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Abstract Frequency diverse array (FDA) radar with uniform inter-element frequency offset generates a beam

pattern with maxima at multiple range and angle values. Multiple maxima property allows interferers located

at any of the maxima to affect the target-returns. As a result the signal to interference noise ratio (SINR) and

probability of detection decreases. In this paper, we propose a cognitive uniformly-spaced FDA with non-uniform

but symmetric frequency offsets to achieve a single maximum beam pattern at the target position. Moreover,

these non-uniform frequency offsets are calculated using well known mu-law formulae. The design sharpens or

broadens the transmitted beam pattern based on the receiver feedback to achieve a better detection probability

and an improved SINR as compared to the previous designs. The performance is also analyzed by considering

the Cramer-Rao lower bound (CRLB) on target angle and range estimation.
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1 Introduction

A flexible beam scanning array named frequency diverse array (FDA) was originally proposed in [1], to

provide additional degrees of freedom for adaptive radar applications. It uses a small frequency offset

between the adjacent elements of a uniform linear antenna array to generate a 3-D beam pattern as a

function of frequency offset, time, range and angle [2]. The beam scanning feature of a conventional

FDA, i.e., FDA with a uniform inter-element frequency offset was investigated in [3]. Furthermore, the

periodicity of beam pattern in time, range and angle was explored in [4]. Likewise, the range-angle

dependent beam forming ability to suppress interferers at different ranges and directions, resulting in

improved SINR, was examined in [5]. The small frequency offset plays a vital role to improve the overall

performance of an FDA radar, such as controlling the range-angle dependency and spatial distribution

of generated beam pattern [6–8]. Therefore, researchers have shown their keen interest to investigate

an open question that how to select a proper frequency offset and its application between the adjacent

elements of a linear FDA for improved performance. Consequently, an FDA with an adaptive frequency

offset selection scheme was proposed in [9] to maximize the output SINR criteria. Likewise, an FDA
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with a time dependent frequency offset was proposed in [10] to achieve an improved time dependent

beam pattern for a given target range and direction. Subsequently, the inter-element spacing of FDA

proportional to the wavelength for improved range-angle localization of targets, was studied in [11]. In

[12], a uniform linear array with logarithmically increasing inter-element frequency offset was presented,

which generated a single-maximum beam pattern for an arbitrary value of frequency offset and also

suppressed interferences. A simulation based study of an FDA with non-uniform frequency offsets was

carried out in [13] to indicate the modified shape of beam pattern in terms of null depths.

The objective of this research is to utilize the basic properties of cognitive radar (CR) [14–17] for

improved SINR and detection probability of an FDA with non-uniform frequency offsets applied along

the array. Three cognitive radar properties are i) learning through continuous interaction with the envi-

ronment using intelligent signal processing techniques, ii) using feedback from receiver to the transmitter

for optimizing the performance, and iii) preserving the previously collected information [14].

In this paper, a cognitive uniformly-spaced FDA with symmetric non- uniform frequency offsets is

proposed to achieve a single maximum beam pattern at the target position based on the feedback,

adaptively. The linear FDA block of receiver estimates the direction of arrival (DOA) using multiple

signal classification (MUSIC) algorithm [18]. It also calculates the target range using a conventional

range estimator. The estimated range and direction of the target are given to the extended Kalman filter

(EKF) [19] based prediction block, one of the best choices in hand for nonlinear radar environments,

to estimate the target future direction. Based on the accuracy of the predictor block, there can be two

cases, i) the estimate is accurate or with affordable error, ii) the estimate is not accurate or the predicted

target position is out of range (target is lost). If the position of the target is accurately predicted, the

transmitter needs to direct its sharp beam pattern peak, regardless of generated high side lobes, to detect

the target. On the contrary, if the target range and angle values are not in the given range or the

estimated prediction error is not affordable, the transmitter is set to increase the beam width of the main

lobe towards the target previous position to detect the target in the next cycle. Therefore, this prediction

error information along with the predicted target position is sent as feedback to the transmitter.

The selector, a sub-block of transmitter, calculates the non-uniform frequency offsets using well known

mu-law or µ-law [20–22] in each step. Different values of µ produce a non-uniform expanded or compressed

set of the frequency offset across the array, which enables the FDA to generate a single maxima beam

pattern for interference suppression along with sharpening or broadening of the main beam. The width

of main beam is kept inversely proportional to the prediction accuracy for improved performance. These

non-uniform frequency offset values are calculated at each cycle to achieve a better detection probability,

an improved SINR and improved CRLB as compared to the previous designs. The symmetric pattern

[23] of offsets around the central element achieves better null depths as compared to non-symmetric

pattern. The effectiveness of proposed scheme has been evaluated in simulations, which indicates an

outclass performance as compared to the previous works.

