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Abstract This paper studies the design of the optimal and online cross-layer transmission and energy schedul-

ings for a full-duplex energy harvesting wireless orthogonal frequency division multiplexing (OFDM) joint trans-

missions. Supported by today’s power management integrated circuit, the full-duplex energy harvesting system

becomes a reality, which can overcome the transmission time loss problem caused by the half-duplex constraint

of the energy storage unit (ESU) in the serial Harvest-Store-Use system. However, its corresponding model-

ing is still unexplored. Therefore, the full-duplex energy harvesting system is first modeled and proved to be

equivalent to a composition of energy behavior models of Harvest-Store-Use in fine-time granularity. Then, the

convex optimization problem of cross-layer transmission and energy scheduling is formulated with the objective

to maximize the sum of transmission throughput during successively multiple time units, which takes into ac-

count the temporal variance of energy harvesting rates and channel states, and the limited capacity of ESUs.

The optimal power allocation with three dimensions of time, channel and antenna is solved by utilizing the

dual decomposition method with the pre-known temporal variance, and the corresponding result of the system

throughput provides the theoretical upper bound. Finally, to reduce the throughput degradation caused by

channel state prediction errors, a non-convex online scheduling problem is formulated as the classical energy

efficiency format. It is transformed into a convex optimization problem by exploiting the properties of fractional

programming, and then, an efficiently iterative solution is designed. Numerical results show that the average

throughput of the online algorithm is 24% greater than that of existing time-energy adaptive water-filling algo-

rithm. The degradation of the average throughput is less than 19% with probability 90%, even as the channel

prediction error reaches 20%. These results provide guidelines for the design and optimization for full-duplex

energy harvesting joint transmission systems.
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1 Introduction

Energy harvesting is gaining popularity due to its ability to capture and store energy from readily available

ambient sources, including wind, solar, biomass, geotherm, tides, and even radio frequency signals, which

are renewable and more environmentally friendly than that derived from fossil fuels [1], and is thus

becoming a preferred choice supporting green wireless communications in the fields of wireless sensor

networks (WSNs) [2, 3], WiFi networks [4], cellular networks [5, 6], etc.

Energy harvesting system often in the relevant literature contains two major architectures: energy

generators directly connected to the load without energy storage units (ESU’s) and energy generators

bridged by ESU’s to the load [7], the corresponding energy behavior models of which are Harvest-Use

and Harvest-Store-Use, respectively. In Harvest-Use, the energy generator directly powers the load and

as sufficient energy is not available the load is disabled. In Harvest-Store-Use, there is an ESU that

stores the harvested energy and then powers the load. Because the energy storing capability of ESU

enables temporal scheduling of harvested energy, Harvest-Store-Use is preferable in prior arts. However,

the half-duplex constraint of ESU that charge and discharge cannot be executed simultaneously leads

to transmission time loss problem, i.e., data transmissions have to be suspended during ESU is charged.

Fortunately, combining these two architectures controlled by the power controller makes full-duplex energy

harvesting enabled transmissions possible [8]. However, the fundamental problem of how to model the

full-duplex energy harvesting system is still left open, which is named as motivation problem 1.

Due to the fact that the energy-arrival rate is determined by the changing surrounding environment,

it is not trivial to design and optimize the energy harvesting enabled wireless communication system.

Since the energy cannot be consumed before it is harvested, the opportunistic energy harvesting results in

fluctuating power budget, namely, energy causality constraint. The energy causality constraint mandates

that, at any time, the total consumed energy should be equal to or less than the sum of the total harvested

energy and initial energy in ESU [2]. Furthermore, energy overflow constraint should also be considered

to avoid the occurrence that the sum of unconsumed energy and newly arriving energy exceeds the finite

capacity of ESU at any time [2].

In addition, to maximize the sum of transmission throughput and corresponding harvested energy

utilization efficiency, it is essential to take the cross-layer radio resources scheduling according to profiles

of the energy generation and channel states. Flashing back to the relevant literature, the first page

appears energy harvesting enabled WSN, since sensor nodes are often deployed under complicated and

adverse conditions where manual battery recharging is infeasible. In [2], an offline transmission policy is

designed to improve the amount of data transmitted during a finite time period. As for the broadcasting

scenario, a packet transmission scheduling scheme is studied under the additional white Gaussian noise

(AWGN) broadcast channels in [3]. The second page appears energy harvesting enabled WiFi ad hoc

communication system. For example, using historical solar isolation and traffic flows data, Ref. [4] achieves

the max-min fair flow control subject to eliminating WiFi network outage. Recently, the harvesting

technique is extensively studied in cellular networks. For example, an energy efficient resource allocation

algorithm is proposed for an OFDMA downlink network in [5]. In [6], the throughput maximization

problem is investigated for harvested energy powered relay nodes under Gaussian channel.

