bounded, and there exists a positive number Ma0 > 0 that depends on

the parameters {L, d, k1, k2, r̄, M
∗} such that

sup
t>0

|ae(0, 0, 0, t)| 6 Ma0. (11)

(A3) ae(e1, e2, z, t) is differentiable with respect to its arguments (e1, e2, z), and

|ae(e1, e2, z, t1)− ae(e1, e2, z, t2)| 6 Ma1, ∀(e1, e2, z
T)T ∈ R

m+2, ∀t1, t2 > 0, (12)

where Ma1 > 0 is a constant depending on {L, d, k1, k2, r̄, M
∗}.

Consequently, our control objective is converted into designing a sampled-data output feedback con-

troller such that ye(t) → 0 as t → ∞. Centering around this objective, our main results are presented in

the subsequent section.
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3 Main results

Now we concentrate on the stabilization of high-order nonlinear error systems (8) of relative degree two via

the CMAC method. Specifically, a general framework for stability analysis with respect to the CMAC

method as well as specific closed-loop stability results for this error system (8) are established below,

successively. In the following, if there are no special instructions, we always assume that the sampling

period T ∈ (0, Tmax] is bounded with an upper bound Tmax > 0, and that signals satisfy ye(−1) =

e1(−1) = e1(0)− Te2(0), e1(i) = 0 (∀i < −1), as well as e2(i) = u(i) = 0 (∀i < 0).

3.1 A general framework for stability analysis

Basically, the framework for stability analysis to be established shortly arises from exploration of the

following question: if a characteristic model of a plant is stabilized by some characteristic model-based

adaptive controller, then under what conditions can such a CMAC law stabilize the plant? To answer

this, analyzing quantitatively the modeling error of the characteristic model becomes a key point. Along

the way, a consistency condition is introduced first to quantitatively describe the permissible modeling

error of the characteristic model. Then, using this consistency condition, our framework for stability

analysis will be established.

3.1.1 Consistency condition

In order to present the consistency condition, two elements need to be specified beforehand — the form

of characteristic models and the scope of the sampled-data output feedback controls. Here we focus on

the commonly used class of second-order characteristic models, which is described as follows:

{

e1(k + 1) = f1(k)e1(k) + f2(k)e1(k − 1) + g0(k)u(k) + g1(k)u(k − 1), (13)

Te2(k + 1) = ν(e1(k + 1), e1(k), z, u(k), k + 1), (14)

where the coefficients {f1(k), f2(k), g0(k), g1(k)} satisfy

|f1(k)− 2| 6 ǫ1(T ), |f2(k) + 1| 6 ǫ2(T ),

0 < ǫ01(T
2) 6 g0(k) 6 ǫ02(T

2), 0 < ǫ11(T
2) 6 g1(k) 6 ǫ12(T

2), (15)

in which ǫ1(·), ǫ2(·) : R+ → R+ are class K functions, and the functions ǫij(T
2) (i = 0, 1, j = 1, 2)

are of the same order as T 2 for any T ∈ (0, Tmax], whose values might also depend on the system

states. Moreover, the function ν(·) is required to have the following property: for any T ∈ (0, Tmax] and

constant Cν > 0, if ‖(e1(k + 1), e1(k), ǭ(T
2)u(k))‖1 6 Cν in which ǭ(T 2) , max{ǫ02(T

2), ǫ12(T
2)}, then

|ν(e1(k + 1), e1(k), z, u(k), k + 1)| 6 τν(Cν), ∀z ∈ R
m, ∀k > 0, (16)

where τν(·) : R+ → R+ is a class K function.

We remark that the second-order time-varying difference equation (13) is established for designing

sampled-data output controllers. Besides, compared to the normal characteristic model in the existing

characteristic modeling theory (see [1]), the additional equation (14), as part of our characteristic model,

is also taken into account. As a matter of fact, this equation (14) plays an important role in analyzing

the stability of the state e2. We also remark that, since the system (1) we consider in this paper

is minimum-phase and satisfies Assumption 3, the equation describing the internal dynamics z is not

involved in the above characteristic model (13) and (14). The details to support this statement can be

found in the proofs of our main results. As for other more general minimum-phase systems, when deriving

characteristic models, the questions of whether it is necessary to take internal dynamics z into account

and how to compress the information z into the coefficients of model (13) are still open.

Now having the characteristic model (13) and (14), we further need the exact discrete-time model of

the system (8), which can be denoted by

e1(k + 1) = F ex
1 (e1, e2, z, u(k), k), e2(k + 1) = F ex

2 (e1, e2, z, u(k), k). (17)
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Corresponding to the above characteristic model (13) and (14), we also introduce an equivalence form of

the exact discrete-time model (17) represented by
{

e1(k + 1) = f1(k)e1(k) + f2(k)e1(k − 1) + g0(k)u(k) + g1(k)u(k − 1) + ∆1(k + 1), (18)

Te2(k + 1) = ν(e1(k + 1), e1(k), z, u(k), k + 1) + ∆2(k + 1), (19)

where the time-varying parameters {f1(k), f2(k), g0(k), g1(k)} have the properties given in (15), ν(·) is

the function defined by (14) which satisfies (16), and ∆1(k + 1), ∆2(k + 1) are the modeling errors that

depend on both the system states and the control input.

Another element that needs to be specified is the scope of sampled-data output feedback controllers.

In view of the fact that the model (13) used for the controller design is linear, and from the practicality

of control laws, we take the following set as our admissible control set:

U ,







u = {uT (k), k > 0} : uT (k) =

k
∑

i=k−p

αT,k−i(k)ye(i), ∀k > 0







, (20)

where, at each step k > 0, the control signal uT (k) is a linear combination of the past and present output

signals {ye(k), . . . , ye(k − p)} (p > 0), and the time-varying control parameters {αT,i(k), i = 0, . . . , p}

usually depend on the coefficients of the characteristic model, which may be calculated by some parameter

estimator. Moreover, by the properties (15), we also set that, for all T ∈ (0, Tmax],

sup
k>0

max
06j6p

{

ǭ(T 2)|αT,j(k)|, T 2|αT,j(k)|
}

6 ᾱu, (21)

where ᾱu > 0 is a constant, and ǭ(T 2) = max{ǫ01(T
2), ǫ02(T

2)} in which ǫ01(T
2), ǫ02(T

2) are given

by (15). Obviously, the widely used discrete-time PD control, golden-section adaptive control, and

minimum-variance adaptive control all belong to the above admissible control set. Thus, the sampled-

data controllers we are concerned with not only have a simple linear structure, bearing practicality in

engineering, but also have generality to a certain extent. In the subsequent discussion, to simplify notation

we drop the subscript T in the variables uT (k) and αT,i(k) if no ambiguity is caused.

We are now in a position to provide the consistency condition. To describe it more clearly and concisely,

we utilize the ordered pair {F cm, u} to represent the family containing the characteristic model (13)

and (14) and some admissible sampled-data feedback control u ∈ U . Similarly, the family {F ex, u}

corresponds to the exact discrete-time model (17), or the equivalent one (18) and (19), and the same

admissible control u. In addition, the following two simple definitions are also needed.

Definition 1. A vector (a0, . . . , an−1)
T ∈ R

n is stable if the roots of the corresponding polynomial sn+

an−1s
n−1 + · · ·+ a1s+ a0 are all located in the unit circle.

Definition 2. For any n-dimensional real column vectors A′ = (a′1, . . . , a
′
n)

T, A′′ = (a′′1 , . . . , a
′′
n)

T ∈ R
n,

• A′ > A′′ if their elements satisfy a′i > a′′i , ∀1 6 i 6 n;

• A′ > A′′ if their elements satisfy a′i > a′′i , ∀1 6 i 6 n. In particular, if a′i > 0 (∀1 6 i 6 n), we also

say that the vector A′ is non-negative.

Then the consistency condition that quantitatively describes the admissible modeling error of the

characteristic model is given as follows.