The rest of the paper is organized as follows: Section 2 analyzes the proposed system, mathematically.

Section 3 is reserved for simulations, results and discussions. Finally, Section 4 concludes the paper.

2 Proposed system design

This section describes the block diagram of proposed system design. The proposed receiver consists of

four sub-blocks, i.e., DOA and range estimation, receiver selector, EKF-based predictor and memory

block. The proposed transmitter consists of two sub-blocks, i.e., transmit selector and FDA antenna

block with non-uniform frequency offsets. Figure 1 shows the information flow of proposed system at any

time l.

The FDA antenna block of transmitter illuminates the radar environment having potential targets.

The DOA and range estimation block of receiver, collect the reflected echoes to estimate the target

and interferer DOAs and range using well known MUSIC algorithm and conventional range estimation

formula, respectively. The receiver selector, a sub-block of receiver, calculates the weight vector (wR)
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Figure 2 Proposed frequency diverse array transmitter.

using minimum variance distortion less response (MVDR) adaptive beam-former to improve the SINR

performance. Consequently, the current target position estimates (θ̂0,l, r̂0,l) are forwarded to the EKF

based predictor for estimating the target next position (θ̃0,l+1 , r̃0,l+1). This estimated next position

and the prediction error ẽ are sent as feedback to the transmitter. The transmit selector, a sub-block

of transmitter, decides an appropriate value of µ with the help of a feed forward neural network (NN)

based on ẽ. It facilitates to calculate non-uniform frequency offset values using mu-law. A conventional

beam-former calculates vector wT to generate maxima in the target predicted direction. The perception-

action cycle keeps on repeating itself for improved performance. The transmitter and receiver of the

proposed design are discussed below in detail.

2.1 Transmitter

The non-uniform FDA design, calculation of non-uniform frequency offsets and non-uniform FDA trans-

mit beamforming have been discussed below.

2.1.1 Non-uniform FDA antenna

Figure 2 shows the proposed uniformly-spaced FDA antenna, having symmetrical elements around the

origin. This symmetry is with respect to frequency offsets. The inter-element distance is d and total

number of elements are N = 2M + 1, here M is the maximum number of elements on each side of array

from origin, while wn is the transmitter weights.

The frequency input at nth element is given as

fn = f0 +∆fn, n = 0,±1, . . . ,±M, (1)
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Figure 3 (Color online) Non-uniform frequency offset calculation using mu-law companding schemes.

here, f0 is the fundamental frequency, ∆fn is the frequency offset of nth element with reference to f0
and is given as

∆fn = αn∆f, (2)

here αn is not an integer, instead it represents a non-uniform coefficient of frequency offset value ∆f . The

value of middle coefficient is kept zero, i.e., α0 = 0, so that it can transmit waveform with fundamental

frequency f0.

2.1.2 Calculation of non-uniform frequency offset values using mu-law companding schemes

Companding schemes [20] are basically composed with a combination of compressing and expanding

schemes. These schemes have been used, originally, in communication systems for pulse coded modula-

tion (PCM) transmission to achieve improved signal to quantization error ratio (SQNR) [20], non-linear

quantization of pulse coded modulation (PCM) and reducing peak-to-average- power-ratio (PAPR) of

orthogonal frequency division multiplexing (OFDM) systems etc [21,22]. In any communication system,

the mu-law compression and expansion expression for a given input x can be found as [20]

F (x) = sgn (x)
ln (1 + µ |x|)
ln (1 + µ)

, 0 < µ < 255,

G (x) =
1

µ
(exp (1 + µ |x|)− 1) sgn (x) , 0 < µ < 255,

(3)

where sgn(·) represents the signum function and value of µ varies form 0–255 in case of 8 bit compression.