In order to improve throughput, and spectrum and energy efficiency, advanced transmission techniques

are adopted for wireless transmissions and correspondingly standardized for extensive use. One of such

advanced transmission techniques is the coordinated multipoint (CoMP) transmission, which is accepted

in LTE-(A) specification and is becoming a promising technique for 5G networks [9,10]. There are various

types of CoMP schemes as overviewed in [9], and one typical CoMP scheme, known as joint transmission,

is to coordinate multiple transmission points (TP’s) to jointly transmit to a receiver. To green the

joint transmission system, Ref. [11] investigates the sum-rate maximization of the joint transmission

system powered by hybrid energy without ESU, by jointly optimizing the transmit power allocations

at cooperative TP’s and their exchanged energy amounts. Ref. [12] presents a renewable energy aware

cluster formation scheme to minimize the energy consumption in electric grid, with the support of hybrid

energy supply in each TP. However, to our best knowledge, how to optimize the sum throughput of
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full-duplex energy harvesting joint transmissions in successively multiple time units (or transmission

intervals (TI’s) in this paper), jointly considering the temporal variance of energy harvesting rates and

channel states, and the limited capacity of ESUs, is relatively unexplored, which is named as motivation

problem 2.

What is more, conversion from optimal transmission and energy scheduling to online one is the basis

of practical implementation. In the online scheduling, relative long-term prediction of channel state in-

formation (CSI) [13] is necessary, which inevitably draws into prediction inaccuracy and errors. Because

the imperfect CSI will degrade the performance, especially for complex and CSI-dependent online oper-

ations, robust design for the online algorithm is of significant importance. Ref. [14] well supports this

point and pioneeringly investigates the robust design of MIMO beamforming with partial CSI under the

radio signal energy harvesting scenario. In this paper, the motivation problem 3 for the online operation

is raised: How can the throughput degradation caused by channel prediction errors be mitigated in the

online scheduling algorithm?

Motivated by above 3 motivation problems, the following contributions are made. We first model the

energy behavior model of full-duplex energy harvesting system, and then prove the model can be equiv-

alent to Harvest-Store-Use model as the time unit or TI is small enough. Then, the sum of transmission

throughput optimization problem with multiple TI’s is formulated, the optimization variables of which are

power allocations with 3 dimensions of TI, antenna and channel. Proving the convexity of the formulated

problem, we derive solution (named as optimal cross-layer transmission and energy scheduling) utilizing

the dual decomposition method under the assumption of perfectly pre-known CSI, which provides the

upper bound of the system performance. Finally, based on the intuition from the original optimization

problem, the online algorithm problem is formulated, taking into account reducing the impact of CSI

prediction errors, which is a non-convex optimization problem. The non-convex optimization problem is

transformed into a convex optimization problem by exploiting the properties of fractional programming,

on the basis of which an efficient iterative solution (named as online cross-layer transmission and energy

scheduling) is proposed. Our solutions and results can be useful in the design and transmission opti-

mization in areas of the energy harvesting enabled general wireless communication systems, and private

wireless communication networks, such as power grid and oil pipeline monitoring communication systems,

emergency wireless communication systems for disaster relief, satellites communication, etc.

The rest of this paper is organized as follows. Section 2 presents the system model. Section 3 illustrates

the problem formulation and the solution methodology and algorithm of the optimal cross-layer trans-

mission and energy scheduling. Section 4 provides the formulation and the solution methodology of the

online cross-layer transmission and energy scheduling. Section 5 evaluates and analyzes the performance

of our proposed algorithms. Finally, Section 6 concludes the paper.

2 System model

Consider the energy harvesting enabled wireless OFDM joint transmission system as shown in Figure 1.