Consistency. The family {F cm, u} is said to be consistent with {F ex, u} if there exists a non-negative

integer p̄1 ∈ N such that the corresponding modeling errors ∆1(k+1), ∆2(k+1) satisfy: for each compact

set Ω ⊂ R
(m+2)(p̄1+1), there exist class K functions ̺i0(·), ̺j(·) : R+ → R+ (i = 1, 2; j = 0, . . . , p̄1) , and a

non-negative stable vector (λ∗
0, . . . , λ

∗
p̄1
)T ∈ R

p̄1+1, such that for all T ∈ (0, Tmax], and any k > 0, when

[e1(k), . . . , e1(k − p̄1), T e2(k), . . . , T e2(k − p̄1), T z
T(k), . . . , T zT(k − p̄1)]

T ∈ Ω, we have

|∆1(k + 1)| 6 ̺10(T ), (22)

|∆2(k + 1)| 6
∑p̄1

j=0

[

̺p̄1−j(T ) + λ∗
p̄1−j

]

T |e2(k − j)|+ ̺20(T ). (23)

Furthermore, this group of conditions (22) and (23) with respect to the modeling errors ∆1(k) and ∆2(k)

are called the consistency condition.
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As can be seen, the above consistency condition explicitly illuminates the upper bounds of the accept-

able modeling errors between {F cm, u} and {F ex, u}. Also, such bounds decrease with the reduction of

the sampling period T , which will help to prove the closed-loop stability with regard to the plant (1).

3.1.2 Main theorems

Now, based on the above consistency condition, we present the stability of the closed-loop system com-

posed of the admissible sampled-data feedback controller (20) and the system (1).

Theorem 1. Consider a high-order nonlinear plant (1) satisfying Assumptions 1–3, the characteristic

model (13) and (14), as well as the admissible sampled-data output feedback controller (20). If

(C1) the family {F cm, u} is consistent with {F ex, u}, and

(C2) there exists T∗ > 0 such that for all T ∈ (0, T∗) the discrete-time closed-loop system comprised

of the characteristic model (13) and the controller (20) is exponentially stable,

then for any ρ0 > 0, and any initial state ‖(x1(0), x2(0), z
T(0))‖1 6 ρ0, there exist T ∗ < T∗ and a class

K function ̺∗e(·) such that for each T ∈ (0, T ∗) the trajectories of the closed-loop system composed of

this controller (20) and the plant (1) satisfy the following properties:

(1) boundedness:

sup
t>0

[|x1(t)|+ T |x2(t)|+ T ‖z(t)‖1] = O(1); (24)

(2) Tracking performance:

lim sup
t→∞

|y(t)− y∗(t)| = O(̺∗e(T )). (25)

Furthermore, if x(0) = x∗(0), then there exists ̺e∗(·) ∈ K such that supt>0 |y(t)− y∗(t)| = O(̺e∗(T )).

Remark 3. This result illustrates that, for such minimum-phase nonlinear systems (1) with a relative

degree of two, an answer to that basic question we mentioned earlier in Subsection 3.1 is the consistency

condition, i.e., the condition (C1). Clarifying this, the framework we pursue is established.

Remark 4. The transient performance of the closed-loop system relates to its initial state, and it can

be improved as the absolute value of the initial state decreases. Also, for any bounded initial state, the

tracking error enters ultimately into a neighborhood of the origin with a radius of O(̺∗e(T )).

Remark 5. Theoretically, the steady tracking error can be made arbitrarily small by making the

sampling period T small enough. However, in practice, there are some limitations on the value of the

sampling period due to various physical constraints. The corresponding stability issue when the sampling

period is prescribed beforehand remains for further investigation.

Next, we prove Theorem 1. To this end, we first analyze the properties of the solution of the error

system (8). For any given sampled-data control signals {u(k), k > 0}, the solution of system (8) satisfies














































e1(t) = e1(k) + (t− kT )e2(k) +

∫ t

kT

(t− τ)[ae(e1(τ), e2(τ), z(τ), τ)

+be(e1(τ), e2(τ), z(τ), τ)u(k)]dτ,

e2(t) = e2(k) +

∫ t

kT

[ae(e1(τ), e2(τ), z(τ), τ) + be(e1(τ), e2(τ), z(τ), τ)u(k)] dτ, (26)

z(t) = z(k) +

∫ t

kT

fe
0 (e1(τ), e2(τ), z(τ), τ)dτ, ∀t ∈ [kT, (k + 1)T ].

One property of this solution is given as follows.

Lemma 1. Consider the solution (26) of the error system (8). Suppose that Assumptions 1–3 are

satisfied; then, for any sampled-data control signals {u(k), k > 0},

ωk(t) 6 pω(t− kT ){|e1(k)|+ |e2(k)|+ (t− kT )|e2(k)|+ [(t− kT ) + (t− kT )2/2][b̄|u(k)|

+Ma0 + L
√

mc2/c1‖z(k)‖1 +
√

mc4/c1M
∗L(t− kT )1/2]}, (27)

‖z(t)‖1 6

√

mc2
c1

exp

{

−
c3
2c2

(t− kT )

}

‖z(k)‖1 +

√

mc4
c1

M∗(t− kT )1/2 +

√

mc4
c1

(t− kT )1/2ωk(t), (28)
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hold for all t ∈ [kT, (k + 1)T ] and all k > 0, where

ωk(t) , sup
kT6s6t

[|e1(s)|+ |e2(s)|], pω(s) = exp
{

L(s2/2 + s)
(

1 +
√

mc4s/c1

)}

(s > 0), (29)

in which L, b̄, ci (i = 1, . . . , 4) are constants given in (2)–(4), m is the dimension of the internal dynamics z,

and M∗, Ma0 are positive numbers defined by (7) and (11), respectively.

Proof. See Appendix A.

Now we show the detailed proof of Theorem 1.

Proof of Theorem 1. We split the proof into two parts. Firstly, we prove, under the sampled-

data controller (20), that the sampling signals (x1(k), x2(k), z(k)) are bounded and give their explicit

boundaries. Then the boundedness of trajectories, together with tracking performance, is presented.

Part I. Recall that our sampled-data output feedback controller is as follows:

u(k) =

k
∑

i=k−p

αk−i(k)e1(i). (30)

Then the closed-loop system consisting of the controller (30) and the characteristic model (13) is

e1(k+1) = f1(k)e1(k)+f2(k)e1(k−1)+g0(k)
k

∑

i=k−p

αk−i(k)e1(i)+g1(k)
k−1
∑

i=k−1−p

αk−1−i(k−1)e1(i). (31)

By introducing E1(k) , [e1(k), . . . , e1(k−1−p)]T ∈ R
p+2, the above discrete-time closed-loop system (31)

can be equivalently described as

E1(k + 1) =

[

αA(k)

Ip+1 0(p+1)×1

]

E1(k) , A(k)E1(k), ∀k > 0, (32)

where αA(k) = [f1(k), f2(k),01×p] + g0(k)[α0(k), . . . , αp(k), 0] + g1(k)[0, α0(k − 1), . . . , αp(k − 1)] ∈

R
1×(p+2). Also, we introduce the state transition matrix sequence with respect to the system (32),

Φ(k + 1, i) = A(k)Φ(k, i), Φ(i, i) = Ip+2, ∀k > i > 0. (33)

Then it follows from condition (C2) that, there exist Mc > 1, λc ∈ (0, 1) such that for all T ∈ (0, T∗),

‖Φ(k + 1, i)‖ 6 Mcλ
k+1−i
c , ∀k > i > 0, (34)

where the constants Mc, λc depend on the system structure and the control parameters.

Next, with the consistency condition (C1) and the stability property given by (34), we further analyze

the stability of the closed-loop system comprised of the system (8) and the sampled-data controller (30).

We set the initial state of the system (8) to satisfy

|e1(0)|+ |e2(0)| 6 ρe, ‖z(0)‖1 6 ρ0, (35)

where ρe > 0 is determined by the initial state of both the plant (1) and the target system (5). In the

following, we will demonstrate that there exists T ∗ ∈ (0, 1] such that, for all T ∈ (0, T ∗), the sampling

signals (e1(k), e2(k), z(k)) satisfy the following properties:

sup
k>0

|e1(k)| 6 ρ1, sup
k>0

T |e2(k)| 6 ρ2, sup
k>0

T ‖z(k)‖1 6 ρ3, (36)

where ρ1 > ρe, ρ2 > ρe, and ρ3 > ρ0 are positive numbers whose explicit values will be determined later.