In our case, we want to calculate the non-uniform frequency offsets for an FDA transmitter by selecting

an appropriate companding factor (i.e., suitable values of mu) to achieve an improved performance. The

mu-law compression and expansion expression used for calculating non-uniform frequency offsets in this

paper, are given as

∆fn = sgn (n∆f)
ν ln

(

1 + µn∆f
ν

)

ln(1 + µ)
and ∆fn =

ν

µ

(

exp

(

ln (1 + µ)n∆f

ν

)

− 1

)

sgn (n∆f) ,

n = 0,±1, . . . ,±M,

(4)

where ∆f is the input frequency offset, while ∆fn is the calculated frequency offset, µ is a compression

factor and ν is a maximum allowable value of ∆f . Since, we are assuming a symmetric [23] FDA

with 2M + 1 elements, therefore, Figure 3 shows the employed frequency offsets of one side, i.e., M

elements. µ = 0 assures no change, solid lines show the compression, while dotted lines show the

expansion expression results for different values of µ.

For detailed explanation, Figure 4 shows a comparison of compression and expansion curves with µ = 5.
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Figure 5 Proposed array structures with respect to the frequency offset difference. (a) SBS array (based on compression

scheme); (b) BSB array (based on expansion scheme).

The frequency offset for reference element is zero, i.e., ∆f0 = 0 and therefore, the frequency offset

difference is defined as β1∆f , which is between first and reference element, i.e.,

∆f1 −∆f0 = β1∆f = α1∆f. (5)

Similarly, the difference for subsequent pairs of adjacent elements, as shown in Figure 4, is

∆f2 −∆f1 = β2∆f, (6)

∆f3 −∆f2 = β3∆f. (7)

Generalizing it for M elements on each side of symmetric array, we have

∆fM −∆fM−1 = βM∆f. (8)

In the case of mu-law compression scheme, we note that this frequency offset difference is maximum at

the first element and decreases as we go away from reference to the last elements. On the contrary, the

difference is minimum at the first element, while it keeps on increasing. For a symmetric array [23],

two different cases are shown in Figure 5. The SBS (small-big-small) and BSB (big-small-big) offset

structures effect the side lobes level (SLL) [24–26] of generated single maximum FDA beam pattern. The

BSB offset array structure generates a single maximum FDA broad beam pattern with low SLL, while

SBS generates a sharp beam with high SLL. The transmitter array structure along with the companding

factor value µ, is selected based on receiver feedback.

The non-uniform coefficients of frequency offset for 1st and 2nd elements are given as

α1 = β1, (9)
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α2 = β1 + β2. (10)

Generalizing it for Mth value

αM = β1 + β2 + · · ·+ βM , (11)

αM = αM−1 + βM . (12)

Therefore, a recursive formula for calculating frequency offset for a symmetric array is given as

∆fn = (αn−1 + βn)∆f, n = ±1,±2, . . . ,±M. (13)

2.1.3 Non-uniform FDA beam pattern and transmit beamforming

Consider a target on θ direction, the phase of signals transmitted by reference and adjacent elements is

given by [8]

Ψ0 =
2πf0
c

r0 and Ψ1 =
2πf1
c

r1, (14)

here, c is speed of light, while r0 and r1 are the target distances from reference and adjacent elements,

respectively. The frequency f1 = f0+∆f1, while ∆f1 = α1∆f and r1 = r0−d sin θ. The phase difference

of these signals is given as

Ψ1 −Ψ0 = −2πd sin θ

c

[

f0 + α1∆f − α1∆fr0
d sin θ

]

. (15)

Similarly, the phase difference between reference and Mthelement can be written as

ΨM −Ψ0 = −2πd sin θ

c

[

f0M + αMM∆f − αM∆fr0
d sin θ

]

, (16)

since f0 ≫ αM∆f and r0 ≫ αMdsin (θ), hence the term containing their product, i.e., 2παMM∆fd sin θ
c

may be neglected. In case of far filed targets i.e., rn ≈ r, the steering vector u (θ, r, α) can be taken as

u (θ, r, α) =





e
j
(

2πf0Md sin θ

c −
2πα

−M∆fr

c

)

, . . . , e
j
(

2πf0d sin θ

c −
2πα

−1∆fr

c

)

,

1, e−(j
2πf0d sin θ

c −
2πα1∆fr

c ) , . . . , e
−j

(

2πf0Md sin θ

c −
2παM∆fr

c

)



 . (17)

It can be represented in vector form, given as

u (θ, r) = u (θ)⊙ u (r, α) , (18)

where

u (θ) =
[

ej(
2πf0Md sin θ

c ), . . . , ej(
2πf0d sin θ

c ), 1, e−j( 2πf0d sin θ

c ), . . . , e−j( 2πf0Md sin θ

c )
]