There are one central scheduling and signal processing unit (CSPU), L ∈ N remote radio units (RRU’s)

with single antenna connected to CSPU. The receiver-specific cluster formulation is considered, where the

receivers are selected to be jointly served by joint transmission of L RRU’s [15]. Each RRU is equipped

with and powered by the energy harvester (e.g., the wind turbine, the electromagnetic radiation energy

harvester, photovoltaic panels, etc.) and ESU (e.g., batteries or super capacitance) with finite capacity

EC Joule1). The CSPU is powered by relatively stable power2), and gathers data to be transmitted from

other network nodes. Time is slotted, and we divide the time into transmission frames (TF’s) with T ms

consisting ofM time intervals (TI’s). The size of TI with the integer index i ∈ N is τ ms. The cross-layer

1) The RRU’s can also be powered by hybrid energy. Hereafter, because we focus on the harvested energy utilization,

only the harvesting systems are associated with RRU’s in Figure 1.
2) This model considers the practical constraint of the high power consumption and stable power requirement of CSPU,

including baseband processing equipments, cooling facilities, etc.
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Figure 1 Full-duplex energy harvesting enabled joint transmission system.

Figure 2 Full-duplex energy harvesting system.

transmission and energy scheduling is periodically made at the beginning of each TF. Therefore, for clear

presentation, the following paper is discussed within one reference cycle, i.e., one TF.

2.1 Full-duplex energy harvesting model

The full-duplex energy harvesting enabled RRU is described in Figure 2, where harvesting, storage and

usage are controlled by the power controller. PH
l,i(t) is the output power of the harvester associated with

RRU l, and P̄U
l,i(t) is the maximal output power of the ESU at time t in TI i, where l ∈ N is the integer

index of RRU’s. The power load of RRU l in TI i is PU
l,i(t). The residual energy of ESU associated with

RRU l at the beginning of TI i is Sl,i. Then, its basic energy behavior can be modeled, as the TI, i.e., τ ,

is small enough that the relationship among PH
l,i(t), P

U
l,i(t) and P̄

U
l,i(t) is fixed as the following 3 cases.

Case 1. If PH
l,i(t) > PU

l,i(t) during τ , the output power of the energy harvester is enough to drive RRU

l, and the surplus of harvested energy is stored into ESU with the capacity limitation EC. Thus, the

energy state of ESU evolves in accordance with the following recursion:

Sl,i+1 = min

{∫ τ

0

PH
l,i(t)− PU

l,i(t)dt+ Sl,i, EC

}
. (1)

Case 2. If PH
l,i(t) < PU

l,i(t) and PH
l,i(t) + P̄U

l,i(t) > PU
l,i(t) during τ , ESU and the energy harvester have

to jointly power RRU l, and no harvested energy can be stored. Thus, the energy state of ESU evolves

as the following recursion, where [·]+ = max(·, 0):

Sl,i+1 =

[
Sl,i −

∫ τ

0

PU
l,i(t)− PH

l,i(t)dt

]+
. (2)

Case 3. If PH
l,i(t)+ P̄

U
l,i(t) < PU

l,i(t) during τ , RRU l cannot be driven to work, and in turn all harvested

energy is stored into ESU. Thus, the energy state of ESU evolves in accordance with the following

recursion with the storage capacity limitation EC:

Sl,i+1 = min

{
Sl,i +

∫ τ

0

PH
l,i(t)dt, EC

}
. (3)

Proposition 1. If TI is small enough that the relationship among PH
l,i(t), P

U
l,i(t) and P̄U

l,i(t) is fixed,

the full-duplex energy behavior model is in accordance with the format of the Harvest-Storage-Usage

model [7], i.e., Sl,i+1 = min{(Sl,i + El,i − Econ
l,i )

+
, EC}, ∀i ∈ N, whereEl,i denotes the amount of harvested

energy at RRU l during TI i; Econ
l,i is the energy consumption of RRU l during TI i, which will be discussed

in Subsection 2.2.
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Figure 3 The sequences of energy behavior during each TF.

Proof. See Appendix A.

Following Proposition 1, the sequences of energy behavior during one TF are illustrated in Figure 3.