We adopt the contradiction argument. Suppose that the above statement is not correct. Notice that

the initial state satisfies |e1(0)| 6 ρ1, T |e2(0)| 6 ρ2, T ‖z(0)‖1 6 ρ3; then it follows that there must exist

a sampling time k0 > 0 such that the values (e1(k0 +1), e2(k0 +1), z(k0 +1)) do not have the properties
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given by Eq. (36). Let k∗ + 1 > 1 be the first time such that the state signals (e1(k), e2(k), z(k)) go

beyond the bounds given in (36). Therefore, for all 0 6 k 6 k∗, we have

|e1(k)| 6 ρ1, T |e2(k)| 6 ρ2, T ‖z(k)‖1 6 ρ3, (37)

while, at the sampling time k∗ + 1, there are only three cases given below:

|e1(k
∗ + 1)| > ρ1, or T |e2(k

∗ + 1)| > ρ2, or T ‖z(k∗ + 1)‖1 > ρ3.

Now let us discuss the above three cases one by one.

Case 1. |e1(k
∗ + 1)| > ρ1.

Firstly, by putting the sampled-data controller (30) into the exact discrete-time model (18), we obtain

E1(k + 1) = A(k)E1(k) +B0∆1(k + 1), (38)

where A(k) is defined in (32), B0 , [1, 0, . . . , 0]T ∈ R
p+2, and ∆1(k + 1) is given in (18). From this, we

calculate an upper bound of |e1(k
∗ + 1)|. For the term ∆1(k + 1), noticing that for any 0 6 k 6 k∗ the

states satisfy the boundedness given by (37), then according to the consistency condition (22), we know

that there exists a class K function ̺10(·) : R+ → R+ such that

|∆1(k + 1)| 6 ̺10(T ), ∀0 6 k 6 k∗. (39)

Again from the Eq. (38) we obtain that

E1(k + 1) = Φ(k + 1, 0)E1(0) +
k

∑

i=0

Φ(k + 1, i+ 1)B0∆1(i+ 1), (40)

where Φ(k, i) is defined by (33). Substituting (34) and (39) into (40), it follows that for any 0 6 k 6 k∗,

‖E1(k + 1)‖ 6 ‖Φ(k + 1, 0)‖ · ‖E1(0)‖+

k
∑

i=0

‖Φ(k + 1, i+ 1)‖ · ‖B0‖ · |∆1(i+ 1)|

6 Mcλ
k+1
c ‖E1(0)‖+

k
∑

i=0

Mcλ
k−i
c ̺10(T ) 6 Mc‖E1(0)‖+Mc/(1− λc)̺10(T ). (41)

So according to the initial condition (35) and our appointment e1(−1) = e1(0) − Te2(0), and noticing

that ̺10(·) belongs to class K, we conclude that there exists T1 6 min{T∗, 1}, such that for all T ∈ (0, T1),

‖E1(k
∗ + 1)‖ < 2Mcρe , ρ1, (42)

which contradicts |e1(k
∗ + 1)| > ρ1.

Case 2. T |e2(k
∗ + 1)| > ρ2.

Similarly to Case 1, we need only to calculate an upper bound of T |e2(k
∗ + 1)|. Firstly, by the exact

discrete-time model (19), the consistency condition (23), as well as the boundedness (37), we obtain that

T |e2(k + 1)| 6

p̄1
∑

j=0

[

̺p̄1−j(T ) + λ∗
p̄1−j

]

T |e2(k − j)|+ |ν(e1(k + 1), e1(k), z, u(k), k + 1)|+ ̺20(T ), (43)

holds for all 0 6 k 6 k∗, where p̄1 ∈ N is a positive integer, (λ∗
0, . . . , λ

∗
p̄1
)T is an non-negative sta-

ble vector, ̺i(·) (i = 0, . . . , p̄1) and ̺20(·) are class K functions, and the function ν(·) is given in

(14) satisfying (16). Thus, in order to analyze the above inequality, let us introduce the state vector

E2(k) , [|e2(k)|, . . . , |e2(k − p̄1)|]
T ∈ R

p̄1+1, and the matrices

Aλ ,

[

Λ∗

Ip̄1
0p̄1×1

]

, Ae(T ) , Aλ +

[

¯̺(T )

0p̄1×(p̄1+1)

]

∈ R
(p̄1+1)×(p̄1+1),
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where Λ∗ , [λ∗
p̄1
, . . . , λ∗

0] and ¯̺(T ) , [̺p̄1
(T ), . . . , ̺0(T )]. So Eq. (43) can be equivalently described by

TE2(k + 1) 6 Ae(T )TE2(k) +Be [|ν(e1(k + 1), e1(k), z, u(k), k + 1)|+ ̺20(T )] , ∀0 6 k 6 k∗, (44)

where Be , [1, 0, . . . , 0]T ∈ R
p̄1+1, and the notation “6” represents the relation between vectors defined

in Definition 2. Now we proceed to calculate an upper bound of T |e2(k
∗ + 1)|. At first, let us focus on

the matrix function Ae(T ). Since the vector (λ∗
0, . . . , λ

∗
p̄1
)T is non-negative and stable, it follows that

the spectral radius of Aλ satisfies λe
0 , max16i6p̄1+1{|λi(Aλ)|} < 1. From this, and according to the

continuous dependence of matrix eigenvalues on its elements (see, e.g., the Ostrowski theorem [24]), we

know that the eigenvalues {λi(Ae(T )), i = 1, . . . , p̄1+1} of the matrix Ae(T ) have the following property:

for any given λe
1 ∈ (λe

0, 1), there exists a sampling period T2 6 T1 such that, for all T ∈ (0, T2),

max
16i6p̄1+1

{|λi(Ae(T ))|} < λe
1 < 1. (45)

By this, we can further obtain (see Lemma 2.4.1 in [25])

‖Ak
e(T )‖ 6 M e

A(λ
e
2)

k, ∀T ∈ (0, T2), ∀k > 0, (46)

where

M e
A =

√

p̄1 + 1(1 + 2/ǫe)
p̄1 , λe

2 = λe
1 + ǫe · sup

T∈(0,T2]

‖Ae(T )‖ < 1, (47)

in which ǫe > 0 is a proper small constant. Then, for the function ν(·), by combining (16), (37), the

controller (30), its property (21), and the boundedness (42) that was proved in Case 1, we have

|ν(e1(k + 1), e1(k), z, u(k), k + 1)| 6 τν(ρν), ∀0 6 k 6 k∗, (48)

where ρν = [2 + ᾱu(p+ 1)]ρ1, in which ᾱu, ρ1 are given by (21) and (42). Thus, for the inequality (44),

noticing that all the elements of Ae(T ) are non-negative, and combining the property (48), we have

TE2(k + 1) 6 Ae(T )
k+1TE2(0) +

k
∑

i=0

Ae(T )
k−iBe[τν(ρν) + ̺20(T )], ∀0 6 k 6 k∗,

which together with (46) allows the further derivation that ∀0 6 k 6 k∗,

T ‖E2(k + 1)‖ 6 T ‖Ae(T )
k+1‖‖E2(0)‖+

k
∑

i=0

‖Ae(T )
k−i‖ · ‖Be‖ · [τν(ρν) + ̺20(T )]

6 TM e
A(λ

e
2)

k+1‖E2(0)‖+

k
∑

i=0

M e
A(λ

e
2)

k−i[τν(ρν) + ̺20(T )]

6 TM e
A(λ

e
2)

k+1‖E2(0)‖+
M e

A

1− λe
2

[τν(ρν) + ̺20(T )]. (49)

Consequently, from the initial condition (35) and the fact that ̺20(·) is a class K function, we obtain that

there exists T3 6 T2 such that for all T ∈ (0, T3),

T ‖E2(k
∗ + 1)‖ < 2M e

A/(1− λe
2)τν(ρν) , ρ2, (50)

which is in contradiction with T |e2(k
∗ + 1)| > ρ2.

Case 3. T ‖z(k∗ + 1)‖1 > ρ3.