, (19)

u (r, α) =

[

e
−j

(

2πα
−M∆fr

c

)

, . . . , e
−j

(

2πα
−1∆fr

c

)

, 1, ej(
2πα1∆fr

c ) , . . . , e
j
(

2παM∆fr

c

)
]

. (20)

The FDA beam pattern is a function of (θ) and (r), therefore, following observations are in line [8–13].

i) If ∆f = 0, it reduces to a conventional phased array radar (PAR) pattern ii) If αn values are taken

uniform, a conventional FDA beam pattern is generated. If a desired target position is at (θ′′), then the

weights for steered beam pattern to achieve a maximum gain, are

wT,n = exp

{

−j2πfn

(

αn∆f r̂0
c

− ndsin(θ̂0)

c

)}

, n = 0,±1, . . . ,±M, (21)

where wT,n is a weight of nth transmitter element. The array factor of an FDA system is given by

A =

M
∑

n=−M

wnexp

{

−j

(

2πf0nd sin θ

c
− 2παn∆fr

c

)}

. (22)
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The pattern towards a desired target can be approximated as the magnitude squared of array factor [12],

given by

B (r0, θ0, α) ≈
∣

∣

∣

∣

∣

M
∑

n=−M

exp

{

−j2π

(

f0ndsin(θ − θ̂0)

c
− αn∆f(r − r̂0)

c

)}∣

∣

∣

∣

∣

2

. (23)

The simulations have been carried out and results are shown for non-uniform frequency offsets in the

next section.

2.2 Receiver

The DOA and range estimation, EKF based prediction algorithm and performance analysis of proposed

system have been discussed below.

2.2.1 DOA estimation using ROOT MUSIC algorithm

ROOT MUSIC algorithm, one of the well-known DOA estimation algorithms, has been used to estimate

the target direction in this paper. It can resolve multiple signal directions, simultaneously [18]. Consider

a conventional symmetric FDA having P = 2K+1 elements with inter element distance taken as d = λ/2.

Let θ0 be the direction of the target to be estimated, measured from the middle element, i.e., origin of

the array in this case. Considering uniform weights at the receiver array, signal received by mth element

is given by

xm (t) = sT

(

t− r0
c

)

exp
{

j2πfm

(

t− rm
c

)}

+ nm(t), m = 0,±1, . . . ,±K. (24)

And total signal received at the array input is

xm (t) = sT

(

t− r0
c

)

K
∑

m=−K

exp
{

j2πfm

(

t− rm
c

)}

+ nm(t), (25)

where fm = f0 +m∆f ; m = 0,±1, . . . ,±K and rm = rref −md sin θ0.

Defining ϕ1 = 2πfm
(

t− rref
c

)

and ϕm = 2πfm
(

t− md sin θ0
c

)

, the above equation we can rewritten as

xm (t) = sT

(

t− R0

c

)

exp (jϕ1)

K
∑

m=−K

exp (jϕm) + nm(t). (26)

Defining sT
(

t− R0

c

)

exp (jϕ1) = S (t), therefore, representing it in vector form









x−K (t)
...

xK (t)









= S (t)









exp (jϕ−K)
...

exp (jϕK)









+









n−K (t)
...

nK (t)









. (27)

Or equivalently, it can written as

x (t) = S (t) (a (ϕ)) + n (t) , (28)

here a (ϕ) is the steering vector. We assume that L far field target signals are impinging on the array,

then the output of array can be written as (ignoring t without the loss of generality)

U =

L−1
∑

l=0

Sla(ϕl) + n. (29)

The covariance matrix Ru is given as

Ru = ARsA
H + σ2

nI. (30)
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If λ1 > λ2 > λ3 · · · > λP be the eigen values of this matrix Ru, v1 > v2 · · · > vL be the eigen values of

ARsA
H and q1, q2, q3, . . . , qP be eigen vectors of Ru, then we can state that

λi =

{

vi + σ2
n, i = 1, 2, . . . , L,

σ2
n, i = L+ 1, . . . , P.

(31)

Therefore, AHqi = 0 ; i = L = 1, . . . , P i.e. aHk (ϕ) qi = 0, i = L+1, . . . , P and k = 1, . . . , L. The spatial

spectrum Pmu (ϕ) generated by root music algorithm has been given as

Pmu (ϕ) =
1

aH (ϕ)EnEH
n a (ϕ)

, (32)

where En = [qL+1 qL+2 · · · qP ] and a (ϕ)is the signal steering vector. After calculation of the spatial

spectrum, DOA estimation can be obtained by searching the peaks. Number of snapshots is 200 for this

case.