{El,1, El,2, . . . , El,M} are assumed constant at each TI during one TF, which can be predicted at the

beginning of each TF by using predictive analytic such as Bayesian forecasting [16]. Since prediction

method is not the topic to be discussed, it is assumed that El,i (i ∈ {1, 2, . . . ,M}) is perfectly pre-known

at the beginning of each TF. According to Figure 3, states of ESU can be iteratively derived from the

initial energy state (denoted as El,0 , Sl,1) at the beginning of each TF as

Sl,m =

[
m∑

i=0

(
El,i − Econ

l,i

)
− EC

]+
, m ∈ {1, 2, . . . ,M} . (4)

As the harvested energy is pre-known, the state of ESU evolves according to the energy consumption of

RRU l, which is modelled in the following subsection.

2.2 Energy consumption model of joint transmission

Consider a block fading channel model where the channel state remains static within each TI, but becomes

independent across different TI’s. The system bandwidth is equally divided into N sub-channels with

bandwidth Bw. Full user capacity is considered, which means N sub-channels are allocated to N receivers.

L RRU’s jointly transmit data on each sub-channel. With the perfect signal phase synchronization, the

downlink signal received on sub-channel n (∀n ∈ {1, 2, . . . , N}) at TI i is

yn,i =
L∑

l=1

√
Gn,l,i |hn,l,i|xn,l,i + zn. (5)

In (5), xn,l,i is the symbol transmitted on sub-channel n from RRU l at TI i, the transmit power of

which is pn,l,i = E[|xn,l,i|2]. Gn,l,i ∝ [dn,l,i/d0]
−α denotes the large-scale path-loss from RRU l, where

dn,l,i and d0 are the distances between the receiver allocated to subchannel n and RRU l at TI i, and the

reference distance, respectively. α is the pathloss exponent. |hn,l,i| stands for the gain of the Rayleigh

fading channel at TI i, modeled by i.i.d. complex Gaussian with unit variance, i.e., hn,l,i ∼ NC(0, 1). zn
is the AWG noise, and the noise power for all sub-channels is denoted by σ2.

Each receiver receives bits from multiple RRU’s which cooperate with each other. Then, the achievable

transmission bit rate on sub-channel n ∈ {1, 2, . . . , N} during TI i is given by

Rn,i(pn,l,i) = Bw log2



1 +
(

L∑

l=1

γn,l,i
√
pn,l,i

)2


 , (6)

where γ2n,l,i = Gn,l,i|hn,l,i|2/σ2 denotes carrier-to-noise ratio (CNR) of RRU l on sub-channel n at TI i.

The total received data at all receivers during one TF can be calculated as

DOP(pn,l,i) =
N∑

n=1

M∑

i=1

Rn,i (pn,l,i) · τ . (7)

The energy consumption of RRU l at TI i is modeled as

Econ
l,i =

(
̟

N∑

n=1

PU
l,i + PC

l

)
· τ =

(
̟

N∑

n=1

pn,l,i + PC
l

)
· τ, (8)
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where ̟ is defined as ̟ = ε/η; ε denotes the peak-to-average power ratio (PAPR) and η denotes the

power amplifier efficiency; PC
l denotes the receiving and circuit power consumption of RRU l, which is

relatively low compared to transmit power, and thus assumed constant for notational convenience. In

practical applications, the upper bound of PC
l can be statistically determined through measuring active

RRU’s.

3 Optimal cross-layer transmission and energy scheduling

The goal of the following formulated problem is to design the optimal power allocation in 3 dimensions of

sub-channel, RRU and TI under fluctuated energy supply such that the sum of transmission data across

every TF (i.e., M TI’s) is maximized:

max
pn,l,i

DOP(pn,l,i)

s.t.

m∑

i=1

Econ
l,i >

(
m∑

i=0

El,i − EC

)+

,m ∈ {1, 2, . . . ,M}, (C1)

m′∑

i=1

Econ
l,i 6

m′−1∑

i=0

El,i,m
′ ∈ {1, 2, . . . ,M + 1}, (C2)

pn,l,i > 0, ∀n, ∀l, ∀i, (C3)

(9)

where l ∈ {1, 2, . . . , L}; constraints C1 and C2 are non-overflow constraint and causality constraint of

RRU l, respectively. Specifically, seen from Figure 3, constraint C1 states that in order to prevent ESU

of RRU l from energy overflowing, at least (
∑m

i=0El,i − EC)
+ amount of energy should be consumed at

the end of TI m, where m ∈ {1, 2, . . . ,M}; constraint C2 guarantees that the energy consumption of

RRU l cannot exceed the amount of harvested and stored energy associated with RRU l during each TI.