Firstly, according to Assumption 3, and the boundedness (7) of the target system’s trajectory, we know

that

‖z(t)‖16
√

mc2/c1 exp{−c3t/(2c2)}‖z(0)‖1+
√

mc2c4/(c1c3)

{

M∗+ sup
06τ6t

[|e1(τ)|+|e2(τ)|]

}

, ∀t>0,

(51)
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where ci (i = 1, . . . , 4) are given in (4), m is the dimensionality of the internal dynamics z, and M∗ is

given by (7). Now we calculate an upper bound of T ‖z(k∗ + 1)‖1. From (51), it is obvious that we

only need to calculate an upper bound of ωk(t) = supkT6τ6t[|e1(τ)| + |e2(τ)|]. Actually, by substituting

the controller (30) into (27) given in Lemma 1, and combining (21), (37) we obtain that, for all t ∈

[0, (k∗ + 1)T ],

T sup
06τ6t

[|e1(τ)| + |e2(τ)|] 6 sup
06k6k∗

Tωk((k + 1)T ) 6 pω(T ) (Cω1ρ1 + ρ2 + TCω2) , (52)

where the function pω(·) is defined by (29), Cω1 =(1+ T
2 )b̄ᾱu(p+1), and Cω2 = ρ1+ρ2+(T + T 2

2 )(Ma0+
√

mc4
c1

M∗LT 1/2)+L
√

mc2
c1

(1+T
2 )ρ3. Hence, by substituting (52) into (51), it follows that ∀t ∈ [0, (k∗+1)T ],

T ‖z(t)‖1 6
√

mc2/c1 exp {−c3t/(2c2)}T ‖z(0)‖1 +
√

mc2c4/(c1c3) {TM
∗ + pω(T ) (Cω1ρ1 + ρ2 + TCω2)}

=
√

mc2/c1 exp {−c3t/(2c2)}T ‖z(0)‖1 + pω(T )(Cω1ρ1 + ρ2) +O(T )

6
√

mc2/c1T ‖z(0)‖1 + pω(T )(3b̄ᾱu(p+ 1)ρ1/2 + ρ2) +O(T ). (53)

From this, it is immediately verified that there exists T ∗ 6 T3 such that, for all T ∈ (0, T ∗),

T ‖z(k∗ + 1)‖1 <
√

mc2/c1ρ0 + pω(1)[3b̄ᾱu(p+ 1)ρ1/2 + ρ2] , ρ3, (54)

contradicting T ‖z(k∗ + 1)‖1 > ρ3.

Consequently, from Cases 1–3, it is easy to conclude that, for all T ∈ (0, T ∗), the states of the closed-

loop system comprised of the controller (30) and the system (8) satisfy

|e1(k)| 6 ρ1, T |e2(k)| 6 ρ2, T ‖z(k)‖1 6 ρ3, ∀k > 0. (55)

Furthermore, we can get the steady-state bounds of the signals {e1(k), e2(k)}. From (41), we know that

lim sup
k→∞

‖E1(k + 1)‖ 6 lim
k→∞

k
∑

i=0

Mcλ
k−i
c ̺10(T ) = Mc/(1− λc)̺10(T ), (56)

where ̺10(·) is a class K function. Therefore, there exists some time Nc(T ) ∈ N such that

|e1(k)| 6 Mc/(1− λc)̺10(T ) + ̺10(T ) = M∗
e ̺10(T ), ∀k > Nc(T ), (57)

where M∗
e = Mc/(1−λc)+1. For the state e2(k), based on the property of the function ν(·) given by (16),

that of the sampled-data controller (21), and by (48) and (57) we have that, for all k > Nc(T )+p = N ′
c(T ),

|ν(e1(k+1), e1(k), z, u(k), k+1)| 6 τν (M
∗
ν ̺10(T )) , whereM

∗
ν = [2+ᾱu(1+p)]M∗

e . This together with (44)

and (46) further ensures that for all k > N ′
c(T ) and T ∈ (0, T ∗),

T ‖E2(k + 1)‖ 6 TM e
Aλ

e
2‖E2(k)‖ + τν(M

∗
ν ̺10(T )) + ̺20(T )

6 TM e
A(λ

e
2)

k+1−N ′

c‖E2(N
′
c)‖+

k
∑

i=N ′

c

M e
A(λ

e
2)

k−i · [τν (M
∗
ν ̺10(T )) + ̺20(T )]

6 TM e
A(λ

e
2)

k+1−N ′

c‖E2(N
′
c)‖+M e

A/(1− λe
2) [τν(M

∗
ν ̺10(T )) + ̺20(T )] .

Hence,

lim sup
k→∞

T |e2(k)| 6 M e
A/(1− λe

2) [τν(M
∗
ν ̺10(T )) + ̺20(T )] . (58)

To this point, we have proved the boundedness of the sampling states {e1(k), T e2(k), T z(k)} and gave

their explicit bounds (42), (50) and (54). Meanwhile, the steady-state bounds (56) and (58) of the

external dynamics {e1(k), e2(k)} were also given.

Part II. Now we further analyze the property of the trajectories of the closed-loop system composed

of the system (8) and the admissible controller (30), and give an upper bound of the tracking error.
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Firstly, for the internal dynamics z, based on the boundedness of the sampling signals {e1(k), e2(k), z(k)}

given by (55), and by a similar argument as in Eqs. (51)–(54), we obtain that, for any T ∈ (0, T ∗) and

t > 0,

T ‖z(t)‖1 6 pω(T ) (Cω1ρ1 + ρ2) +O(T ) 6 ρ3, (59)

where the function pω(·) is given by (29), {Cω1, ρ1, ρ2, ρ3} are constants given by (52), (42), (50) and (54)

respectively. From this, it is obvious that supt>0 {T ‖z(t)‖1} 6 ρ3 holds for any T ∈ (0, T ∗).

Now we explore the properties of the external dynamics {e1, e2}. From (26), Assumptions 1 and 2,

and combining the bounded property (11) we have that, for all k > 0 and t ∈ [kT, (k + 1)T ],

|e1(t)| 6 |e1(k)|+ T |e2(k)|+

∫ t

kT

L(t− τ) [ωk(τ) + ‖z(τ)‖1] dτ + (T 2/2)b̄|u(k)|+ (T 2/2)Ma0, (60)

where ωk(t) is defined by (29), and b̄, Ma0 are constants given by (3) and (11), respectively. Thus, accord-

ing to Lemma 1, the boundedness (55) and (59), and the property of the sampled-data controller (21), it

can be further obtained that: for all T ∈ (0, T ∗) and t > 0,

|e1(t)| 6
[

1 + b̄ᾱu(p+ 1)/2
]

ρ1 + ρ2 +O(T ). (61)

Similarly, based on Assumptions 1, 2 and Lemma 1, and combining (21), (26), (55), and (59), we also

have that when T ∈ (0, T ∗) and t > 0,

T |e2(t)| 6 b̄ᾱu(p+ 1)ρ1 + ρ2 +O(T ). (62)

Then it follows from (59), (61) and (62) that ∀T ∈ (0, T ∗),

|e1(t)|+ T |e2(t)|+ T ‖z(t)‖1 = O(1), ∀t > 0. (63)

Consequently, this together with the boundedness of (x∗
1(t), x

∗
2(t)) given by (7) further derives the bound-

edness of the trajectory {x1(t), x2(t), z(t)}. Hence, the boundedness (24) in Theorem 1 is proved.

Moreover, for the solution (26) of the system (8), according to Lemma 1, the steady-state property of

the signals {e1(k), e2(k)} given by (56) and (58), as well as the boundedness (63), it is not difficult to

verify that

lim sup
t→∞

[|e1(t)|+ T |e2(t)|] = O(̺∗e(T )), (64)

where ̺∗e(T ) =
[

(1 + (3/2)b̄ᾱu(p+ 1))Mc/(1− λc)
]

̺10(T )+2[M e
A/(1−λe

2)][τν(M
∗
ν ̺10(T ))+̺20(T )]+MsT

is a class K function in which Ms > 0 is the sum of the O coefficients corresponding to the terms O(T )

in (61) and (62). Therefore, from (64), the output tracking error property (25) in Theorem 1 is verified.

Finally, when the initial states satisfy x(0) = x∗(0), it is evident that e1(0) = 0, e2(0) = 0, and ρe = 0.

Thus, from all of the above, we know by (41) that in this case ρ1 = [Mc/(1−λc)]̺10(T ). So, this together

with (50) and (61) indicates that there exists a classK function ̺e∗(·) such that supt>0 |e1(t)| = O(̺e∗(T )).

As a result, the assertion of Theorem 1 is true.