2.2.2 Target range estimation

The time delay to reach the target using FDA beam pattern depends upon the distance of target from

transceiver and frequency offset value used [4]. Therefore, time td taken by a transmitted signal to reach

a far field target is [4, 27]

td =
r̂0
c

+

[

g − d

λ
sin
(

θ̂0

)

](

1

∆f

)

, (33)

where c is speed of light, r̂0 is the estimated range of far field target, θ̂0 is the estimated target direction,

∆f is frequency offset and integer g is for grating lobes. The time tr taken by reflected echo to reach the

receiver is

tr =
r̂0
c
. (34)

With the estimated angle information (θ̂0) and Td = td + tr, the target range can be calculated as [27]

r̂0 =
c

2

[

Td −
{

g − d

λ
sin
(

θ̂0

)

}(

1

∆f

)]

. (35)

2.2.3 EKF algorithm for position prediction estimation

For a radar environment, which is assumed nonlinear but can be made locally linear, EKF is one of the

best choices in hand for implementation of prediction block [19]. The process equation is described by

[19, 27]

xl+1 = F̃ xl + nl, (36)

where xl denotes the state of system at discrete time l, F̃ denotes a nonlinear transition matrix, while

nl denotes process noise assumed to be zero mean Gaussian noise with covariance matrix Q as

E
[

nln
T
n

]

= Qlδnl. (37)

Likewise, the measurement equation is described as

zl = H̃xl + vl, (38)

where zl denotes an observation vector at discrete time l, H̃ is a nonlinear measurement matrix, while

vl is measurement noise assumed to be zero mean Gaussian with covariance matrix R, given as

E
[

vlv
T
n

]

= Rlδnl. (39)

The Gaussian distribution can be completely characterized by a mean and covariance and so is given as

[19,27]

x̂l/l = E
[

xl|zl
1

]

, x̂l+1/l = E
[

xl+1|zl
1

]

. (40a)
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Similarly, the filtered and predicted covariance matrices are given as [19]

P̂l/l = E
[

(

xl − x̂l/l

) (

xl − x̂l/l

)T
∣

∣

∣zl
1

]

,

P̂l+1/l = E
[

(

xl+1 − x̂l+1/l

) (

xl+1 − x̂l+1/l

)T
∣

∣

∣
zl
1

]

.
(40b)

Hence, the state prediction error x̃l+1/l and prediction measurement error ẽ are defined as

x̃l+1/l
∆
= xl+1 − x̂l+1/l, (41)

ẽl+1/l
∆
= zl+1 − ẑl+1/l, (42)

where x̂l+1/l = F̃ x̂l/l and ẑl+1/l = H̃l+1x̂l+1/l.

The prediction and prediction measurement error should be minimized, which strongly depend on the

echoes.

2.2.4 Transmit/receive beamforming

The proposed FDA antenna has the ability to direct beam pattern maximum towards the target look

angle and range. Let the signal received at target be given as [28]

wH
T a (θ, r, α) s(l), (43)

where a (θ, r, α) is the transmit steering vector, s (l) is a transmit signal samples at any discrete time

interval l and wH
T is the transmit beamforming weight vector. The target location is estimated as (θ̂0, r̂0)

and interference sources estimated locations are at positions (θ̂i, r̂i). Therefore, the signal at uniform

FDA receiver is given by [28, 29]

y (l) = αb
(

θ̂0, r̂0,∆f
)

s (l) +
∑

i

βib
(

θ̂i, r̂i,∆f
)

s (l) + n (l) , (44)

where α = wH
T a(θ̂0, r̂0, α), is directional gains towards the target direction and range, while βi =

wH
T a(θ̂i, r̂i, α) is the directional gain in the interference directions θ̂i and ranges r̂i, respectively. b(θ̂0, r̂0,

∆f) is receive steering vector, while n(l) is zero mean additive white Gaussian noise (AWGN) with σ2
n

variance. Defining ui(θ̂i, r̂i,∆f)
∆
= βib(θ̂i, r̂i,∆f) and u0(θ̂0, r̂0,∆f)