Constraint C3 represents the non-negative power allocation.

Then, the upper bound of the formulated problem is derived, assuming that CSI during each TF is

perfectly pre-known.

Proposition 2. The objective function of (9) is concave.

Proof. See Appendix B.

Utilizing dual decomposition method, the Lagrangian associated with (9) is

L(ςl,m, µl,m′ , pn,l,i) =
N∑

n=1

M+1∑

i=1

Rn,i(pn,l,i)τ −
L∑

l=1

M+1∑

m′=1

µl,m′

m′∑

i=1

Econ
l,i +

L∑

l=1

M∑

m=1

ςl,m

m∑

i=1

Econ
l,i

+

L∑

l=1

M+1∑

m′=1

µl,m′

m′−1∑

i=0

El,i −
L∑

l=1

M∑

m=1

ςl,m

(
m∑

i=0

El,i − EC

)+

, (10)

where {ςl,m}L×M and {µl,m′}L×(M+1) are Lagrange multiplier matrixes associated with C1 and C2,

respectively. Then, the dual problem is given by

min
ςl,m,µl,m′>0

max
pn,l,i>0

L(ςl,m, µl,m′ , pn,l,i). (11)

Making the derivative of L(ςl,m, µl,m′ , pn,l,i) in (10) respecting to pn,l,i equal to zero yields

∂L(ςl,m, µl,m′ , pn,l,i)

∂pn,l,i
=
τWn,iγn,l,i√
pn,l,i ln 2

−Kl,iξτ = 0, (12)

where

Wn,i =

L∑

g=1

γn,g,i
√
pn,g,i

/[
1 +

( L∑

g=1

γn,g,i
√
pn,g,i

)2]
, (13)
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Kl,i =
M+1∑

m′=i

µl,m′ −
M∑

m=i

ςl,m. (14)

Define ϕn,i = {l|pn,l,i > 0, l = 1, 2, . . . , L}, ∀n ∈ {1, 2, . . . , N} as the set of RRU’s which have the

positive transmit power on sub-channel n at TI i. According to (12), there is

γn,l1,i
Kl1,i

√
pn,l1,i

= · · · = γn,lϑ,i
Klϑ,i

√
pn,lϑ,i

= · · · = γn,lLn ,i

KlLn ,i
√
pn,lLn ,i

=
̟ ln 2

Wn,i

, (15)

where ϑ ∈ {1, 2, . . . , Ln} and l1, . . . , lLn
∈ ϕn,i. Ln = |ϕn,i| is the size of ϕn,i. Therefore, pn,lϑ,i can be

derived as
√
pn,lϑ,i =

γn,lϑ,i
γn,l1,i

· Kl1,iKlϑ,i
· √pn,l1,i, (16)

where Kl1,i · γn,lϑ,i can be viewed as weighted CNR of RRU lϑ. Then, as the transmit power of RRU 1

is determined, then that of RRU lϑ can be easily determined, which can effectively improve computation

efficiency. Substituting (16) into (12) and (13) and making pn,l,i = 0 (∀l /∈ ϕn,i), the optimal solution

of (9) can be expressed as

p∗n,l,i =






∑
g∈ϕ∗

n,i

γ2
n,g,i
Kg,i

̟Hn,l,iK
2

l,i
ln 2

− 1
Hn,l,iK

2

l,i

, l ∈ ϕ∗
n,i,

0, l /∈ ϕ∗
n,i,

(17)

where ϕ∗
n,i = {l|p∗n,l,i > 0, l = 1, 2, . . . , L} and

Hn,l,i =

(∑
g∈ϕ∗

n,i

γ2

n,g,i

Kg,i

)2

γ2n,l,i
.

Seen from (17), the optimal set ϕ∗
n,i needs to be selected in determining p∗n,l,i, which may need to

search over 2L cases for each TI. In the following, we will prove that there is only two possible cases for

ϕ∗
n,i. Two Lemmas are first given as follows.

Lemma 1. The solution satisfying (17) with all p∗n,l,i > 0, i.e., ϕ∗
n,i = {1, 2, . . . , L}, is an extreme point

solution. Moreover, it is also the optimal solution of (9), if exists, due to the concavity of the objective

function in (9), c.f., Proposition 2.