3.2 Specific stability results

The main purpose of this subsection is to illustrate the validity of the framework for stability analysis

we established. As will be seen shortly, for tracking problems in high-order minimum-phase nonlinear

systems (1) of relative degree two, following our framework, we first derive an explicit characteristic

model and give a sampled-data output controller based on such a characteristic model; then we develop

the specific stability conditions corresponding to conditions (C1) and (C2) given in Theorem 1.

3.2.1 Characteristic model-based golden-section adaptive control

Here, to solve the tracking problem mentioned before, we take the golden-section adaptive control as our

sampled-data output feedback control. Before pursuing further, we first present the characteristic model

corresponding to the system (8).
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Proposition 1. Under Assumptions 1 and 2, the characteristic model of the error system (8) can be

described by the following time-varying difference equation: ∀k > 0,










e1(k + 1) = f1(k)e1(k) + f2(k)e1(k − 1) + (T 2/2)g0(k)u(k) + (T 2/2)g1(k)u(k − 1), (65)

Te2(k + 1) = e1(k + 1)− e1(k) +

∫ (k+1)T

kT

(t− kT )be(e1(t), e2(t), z(t), t)u(k)dt, (66)

where

f1(k) = 2 + T 2 (∂ae/∂e1)|(ς1e1(k),0,0,k) + T (∂ae/∂e2)|(e1(k),ς2e2(k),0,k) ,

f2(k) = −1− T (∂ae/∂e2)|(e1(k),ς2e2(k),0,k) , (67)

g0(k) = be(e1(t), e2(t), z(t), t)|t=(k+ς3)T , g1(k) = be(e1(t), e2(t), z(t), t)|t=(k−ς4)T , (68)

in which the parameters ς1, ς1 ∈ (0, 1) may depend on the state variables (e1(k), e2(k)), and ς3, ς4 ∈ (0, 1).

Furthermore, the time-varying parameters satisfy (f1(k), f2(k), g0(k), g1(k))
T ∈ D (∀k > 0), where D is

a closed convex set defined by

D ,











(a1, a2, a3, a4)
T ∈ R

4

∣

∣

∣

∣

∣

∣

∣

a1 ∈
[

2− TL− T 2L, 2 + TL+ T 2L
]

a2 ∈
[

− 1− TL, −1 + TL
]

a3 ∈
[

b, b̄
]

, a4 ∈
[

b, b̄
]











, (69)

in which the parameters L, b, b̄ are given by (2) and (3), respectively.

Proof. See Appendix B.

Remark 6. It is easy to verify that Eq. (66) meets the structure requirement given by (16) and that the

coefficients {f1(k), f2(k), (T
2/2)g0(k), (T

2/2)g1(k)} satisfy (15); thus the model (65) and (66) we derived

belongs to the group of characteristic models we are concerned with.

Now, based on the characteristic model (65), we describe the golden-section adaptive controller. For

any k > 0, let us denote the unknown time-varying parameter vector of the model (65) as θ(k) ,

[f1(k), f2(k), g0(k), g1(k)]
T, the corresponding estimation vector θ̂(k) , [f̂1(k), f̂2(k), ĝ0(k), ĝ1(k)]

T, and

the regression vector ϕ(k) ,
[

e1(k), e1(k − 1), (T 2/2)u(k), (T 2/2)u(k − 1)
]T

. Then the golden-section

adaptive control law is as follows:

u(k) =
2

T 2ĝ0(k)

[

−l1f̂1(k)e1(k)− l2f̂2(k)e1(k − 1)
]

, (70)

where l1 = 0.382, l2 = 0.618, and θ̂(k) are calculated by the following projected gradient algorithm [25]:

θ̂(k) = πD

{

θ̂(k − 1) +
ϕ(k − 1)

µ0 + ϕ(k − 1)Tϕ(k − 1)

(

e1(k)− ϕ(k − 1)Tθ̂(k − 1)
)

}

, (71)

in which µ0 > 0 is an adjusted parameter and πD{x} is a projection function that projects x into the

set D given by (69). Obviously, our proposed controller (70) belongs to the admissible control set (20).

To this point, we have given the characteristic model (65) and (66) of the error system (8) and the

characteristic model-based golden-section adaptive controller (70). Notice that the controller bears a

linear structure, making it more convenient for engineering applications.

3.2.2 Control performance

Next, with the characteristic model (65) and (66) and the golden-section adaptive controller (70), based

on the established stability analysis framework, we will explore the explicit sufficient conditions under

which a closed-loop system comprised of the plant (1) and the controller (70) is stable. To achieve this,

we need to verify that the characteristic model (65) and (66), along with the controller (70), satisfies the

consistency condition. It is also necessary to determine under what condition the discrete-time closed-

loop system consists of the characteristic model (65) and whether this controller (70) is exponentially

stable.
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First of all, we verify the consistency condition (22) and (23) by analyzing the modeling error of the

characteristic model (65) and (66). From the error system (8), it is evident that for any given sampled-

data control signals {u(k), k > 0} the corresponding exact discrete-time model can be described as

follows:



























































e1(k+1) = e1(k)+Te2(k)+

∫ (k+1)T

kT

[(k + 1)T − t] [ae(e1(t), e2(t), z(t), t)+be(e1(t), e2(t), z(t), t)u(k)] dt

= e1(k) + Te2(k + 1)−

∫ (k+1)T

kT

(t− kT )be(e1(t), e2(t), z(t), t)u(k)dt+ δe1(k + 1),

e2(k+1) = e2(k) +

∫ (k+1)T

kT

[ae(e1(t), e2(t), z(t), t) + be(e1(t), e2(t), z(t), t)u(k)] dt

= e2(k) + Tae(e1(k), e2(k), 0, k) +

∫ (k+1)T

kT

be(e1(t), e2(t), z(t), t)u(k)dt+ δe2(k + 1),

where



















δe1(k + 1) =

∫ (k+1)T

kT

(kT − t)ae(e1(t), e2(t), z(t), t)dt,

δe2(k + 1) =

∫ (k+1)T

kT

[ae(e1(t), e2(t), z(t), t)− ae(e1(k), e2(k), 0, k)] dt. (72)

Similar to the proof of Proposition 1, we can write the above exact discrete-time model equivalently as











e1(k + 1) = f1(k)e1(k) + f2(k)e1(k − 1) + (T 2/2)g0(k)u(k) + (T 2/2)g1(k)u(k − 1) + ∆e
1(k + 1),

T e2(k + 1) = e1(k + 1)− e1(k) +

∫ (k+1)T

kT

(t− kT )be(e1(t), e2(t), z(t), t)u(k)dt− δe1(k + 1), (73)

where the parameters {f1(k), f2(k), g0(k), g1(k)} have the same properties given in (67) and (68), and

∆e
1(k + 1) , δe1(k + 1)− δe1(k) + Tδe2(k + 1) + T 2ae(0, 0, 0, k) + (T 2/2)Th(k)g1(k)u(k − 1), (74)

in which δe1(·) and δe2(·) are defined by (72) and h(k) = (∂ae/∂e2)|(e1(k),ς2e2(k),0,k) with some ς2 ∈ (0, 1).

Thus, from (65), (66) and (73), it is obvious that ∆e
1(k + 1) and δe1(k + 1) defined by (74) and (72),

respectively, are the corresponding modeling errors whose properties will be given in the lemma below.

Lemma 2. Consider the ordered pair {F cm
e , u} comprised of the characteristic model (65) and (66) and

the golden-section adaptive controller (70), as well as {F ex
e , u} corresponding to the exact discrete-time

model (73) and the controller (70). Suppose that Assumptions 1 – 3 are satisfied; then the modeling

errors of the family {F cm
e , u} with respect to {F ex

e , u} satisfy the consistency condition (22) and (23).

Specifically,

|∆e
1(k+1)| 6

2
∑

j=0

̺e1j(T )|e1(k − j)|+

1
∑

j=0

̺e2j(T )T |e2(k − j)|+

1
∑

j=0

̺e3j(T )T ‖z(k− j)‖1 + ̺e50(T ), (75)

|δe1(k + 1)| 6

1
∑

j=0

̺e4j(T )|e1(k − j)|+ ̺e21(T )T |e2(k)|+ ̺e31(T )T ‖z(k)‖1 + ̺e51(T ), (76)

where ∆e
1(k + 1) and δe1(k + 1) are given by (74) and (72), respectively, and ̺eij(·) : R+ → R+ (i =

1, . . . , 5; j ∈ {0, 1, 2}) are class K functions satisfying

̺eij(T ) = O(T ) (i = 1, . . . , 4; j ∈ {0, 1, 2}), max{̺50(T ), ̺51(T )} = O(T 2), ∀T ∈ (0, Tmax]. (77)

Proof. See Appendix C.
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Next, we explore the stability of the discrete-time closed-loop system comprised of the characteristic

model (65) and the golden-section adaptive controller (70). By introducing the following constant matrix:

Ac ,









2(1− l1) −(1− l2 + 2l1) l2

1 0 0

0 1 0









, (78)

the stability of the above closed-loop system is given in the following lemma.