∆
= αb(θ̂0, r̂0,∆f), the array output

y, after match filtering is given by [28]

y = u0(θ̂0, r̂0,∆f) +
∑

i

ui(θ̂i, r̂i,∆f) + n. (45)

The minimum variance distortion less response (MVDR) beam former calculates the receiver weight

vector wR to suppress the interferences, while giving distortion less response in the target direction and

range, is given by [28]

wR =
R̂−1

i+nu0

(

θ̂0, r̂0,∆f
)

u0

(

θ̂0, r̂0,∆f
)H

R̂−1
i+nu0

(

θ̂0, r̂0,∆f
)

. (46)

R̂i+n is interference plus noise covariance matrix and is given as [28]

R̂i+n =
∑

i

σ2
i ui

(

θ̂i, r̂i,∆f
)

uH
i

(

θ̂i, r̂i,∆f
)

+ σ2
nI. (47)

It is estimated using 20 snapshots in this case. Here, it is assumed that the target/ interferences complex

amplitudes are mutually uncorrelated with zero mean and variance σ2
i . The SINR is evaluated as [28, 29]

SINR =
σ2
s

∣

∣

∣wH
Ru0

(

θ̂0, r̂0,∆f
)∣

∣

∣

2

wH
RR̂

−1
i+nwR

(48)
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=
σ2
sN

2P 2

∑

i σ
2
i

∣

∣

∣
aH
(

θ̂0, r̂0, α
)

a
(

θ̂i, r̂i, α
)∣

∣

∣

2 ∣
∣

∣
bH
(

θ̂0, r̂0,∆f
)

b
(

θ̂i, r̂i,∆f
)∣

∣

∣

2

+ σ2
nP

, (49)

here, σ2
s is variance of the desired target. In the background of weak interferences, SINR term reduces

to [28, 29]

SINR ≃ σ2
sN

2P

σ2
n

. (50)

But in the background of a strong interference, SINR term can be expressed as [28, 29]

SINR ≃ σ2
sN

2P 2

∑

i σ
2
i

∣

∣

∣
aH
(

θ̂0, r̂0, α
)

a
(

θ̂i, r̂i, α
)∣

∣

∣

2 ∣
∣

∣
bH
(

θ̂0, r̂0,∆f
)

b
(

θ̂i, r̂i,∆f
)∣

∣

∣

2 . (51)

A more focused transmit beam pattern may result in suppressing interferences effectively.

2.2.5 Probability of detection analysis

The signal at receiver array after interference suppression, can be given as

y = wH
T a
(

θ̂0, r̂0, α
)

b
(

θ̂0, r̂0,∆f
)

+ n, (52)

where b(θ̂0, r̂0,∆f) is the receive steering vector, while wH
T a(θ̂0, r̂0, α) is complex amplitude of the steered

target. n is AWGN with zero mean and variance σ2
n. The hypothesis testing problem of a radar detection

is modeled as [29]






H0 : y = n,

H1 : y = wH
T a
(

θ̂0, r̂0, α
)

b
(

θ̂0, r̂0,∆f
)

+ n.
(53)

The probability density function (PDF) of H0 and H1 are given as [29]

p (y;H0) = exp

(

−‖y‖2
σ2
n

)

, (54)

p (y;H1) = exp

(

−‖y‖2
σ2
n

)

× exp

(

−|‖wH
Ta(θ̂0, r̂0, α)‖2‖b(θ̂0, r̂0,∆f)‖2 + n|2

2σ2
n

)

. (55)

The likelihood ratio test is given as [29]

∧ = log
p (y;H1)

p (y;H0)
=

∣

∣

∣

∣

∥

∥

∥w
H
T a
(

θ̂0, r̂0, α
)∥

∥

∥

2 ∥
∥

∥b
(

θ̂0, r̂0,∆f
)∥

∥

∥

2

+ n

∣

∣

∣

∣

2 H0

<
>
H1

η, (56)

where η is threshold for detection. The Neyman-Pearson probability of detection and false alarm is given

as [29]

pfa = p (∧ > η|H0) = 1− Fχ2
(2)

(

2η

σ2
n

)

, (57)

pd = p (∧ > η|H1) = 1− Fχ2
(2)





σ2
nF

−1
χ2
(2)

(1− pfa)

σ2
sN

2P 2 + σ2
n



 , (58)

where P and N are the receiving and transmitting array elements, χ2
(2) is the chi-square distribution with

2 degrees-of-freedom, δ2s is the target signal power, while F (·) is cumulative distribution function.
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Figure 6 DOA estimation using Root Music algorithm.