Lemma 2. The solutions satisfying (17) with at least one p∗n,l,i = 0, i.e., ϕ∗
n,i ⊂ {1, 2, . . . , L}, are

boundary point solutions. When the extreme point is not feasible, the optimal solution must be one of

these solutions.

To solve the optimization problem (9), it is natural to first check whether the extreme point is feasible.

If not, check each boundary point solution. So, based on Lemmas 1 and 2, the following proposition is

provided.

Proposition 3. If the extreme point solution does not exist, the feasible solution of (9) must be the

solution with all p∗n,l,i = 0, i.e., ϕ∗
n,i = ∅.

Proof. According to (17), if the extreme point solution does not exist, there is

p∗n,l,i < 0 ⇔
∑

g∈ϕ∗
n,i

γ2n,g,i
Kg,i

< ξ ln 2, (18)

where ϕ∗
n,i = {1, 2, . . . , L}.

Suppose there exists a boundary point solution {p′n,l,i} satisfying (17) with ϕ′
n,i = {l|p′n,l,i > 0, l =

1, 2, . . . , L} 6= ∅ and ϕ′
n,i ⊂ ϕ∗

n,i, then

∑
g∈ϕ′

n,i

γ2n,g,i
Kg,i

<
∑

g∈ϕ∗
n,i

γ2n,g,i
Kg,i

< ξ ln 2 ⇔ p′n,l,i < 0, l ∈ ϕ′
n,i, (19)
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i.e., the solution {p′n,l,i} is not feasible. Hence, except the solution with p∗n,l,i = 0 and ϕ∗
n,i = ∅, none of

the boundary point solutions is feasible.

Therefore, for the optimal solution of (9) in (17), ϕ∗
n,i is equal to either {1, 2, . . . , L} or ∅, and the

optimal solution of (9) can be derived as

p∗n,l,i =



 1

Hn,l,iK2
l,i




∑L

l=1

γ2

n,l,i

Kl,i

̟ ln 2
− 1








+

, ∀n ∈ {1, 2, . . . , N}, ∀l ∈ {1, 2, . . . , L}, ∀i ∈ {1, 2, . . . ,M}. (20)

The gradient update equations for all entries in matrices {ςl,m}L×M and {µl,m′}L×(M+1) are given:

ςυ+1
l,m =

[
ςυl,m − κυ1

(
m∑

i=1

Econ
l,i −

( m∑

i=0

El,i − EC

)+
)]+

, (21)

µυ+1
l,m′ =


µυl,m′ − κ̄υ1



m′−1∑

i=0

El,i −
m′∑

i=1

Econ
l,i





+

, (22)

where ∀l ∈ {1, 2, . . . , L}; ∀m ∈ {1, 2, . . . ,M}; ∀m′ ∈ {1, 2, . . . ,M + 1}; υ ∈ N is the iteration number; κυ1
and κ̄υ1 are the sequence of scalar step sizes.

The optimal cross-layer transmission and energy scheduling algorithm is summarized in Algorithm 1,

the convergence of which has been proved in [17].

Algorithm 1 Optimal cross-layer transmission and energy scheduling algorithm

Require: ∆ → 0+

if υ=0 then

{ςυ
l,m

}L×M ⇐ I and {µυ
l,m′}L×(M+1) ⇐ I;

end if

flag ⇐ 1;

while flag do

{ςυ+1
l,m

}L×M ⇐
[
ςυ
l,m

− κυ1

(
m∑
i=1

Econ
l,i

−
(

m∑
i=0

El,i − EC

)+
)]+

L×M

;

{µυ+1
l,m′}L×(M+1) ⇐

[
µυ
l,m′ − κ̄υ1

(
m′−1∑
i=0

El,i −
m′∑
i=1

Econ
l,i

)]+

L×(M+1)

;

{pυ+1
n,l,i

}N×L×M ⇐
[

1
Hn,l,iK

2

l,i

(∑L
l=1

γ2
n,l,i
Kl,i

̟ ln 2
− 1

)]+

N×L×M

;

if DOP(p
υ+1
n,l,i

)−DOP(p
υ
n,l,i

) < ∆ then

{p∗
n,l,i

}N×L×M ⇐ {pυ
n,l,i

}N×L×M ;

flag ⇐ 0;

end if

υ ⇐ υ + 1;

end while

4 Online cross-layer transmission and energy scheduling

Although prediction techniques [13] have the potential to effectively make a good channel state prediction,

inherent random factors in the wireless propagation inevitably lead to prediction errors. Moreover, the

longer the prediction period, the greater the prediction errors [13]. To avoid the impact of greater channel

state prediction errors on the objective function, we first design the online algorithm as that the optimal

power allocation is executed at every TI with the help of predicted channel state at one TI ahead, as

illustrated in Figure 4. Assuming the current TI index is k, the prediction errors at TI k + 1 are defined

as matrix Ek+1 , {en,l,k+1}N×L. Then, the sum of transmission data, utilizing γn,l,k and the predicted
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Figure 4 The diagram of the online cross-layer transmission and energy scheduling.