Lemma 3. Consider the characteristic model (65) and the golden-section adaptive controller (70). If

Assumptions 1 and 2 hold, then there exist a sampling period T e
∗ > 0 and a positive number Ce

b > 1 that

depend on the control parameters l1, l2 and the matrix Ac, such that when T ∈ (0, T e
∗ ) and

b̄/b < Ce
b , (79)

the discrete-time closed-loop system comprised of (65) and (70) is exponentially stable.

Proof. See Appendix D.

Consequently, from the above two lemmas, and based on our framework, we can derive the stability of

the hybrid closed-loop system consisting of the plant (1) and the golden-section adaptive controller (70),

where the specific stability condition and the control performance are given below.

Theorem 2. Consider the high-order nonlinear plant (1), the characteristic model (65) and (66), and

the golden-section adaptive controller (70). Suppose that Assumptions 1 – 3 are satisfied, and the param-

eters {b̄, b} satisfy the condition given by (79), then for any ρe0 > 0 and any ‖(x1(0), x2(0), z(0))‖1 6 ρe0,

there exists a sampling period T e∗ > 0 such that, when T ∈ (0, T e∗), the trajectories of the closed-loop

system comprised of the controller (70) and the plant (1) have the following properties:

(1) Boundedness:

sup
t>0

{|x1(t)|+ T |x2(t)|+ T ‖z(t)‖1} = O(1); (80)

(2) The tracking error satisfies:

lim sup
t→∞

|y(t)− y∗(t)| = O(T ). (81)

Furthermore, if the initial state satisfies x(0) = x∗(0), then supt>0 |y(t)− y∗(t)| = O(T ).

Remark 7. Notice that the above stability results are obtained based on the golden-section adaptive

controller (70) with the control parameters l1 = 0.382, l2 = 0.618. In fact, the control parameters l1, l2
that can achieve these results are not unique. It is easy to verify by following our proof that, {l1, l2} is

feasible provided that the roots of z3 − 2(1− l1)z
2 +(1+ 2l1 − l2)z− l2 = 0 are located in the unit circle.

4 Simulation

We consider attitude control for a three-axis stabilized satellite with flexible solar arrays. As given in [26],

the corresponding pitch axis dynamic model is

Ipθ̈p + CT
q q̈ = Tc + Td, q̈ + 2ΞΩq q̇ +Ω2

qq + Cq θ̈p = 0, y = θp,

where θp is the pitch angle, Ip is the moment of inertia of the pitch axis, and Tc, Td are the control moment

and the disturbance moment, respectively. Cq = [d1, . . . , dn]
T, q = [q1, . . . , qn]

T, Ξ = diag{ξ1, . . . , ξn},

and Ωq = diag{ωq1, . . . , ωqn}, where di (i = 1, . . . , n) is the ith flexible coupling coefficient between the

solar arrays vibrations and the spacecraft motion, qi, ξi, ωqi (i = 1, . . . , n) are the ith flexible modal

coordinate, modal damping coefficient, and modal frequency, respectively. It is evident that the q-

subsystem with input (θ, θ̇) is ISS stable as given in Remark 2. We take Ip = 2000 kg · m2, Td =

10 + 3 sin(0.01t), n = 2, ξ1 = ξ2 = 0.005, ωq1 = 0.25, ωq2 = 0.11, and d1, d2 ∈ (0, 1]. Our goal is
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Figure 1 (a) System output, reference trajectory, and

(b) corresponding tracking error (θp(0) = 3).

Figure 2 Control signal (θp(0) = 3).
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Figure 3 (a) System output, reference trajectory, and

(b) corresponding tracking error (θp(0) = 0).

Figure 4 Control signal (θp(0) = 0).

to have the pitch angle θp asymptotically track the reference signal generated from the target system

ẋ∗
1 = x∗

2, ẋ
∗
2 = −2w0x

∗
2 − w2

0x
∗
1 + r(t), y∗ = x∗

1, where the parameters w0 = 1, r(t) = 30 and the

initial condition is x∗
1(0) = x∗

2(0) = 0. Then the corresponding characteristic model is ye(k + 1) =

2ye(k)−ye(k−1)+(T 2/2)[b(k)u(k)+b(k−1)u(k−1)], where ye(k) = y(k)−y∗(k), b(k) = 1/(Ip−CT
q Cq) ∈

[1/2000, 1/1900]. Also, the golden-section adaptive controller is u(k) = −2[2l1((y(k)− y∗(k)) − l2(y(k −

1)− y∗(k − 1))]/(T 2b̂(k)), where l1 = 0.382, l2 = 0.618, and b̂(k) is calculated by the projected gradient

algorithm. Thus, by taking the sampling period T = 0.1, the tracking performance and the control signals

for the initial values θp(0) = 3 and θp(0) = 0 are given in Figures 1, 2 and Figures 3, 4, respectively.

As expected, in both cases the tracking performance of closed-loop systems can meet requirements.

Moreover, the transient performance is improved as the initial error decreases, which coincides with our

theoretical results.

5 Conclusion

This paper presents a framework for stability analysis of high-order minimum-phase nonlinear systems

with a relative degree of two based on the CMAC method, trying to answer the basic question: if

the characteristic model corresponding to the plant can be stabilized by a characteristic model-based
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adaptive controller, then under what condition can such a controller stabilize the plant? The consistency

condition, an essential ingredient of this framework, is proposed for describing quantitatively the modeling

error of this characteristic model, corresponding to a class of second-order characteristic models as well

as to admissible sampled-data output feedback controllers. With this condition and the exponential

stability of the discrete-time closed-loop system consisting of the characteristic model and the sampled-

data controller, we proved the stability of the closed-loop system comprised of this controller and of

the above high-order plants. Moreover, a group of detailed sufficient conditions corresponding to a

specific characteristic model of the above high-order nonlinear systems and to the golden-section adaptive

controller was proposed to illustrate the validity of our framework. Our results provide a new perspective

for exploring the stability of high-order nonlinear plants under the CMAC. To the best of our knowledge,

the group of stability conditions we developed seems to be the weakest for dealing with high-order

minimum-phase systems of relative degree two by the CMAC method. Of course, there are still many

problems remaining to be solved concerning more general nonlinear systems; these belong to further,

future investigations.
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Appendix A Proof of Lemma 1

Firstly, it follows from Assumption 3 and (7) that, ∀t ∈ [kT, (k + 1)T ],

‖z(t)‖16

√

mc2

c1
exp{−c3(t−kT )/(2c2)}‖z(k)‖1+

√

mc4

c1
M∗(t−kT )1/2+

√

mc4

c1
(t−kT )1/2 sup

kT6τ6t
[|e1(τ)|+|e2(τ)|], (A1)

where ci (i = 1, . . . , 4) are constants given by (4), m is the dimension of the internal dynamics z, and the constant M∗

is given by (7). Thus, the inequality (28) is correct. In addition, for the solution (26) of the error system (8), under

Assumptions 1 and 2, and from (9), (10) and (11), we know that ∀t ∈ [kT, (k + 1)T ],

|e1(t)| + |e2(t)| 6|e1(k)|+ |e2(k)|+ (t − kT )|e2(k)|+
[

(t− kT )2/2 + (t − kT )
]

(b̄|u(k)|+Ma0)

+

∫ t

kT
L(t− τ + 1)[|e1(τ)|+ |e2(τ)|+ ‖z(τ)‖1]dτ, (A2)

where the parameters L, b̄, Ma0 are given by (2), (3), and (11), respectively. Therefore, substituting (A1) into (A2), and

by simple calculations, we can obtain

|e1(t)| + |e2(t)| 6 |e1(k)|+ |e2(k)|+ (t − kT )|e2(k)|+

∫ t

kT
L(t − τ + 1)[|e1(τ)|+ |e2(τ)|]dτ +

[

(t − kT ) + (t− kT )2/2
]

·

[

b̄|u(k)|+Ma0 +

√

mc2

c1
L‖z(k)‖1 +

√

mc4

c1
M∗L(t− kT )1/2

]

+

∫ t

kT
L(t− τ + 1)

√

mc4

c1
(τ − kT )1/2 sup

kT6s6τ
[|e1(s)|+ |e2(s)|]dτ.