2.2.6 CRLB analysis

In this section, the performance of proposed scheme has been analyzed in terms of Cramer-Rao Lower

Bound (CRLB) criteria for range and angle estimation. For CRLB, the data vector can be taken as [30]

y = (wH
T a(θ̂0, r̂0, α))b(θ̂0, r̂0,∆f)+n. Therefore, the output in SNR terms is given as y =

√
SNR b(θ̂0, r̂0,

∆f)+n. Assume that target range-angle vector γ = [θ̂0, r̂0]
T is unknown. The Fisher information matrix

(FIM) is given as [28]

J = 2Re

[

dε∗

dγ
Γ−1 dε

dγT

]

= 2SNR

[

Jθ̂oθ̂o Jθ̂or̂0
Jr̂0θ̂o Jr̂0r̂0

]

, (59)

where ε =
√
SNR b

(

θ̂0, r̂0,∆f
)

is mean and Γ = I is covariance, while, Jθ̂oθ̂o , Jr̂0 r̂0 and Jθ̂or̂0 values are

derived as [30]

Jθ̂oθ̂o =
4π2f2

0d
2 cos2

(

θ̂0

)

c2

K
∑

n=−K

n2, (60)

Jr̂0r̂0 =
4π2∆f2

c2

K
∑

n=−K

n2, (61)

Jθ̂0r̂0 = Jr̂0 θ̂0 =
4π2f0∆fd cos

(

θ̂0

)

c2

K
∑

n=−K

n2. (62)

The CRLB for the target angle and range estimates can be given as the diagonal elements of the inverse

J matrix, i.e., CRLBθ0θ0 = [J−1]1,1 and CRLBr0r0 = [J−1]2,2.

3 Simulations, results and discussion

This section describes the simulations and results. We assume a symmetric FDA of N = 11 transmitting

array elements and P = 11 receiving array elements with half wave length inter-element distance. The

AWGN is modeled as having a zero mean and equal variance at both ends. The carrier frequency f0 =

10 GHz and ∆f = 30 kHz.

Figure 6 shows the DOA estimation results of Root MUSIC algorithm. The snapshots are 200, while

the SNR= 20 dB. Two signals impinge on the receiving array from 30◦ and 60◦ simultaneously. 30◦ is the

target direction, while 60◦ is the direction of interference. The employed algorithm estimates the DOA

quite accurately. Likewise, the range of these targets can be easily estimated using the derived range

estimation formula. The current estimated range and direction of the target i.e., (θ̂9,k, r̂0,k), along with

the previously estimated positions kept in the memory, i.e., (θ̂0,k−1, r̂0,k−1)(θ̂0,k−2, r̂0,k−2)(θ̂0,k−3, r̂0,k−3)
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Figure 7 (Color online) Performance analysis of EKF based target position estimation with 180 frames. (a) Observations;

(b) EKF based prediction; (c) angle MSE; (d) range MSE.

are forwarded to the EKF based prediction block of receiver to estimate target future direction, i.e.,

(θ̃0,k+1, r̃0,k+1). Instead of taking the target trajectory in Cartesian plane, we convert it to range (r) and

theta (θ) axis for making it more relevant to range-angle dependent beamforming of FDA. The target

motion is modelled using well-known coordinated turn model. A nonlinear state vector is denoted as

x = [θ θ̇ r ṙ ξ]T with θ and θ̇ as target position and velocity component along angle axis, while r and ṙ

are range and its velocity component along range axis and ξ is turn rate. The nonlinear transitional and

measurement matrices are

F̃ =



















1 0 0 0 0

0 ξ 0 0 0

0 0 1 0 0

0 0 0 ξ 0

0 0 0 0 0



















and H̃ =

[

1 0 0 0 0

0 0 1 0 0

]

. (63)

Figure 7 shows the prediction performance of this EKF based prediction block. The process and

measurement noises are taken as zero mean Gaussian with covariance matrices q and R, respectively,

where q = diag[0, σ2
1 , 0, σ

2
2 , σ

2
2 ] with σ2

1 = σ2
2 = 0.25 and R = diag([σ2

θ , σ
2
r ]) with σ2

θ = 0.01 and σ2
r = 0.2.