γn,l,k+1, is given by

DON(p̂n,l,i, k) =

N∑

n=1

k+1∑

i=k

Rn,i(p̂n,l,i)τ = τ ·
N∑

n=1

k+1∑

i=k

Bw log2



1 +
(

L∑

l=1

γn,l,i
√
p̂n,l,i

)2


, ∀k, (23)

where p̂n,l,i (i ∈ {k, k + 1} , ∀k ∈ {1, 2, . . . ,M}) are the allocated power on sub-channel n of RRU l at TI

k and TI k+1. It is obvious that the sum of transmission data in (23) is a monotone increasing function

of p̂n,l,i (i ∈ {k, k + 1}).
Recalling (8), the energy consumption of DON(p̂n,l,i, k) in (23) is

QON(p̂n,l,i, k) =

L∑

l=1

k+1∑

i=k

Econ
l,i (p̂n,l,i) =

L∑

l=1

k+1∑

i=k

(
̟

N∑

n=1

p̂n,l,i + PC
l

)
· τ , ∀k ∈ {1, 2, . . . ,M}, (24)

which is also a monotone increasing function of p̂n,l,i (i ∈ {k, k + 1}).
Intuitively, utilizing characteristics that DON(p̂n,l,i, k) and QON(p̂n,l,i, k) are monotonically increasing

functions of the same variable p̂n,l,i, we reformulate the objective function as the ratio of DON(p̂n,l,i, k)

to QON(p̂n,l,i) to mitigate the deviation caused by prediction errors en,l,k+1
′s, c.f., (25):

FON(p̂n,l,i, k) =
D̄ON(p̂n,l,i, k)

Q̄ON(p̂n,l,i, k)
=

∑N
n=1

∑k−1
i=0 Bn,i +

∑N
n=1

∑k+1
i=k Rn,i(p̂n,l,i)τ∑L

l=1

∑k−1
i=0 Econ

l,i +
∑L

l=1

∑k+1
i=k Econ

l,i (p̂n,l,i)
, ∀k ∈ {1, 2, . . . ,M}, (25)

the physical meaning of which is the average transmission energy efficiency in unit [bit/Joule]. In (25),

two constants are introduced to guarantee comparability in terms of time length of TF between the op-

timal and online algorithms, which are
∑N

n=1

∑k−1
i=0 Bn,i =

∑N
n=1

∑k−1
i=0 log2[1 + (

∑L
l=1 γn,l,i

√
p̂n,l,i)

2
]τ ,

denoting the total transmission data before TI (k − 1) in each TF, and Bn,0 = 0;
∑L

l=1

∑k−1
i=0 Econ

l,i =
∑L

l=1

∑k−1
i=0 (̟

∑N
n=1 p̂n,l,i + PC)τ , denoting the total energy consumed before TI k in each TF, and

Econ

l,0 = 0.

Therefore, the online optimization problem for determining optimal power allocation at TI k is formu-

lated as
max
pn,l,i

FON(p̂n,l,i, k)

s.t.
k−1∑

i=0

Econ

l,i +
k+1∑

i=k

Econ
l,i (p̂n,l,i) >

(
k∑

i=0

El,i − EC

)+

, (C4)

k−1∑

i=0

Econ

l,i +

u∑

i=k

Econ
l,i (p̂n,l,i) 6

u−1∑

i=0

El,i, u ∈ {k, k + 1}, (C5)

p̂n,l,i > 0, ∀n, ∀l, ∀i, (C6)