Furthermore, by taking the maximum value in the interval [kT, t] on both sides of the above inequality, we have

ωk(t) 6 |e1(k)|+ |e2(k)|+ (t− kT )|e2(k)|+

∫ t

kT
L(t− τ + 1)ωk(τ)dτ

+
[

(t− kT ) + (t − kT )2/2
]

[

Ma0 + L
√

mc2/c1‖z(k)‖1 + b̄|u(k)|+
√

mc4/c1M
∗L(t − kT )1/2

]

+

∫ t

kT
L(t − τ + 1)

√

mc4/c1(τ − kT )1/2ωk(τ)dτ, ∀t ∈ [kT, (k + 1)T ]. (A3)

From this, by the Gronwall-Bellman inequality, it is easy to verify the inequality (27). Hence, Lemma 1 is true.

Appendix B Proof of Proposition 1

For any given sampling period T > 0, based on the core idea of the characteristic modeling that does not lose the charac-

teristics of the plant (8), we consider the following approximate model:


















e1(k + 1) = e1(k) + Te2(k + 1)−

∫ (k+1)T

kT
(t − kT )be(e1(t), e2(t), z(t), t)u(k)dt, (B1)

e2(k + 1) = e2(k) + Tae(e1(k), e2(k), 0, k) +

∫ (k+1)T

kT
be(e1(t), e2(t), z(t), t)u(k)dt. (B2)

By simple calculations, the above equation (B1) is equivalent to the following one:

e1(k + 1) = 2e1(k)− e1(k − 1) + T 2ae(e1(k), e2(k), 0, k) +

∫ (k+1)T

kT
[(k + 1)T − t]be(e1(t), e2(t), z(t), t)u(k)dt

+

∫ kT

(k−1)T
[t− (k − 1)T ]be(e1(t), e2(t), z(t), t)u(k − 1)dt. (B3)

For the function ae(·), by the differential mean value theorem, we obtain

ae(e1(k), e2(k), 0, k) = ae(0, 0, 0, k) + (∂ae/∂e1)|(ς1e1(k),0,0,k) · e1(k) + (∂ae/∂e2)|(e1(k),ς2e2(k),0,k) · e2(k), (B4)
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where ςi ∈ (0, 1) (i = 1, 2) are constants depending on the states e1(k), e2(k). On the other hand, for (B3), it follows from

the integral mean value theorem that



















∫ (k+1)T

kT
[(k + 1)T − t]be(e1(t), e2(t), z(t), t)dt = (T 2/2)be(e1(t), e2(t), z(t), t)|t=(k+ς3)T ,

∫ kT

(k−1)T
[t− (k − 1)T ]be(e1(t), e2(t), z(t), t)dt = (T 2/2)be(e1(t), e2(t), z(t), t)|t=(k−ς4)T , (B5)

where ςi ∈ (0, 1) (i = 3, 4). Hence, by substituting (B4) and (B5) into (B3), and noticing our appointment e1(−1) =

e1(0) − Te2(0) and u(−1) = 0, we can further derive that ∀ k > 0,

e1(k + 1) = f1(k)e1(k) + f2(k)e1(k − 1) + (T 2/2)g0(k)u(k) + (T 2/2)g1(k)u(k − 1)

+T 2ae(0, 0, 0, k) + (T 2/2)h(k)g1(k)u(k − 1), (B6)

where the time-varying parameters f1(k), f2(k), g0(k), g1(k) satisfy (67) and (68), and h(k) , T (∂ae/∂e2)|(e1(k),ς2e2(k),0,k) .

Also, noting that the last two terms in (B6) have the properties T 2ae(0, 0, 0, k) = O(T 2), h(k) = O(T ), we omit these two

terms. Consequently, based on the above discussion, by (B6) and (B1), we obtain the characteristic model of the system

(8) that can be described by (65) and (66). Furthermore, from Assumption 1 and Eq. (9), it is easy to verify that

|∂ae/∂ei| = |∂a/∂xi| 6 L, i = 1, 2, which, together with Assumption 2, further derives that the coefficients of model (65)

are uniformly bounded and belong to the compact set D. Therefore, the proof is complete.

Appendix C Proof of Lemma 2

We first calculate upper bounds of |δe1(k + 1)| and |δe2(k + 1)|. From (72), according to Assumption 1 and (11), we obtain

|δe1(k + 1)| 6

∫ (k+1)T

kT
(t − kT )[L(|e1(t)| + |e2(t)| + ‖z(t)‖1) +Ma0]dt, (C1)

where L, Ma0 are given by (2) and (11). So, from Lemma 1, and substituting (27) and (28) into (C1), it follows that

|δe1(k + 1)| 6LT 2pω(T )[1/2 + (2/5)
√

mc4/c1T
1/2]|e1(k)|+ LT 2pω(T )[1/2 + T/3 +

√

mc4/c1((2/5)T
1/2 + (2/7)T 3/2)]

· |e2(k)|+ LT 2
√

mc2/c1[1/2 + Lpω(T )(T/3 + T 2/8 +
√

mc4/c1((2/7)T
3/2 + (1/9)T 5/2))]‖z(k)‖1

+ LT 3pω(T )[1/3 + T/8 +
√

mc4/c1((2/7)T
1/2 + (1/9)T 3/2)](b̄|u(k)|+Ma0) + T 2Ma0/2

+ LT 5/2
√

mc4/c1M
∗[2/5 + Lpω(T )((2/7)T + (1/9)T 2 +

√

mc4/c1((1/4)T
3/2 + (1/10)T 5/2))]

, ce11(T )|e1(k)|+ ce12(T )T |e2(k)|+ ce13(T )T‖z(k)‖1 + ce14(T )T 2|u(k)|+ ce15(T ). (C2)

From this, it is not difficult to see that the functions ce1i(·) ∈ K (i = 1, . . . , 5) and satisfy max{ce11(T ), ce15(T )} = O(T 2)

and maxj=2,3,4{ce1j(T )} = O(T ), ∀T ∈ (0, Tmax]. Furthermore, substituting the golden-section adaptive controller (70) into

Eq. (C2), we have

|δe1(k + 1)| 6
[

ce11(T ) + 2ce14(T )l1(2 + TL+ T 2L)/b
]

|e1(k)|+ [2ce14(T )l2(1 + TL)/b]|e1(k − 1)|

+ ce12(T )T |e2(k)|+ ce13(T )T‖z(k)‖1 + ce15(T ). (C3)

Hence, it is immediately verified from (C3) and the fact that the functions ce1i(·) (i = 1, . . . , 5) belong to class K that the

error δe1(k+1) satisfies Eq. (76), and the corresponding coefficients satisfy the property (77). In the same way, for δe2(k+1),

by combining Assumption 1, the property (12), as well as (27) and (28), it can be obtained that

T |δe2(k + 1)| 6 LT 2[1 + pω(T )(1 + (2/3)
√

mc4/c1T
1/2)]|e1(k)|+ LT 2[1 + pω(T )(1 + T/2 +

√

mc4/c1((2/3)T
1/2

+ (2/5)T 3/2))]|e2(k)|+ LT 2
√

mc2/c1[1 + Lpω(T )(T/2 + T 2/6 +
√

mc4/c1((2/5)T
3/2

+ (1/7)T 5/2))]‖z(k)‖1 + LT 3pω(T )[1/2 + T/6 +
√

mc4/c1((2/5)T
1/2 + (1/7)T 3/2)](b̄|u(k)|+Ma0)

+ T 2Ma1 + LT 5/2
√

mc4/c1M
∗ · [2/3 + Lpω(T )((2/5)T + (1/7)T 2 +

√

mc4/c1((1/3)T
3/2 + (1/8)T 5/2))]

, ce21(T )|e1(k)|+ ce22(T )T |e2(k)|+ ce23(T )T‖z(k)‖1 + ce24(T )T 2|u(k)|+ ce25(T ), (C4)

where ce2i(·) ∈ K (i = 1, . . . , 5), and max{ce21(T ), ce25(T )} = O(T 2), maxj=2,3,4{ce2j(T )} = O(T ) hold for all T ∈ (0, Tmax].