The SNR is taken as 10 dB. Figure 7(a) shows the observations of the trajectory and Figure 7(b) shows

the EKF based target position prediction performance. Figure 7(c) and (d) show the comparison of

Extended Kalman filter (EKF) and EKF with feedback loop based prediction performances in terms

of measured mean square error with respect to angle and range. This predicted position estimate and

estimation error of target position are sent to the transmitter for calculating the non-uniform frequency
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Figure 9 (Color online) Non-uniform frequency offset values of proposed system.

offsets using a suitable companding factor µ.

A basic feed forward neural network (NN) [31] with a multi-layer perceptron (MLP) network having 10

layers has been used for adaptively selecting µ based on ẽ. The well-known back propagation algorithm

[31] is used for training using predefined estimation error vectors. When ẽ increases the beam pattern

is broadened using high value of µ and when ẽ decreases, the beam pattern is sharpened using a small

value of µ.

The use of non-uniform symmetric frequency offset may affect the null depth of FDA pattern. There-

fore, Figure 8 shows the comparison of the FDA beam pattern for non-uniform and symmetric non-uniform

offset coefficients.

It can be seen that by using the symmetric offsets, the disadvantage of losing null depths can be

reduced. Therefore, the symmetry around the middle element has been maintained for the subsequent

simulations. The transmitter selector, a sub-block of transmitter, decides a suitable value of µ along with

mu-law compression or expansion scheme, based on the feedback, i.e., (θ̃0,k+1, r̃0,k+1, ẽ). Figure 9 shows

uniform and non-uniform frequency offset values for the proposed system. While Figure 10 shows the

3-D and 2-D view of the FDA generated beam patterns using these frequency offset values. Here, we

assume that the target estimated position is at (30◦, 3 km). The 2-D view compares these patterns before

and after applying companding factors. Figure 10(c) and (d) shows 3-D and 2-D view of the beam using

non-uniform frequency offsets calculated by mu-law compression scheme. It results in more directional

beam with increased SLL.
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Figure 10 (Color online) 3-D and 2-D views of the FDA generated beam patterns with N = 11, r̂o = 3 km, f0 = 10 GHz,

∆f = 30 kHz. (a) and (b) Using uniform symmetric frequency offsets; (c) and (d) using non-uniform symmetric frequency

offsets (mu-law compression); (e) and (f) using non-uniform symmetric frequency offsets (mu-law expansion).

On the contrary, using an expanding scheme of mu-law, results in increased HPBW and low SLL (Fig-

ure 10(e) and (f)). Lower SLL [24–26] can be achieved by using higher values of µ in expansion scheme.

On the top of all, these offsets generate a single maximum, which does not allow the interferers to affect

the target- returns, which is reflected in Figure 10(b), (d) and (f), where interferences can be suppressed

quite effectively as compared to conventional FDA, which can result in better SINR at receiver. For SINR

analysis, an interference is located at (60◦, 4 km) and the interference plus noise ratio (INR) equals to

30 dB. Figure 11 shows the ouput SINR vs SNR graph for the conventional and proposed FDA design. It

can be noticed that the proposed radar has a better SINR performance than that of a conventional FDA
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Figure 12 Comparison between the detection perfor-

mance of proposed FDA and conventional FDA.
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Figure 13 Comparison of CRLB estimation performance vs. SNR. (a) CRLB on target angle; (b) CRLB on target range.

radar. Figure 12 shows the detection performance of proposed FDA design and compares it with conven-

tional FDA radar detection performance with pfa = 1e− 4, which shows a better detection performance

of proposed system.

Figure 13(a) and (b) show the comparison of the proposed radar and conventional FDA for CRLB

performance on target angle and range, respectively. The proposed approach gives satisfactory estima-

tion performance. In the nutshell, the proposed system learns about the statistical variations of the

environment and in response, it makes suitable changes in the design parameter to maintain an improved

SINR, detection performance and CRLB.

4 Conclusion

In this paper, the effect of a non-uniform frequency offsets applied along the FDA elements has been

analyzed. The well-known mu-law is used to calculate these non-uniform frequency offsets. The cognitive

properties, such as feedback, memory and application of adaptive signal processing at the receiver and

transmitter have been utilized to maintain an improved performance. Consequently, the proposed radar

design achieves an improved SINR that results in better detection performance and improved CRLB

for target position estimation as compared to the conventional FDA. Likewise, the symmetrical offsets

applied around the middle elements helps in getting improved null depths than that of non-symmetric.
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