Again, substituting the golden-section adaptive control (70) into (C4), we have

T |δe2(k + 1)| 6
[

ce21(T ) + 2ce24(T )l1(2 + TL+ T 2L)/b
]

|e1(k)|+ [2ce24(T )l2(1 + TL)/b]|e1(k − 1)|

+ ce22(T )T |e2(k)|+ ce23(T )T‖z(k)‖1 + ce25(T ). (C5)

So, substituting (C3) and (C5) into (74), and combining (11), (68) and (70), we can further obtain that the upper bound

of ∆e
1(k+1) satisfies (75), in which the coefficients satisfy (77). As a result, we verify that the family {F e

cm, u} is consistent

with {F e
ex, u}, i.e., the corresponding modeling errors satisfy the consistency condition. Hence, Lemma 2 is proved.
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Appendix D Proof of Lemma 3

First of all, by putting the golden-section adaptive controller (70) into the characteristic model (65), we can obtain the

discrete-time closed-loop system as follows: ∀k > 0,

e1(k + 1) = [f1(k)− l1f̂1(k)]e1(k) + [f2(k)− l2f̂2(k)− l1f̂1(k − 1)]e1(k − 1)

− l2f̂2(k − 1)e1(k − 2) + g̃0(k)u(k) + g̃1(k)u(k − 1), (D1)

where g̃0(k) , T 2[g0(k)− ĝ0(k)]/2 and g̃1(k) , T 2[g1(k)− ĝ0(k−1)]/2. To analyze its stability, let us introduce the following

notations: ∀k > 0,

E∗

1 (k + 1) ,









e1(k + 1)

e1(k)

e1(k − 1)









, B1 ,









1

0

0









, A∗

e(k) ,









α1(k) α2(k) α3(k)

1 0 0

0 1 0









, (D2)

where α1(k) = f1(k)− l1f̂1(k), α2(k) = f2(k)− l2f̂2(k)− l1f̂1(k− 1), α3(k) = −l2f̂2(k− 1), in which fi(k), f̂i(k) (i = 1, 2)

are given by (67) and (71), respectively. Then the system (D1) can be rewritten as

E∗

1 (k + 1) = A∗

e(k)E
∗

1 (k) + B1 [g̃0(k)u(k) + g̃1(k)u(k − 1)] = A∗

e(k)E
∗

1 (k) + B1ε
T(k)E∗

1 (k), ∀k > 0, (D3)

where A∗

e(k), B1 are given by (D2), and

ε(k) ,

[(

1−
g0(k)

ĝ0(k)

)

l1f̂1(k),

(

1−
g0(k)

ĝ0(k)

)

l2f̂2(k) +

(

1−
g1(k)

ĝ0(k − 1)

)

l1f̂1(k − 1),

(

1−
g1(k)

ĝ0(k − 1)

)

l2f̂2(k − 1)

]

. (D4)

Now we proceed to analyze the stability of this closed-loop system. Rewrite A∗

e(k) = Ac + B1ζ(k), where Ac, B1 are

given by (78) and (D2) respectively, and ζ(k) is defined by

ζ(k) ,
[

(

f1(k)− 2
)

+ l1
(

2− f̂1(k)
)

,
(

1 + f2(k)
)

− l2
(

1 + f̂2(k)
)

+ l1
(

2− f̂1(k − 1)
)

, − l2
(

1 + f̂2(k − 1)
)

]

. (D5)

We now take a close look at the matrix Ac and the vector ζ(k). For the constant matrix Ac with the parameters l1 =

0.381, l2 = 0.618, by the Jury stability criterion 1), we know that the eigenvalues of Ac are all located in the unit circle.

Therefore, the spectral radius of the matrix Ac satisfies ρ(Ac) = max16i63 { |λi(Ac)| } < 1. In addition, for the vector ζ(k),

it follows from (D5) as well as the properties (67) and (71) that there exists a positive number cζ > 0 that only depends

on the control parameters l1, l2, such that ‖ζ(k)‖ 6 cζTL, ∀k > 0. Thus, (i) by the continuous dependence of eigenvalues

of the matrix on its elements (see, e.g., Ostrowski theorem [24]), we have that for any ρe1 ∈ (ρ(Ac), 1), there exists T e
1 ∈

(0, Tmax] such that for all T ∈ (0, T e
1 ), ρ(A∗

e(k)) = max16i63{|λi(A∗

e(k))|} < ρe1 < 1, ∀k > 0, and from this it can be

immediately obtained that lim supk→∞
ρ(A∗

e(k)) 6 ρe1 < 1. (ii) The variation of the matrix sequence {A∗

e(k), k > 0} satisfies

lim supk→∞
‖A∗

e(k + 1) − A∗

e(k)‖ = lim supk→∞
‖B1[ζ(k + 1) − ζ(k)]‖ 6 2cζTL. (iii) From (D2), and by the boundedness

given in (69) and (71), we have that there exists a positive number Me0 > 0 depending on the parameters {l1, l2, L, Tmax}

such that supk>0 ‖A
∗

e(k)‖ = Me0 < ∞. Hence, combining (i)–(iii), and based on the stability theory of slowly time-varying

linear systems (see Theorem 2.4.1 in [25]), we obtain that there exists a sampling period T e
2 6 T e

1 that only depends on the

parameters ρe1, Me0, cζ , and L, such that when T ∈ (0, T e
2 ],

‖Φe(k + 1, i)‖ 6 Me1λ
k+1−i
e1 , ∀k > i > 0, (D6)

where Me1 > 0, λe1 ∈ (0, 1) are constants, and the matrix sequence {Φe(k, i), ∀k > i > 0} is defined by Φe(k + 1, i) =

A∗

e(k)Φ
e(k, i), Φe(i, i) = I3, ∀k > i > 0. Moreover, for ε(k) given by (D4), it follows from the properties (69) and (71) that

sup
k>0

‖B1ε
T(k)‖ = sup

k>0
‖ε(k)‖ 6 δe0(l1, l2)

(

b̄− b
)

/b +O(T ), (D7)

where δe0(l1, l2) =
√

8l21 + 2l22 + 4l1l2. Again, from (D3), we know that

E∗

1 (k + 1) = Φe(k + 1, 0)E∗

1 (0) +
k

∑

i=0

Φe(k + 1, i+ 1)B1ε
T(i)E∗

1 (i). (D8)

Substituting (D6) and (D7) into (D8), we further have

‖E∗

1 (k + 1)‖ 6 Me1λ
k+1
e1 ‖E∗

1 (0)‖ +
k

∑

i=0

Me1λ
k+i
e1 [δe0

(

b̄− b
)

/b +O(T )] · ‖E∗

1 (i)‖.

From this and by the Gronwall-Bellman inequality, it is easy to verify that

‖E∗

1 (k + 1)‖ 6 Me1
(

λe1 +Me1δ
e
0(b̄− b)/b +O(T )

)k+1
‖E∗

1 (0)‖. (D9)

Thus, by taking Ce
b , 1+(1−λe1)/(Me1δe0), and under the condition (79), it follows that λe1+Me1δe0(b̄−b)/b < 1. Therefore,

for any λe1 + Me1δe0(b̄ − b)/b < λe
∗
< 1, there exists T e

∗
6 T e

2 such that λe1 + Me1δe0(b̄ − b)/b + O(T ) < λe
∗
< 1 holds for

any T ∈ (0, T e
∗
). By this and (D9), we finally obtain that the discrete-time closed-loop system (D3) is exponentially stable.

Equivalently, the closed-loop characteristic model (D1) is exponentially stable. Therefore, the assertion of this lemma is

correct.

1) Hu S S. Automatic Control (in Chinese). 5th ed. Beijing: Science Press, 2007.


	Introduction
	Problem formulation
	Main results
	A general framework for stability analysis
	Consistency condition
	Main theorems

	Specific stability results
	Characteristic model-based golden-section adaptive control
	Control performance


	Simulation
	Conclusion
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Lemma 2
	Proof of Lemma 3