(26)

where k ∈ {1, 2, . . . ,M}. Because the objective function of (26) is a nonlinear fractional programming

problem [18], it can be associated with a parametric programming (PP) problem as follows:

max
pn,l,i

[(
N∑

n=1

k−1∑

i=0

Bn,i +

N∑

n=1

k+1∑

i=k

Rn,i(p̂n,l,i)τ

)
− q

(
L∑

l=1

k−1∑

i=0

Econ

l,i +

L∑

l=1

k+1∑

i=k

Econ
l,i

)]
, (27)

where q ∈ R is referred as a parameter which determines the relative weight of the total energy consump-

tion of system and can be interpreted as the overhead caused by energy consumption.
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Proposition 4. Let p̂∗n,l,i be the optimal variable in (26) with a fixed q. p̂∗n,l,i is also optimal for (27),

if and only if

N∑

n=1

k−1∑

i=0

Bn,i +

N∑

n=1

k+1∑

i=k

Rn,i(p̂
∗
n,l,i)τ − q

(
L∑

l=1

k−1∑

i=0

Econ

l,i +

L∑

l=1

k+1∑

i=k

Econ
l,i

)
= 0. (28)

Proof. Because {Bn,i} and {Econ

l,i } are constant sequences and
∑L
l=1

∑k+1
i=k E

con
l,i is the linear sum of

p̂∗n,l,i, which satisfies the convexity, the denominator of (25) is obviously convex. Recalling the proof of

Proposition 2, the numerator of (25), i.e., (
∑L

l=1

∑k−1
i=0 Econ

l,i +
∑L

l=1

∑k+1
i=k Econ

l,i ), can be similarly proved

to be concave.

Therefore, according to Dinkelbach’s theory, Proposition 4 can be proved.

Then, following Proposition 4, the primal problem in (26) is equivalent with

max
p̂n,l,i

(
N∑

n=1

k−1∑

i=1

Bn,i +

N∑

n=1

k+1∑

i=k

Rn,i(p̂n,l,i)τ − q

(
L∑

l=1

k−1∑

i=0

Econ

l,i +

L∑

l=1

k+1∑

i=k

Econ
l,i

))
s.t. C4,C5,C6. (29)

The Lagrangian of (29) is given by

L(ρl, ψl,u, pn,l,i) =
L∑

l=1

ρl

(
k−1∑

i=0

Econ

l,i +

k+1∑

i=k

Econ
l,i −

( k+1∑

i=0

El,i − EC

)+
)

+

L∑

l=1

k+1∑

u=k

ψl,u

(
u−1∑

i=0

El,i −
(
k−1∑

i=0

Econ

l,i +

u∑

i=k

Econ
l,i

))

+

N∑

n=1

k−1∑

i=0

Bn,i +

N∑

n=1

k+1∑

i=k

Rn,i(p̂n,l,i)τ − q

(
L∑

l=1

k−1∑

i=0

Econ

l,i +

L∑

l=1

k+1∑

i=k

Econ
l,i

)
, (30)

where {ρl}L×1 and {ψl,u}L×2 denote the Lagrange multiplier vector and matrix associated with con-

straints C4 and C5, respectively. Thus, the dual optimization problem is given by

min
ρl,ψl,u>0

max
p̂n,l,i

L(ρl, ψl,u, p̂n,l,i). (31)

By using dual decomposition approach as (12)–(20), the optimal solution of (29) with a fixed q can be

described as

p̂∗n,l,i =

[
1

H̃n,l,iK̃2
l,i

(
L∑

l=1

γ2n,l,i

K̃l,i

/
(ξ ln 2)− 1

)]+
, (32)

where ∀n ∈ {1, 2, . . . , N}, ∀l ∈ {1, 2, . . . , L} and ∀i ∈ {k, k + 1}; K̃l,i is given by

K̃l,i =






k+1∑
u=k

ψl,u − ρl + q, i = k,

ψl,k+1 + q, i = k + 1,

(33)

and H̃n,l,i is described as

H̃n,l,i =

(∑
g∈ϕ∗

n,i

γ2

n,g,i

K̃g,i

)2

γ2n,l,i
. (34)

The gradient update equations for {ρl}L×1 and {ψl,u}L×2 are given as

ρυ+1
l =

[
ρυl − κυ2

(
k−1∑

i=0

Econ

l,i +

k+1∑

i=k

Econ
l,i −

( k+1∑

i=0

El,i − EC

)+
)]+

, (35)
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Table 1 Simulation parameters

Simulation parameter Value Simulation parameter Value

Number of RRU’s (L) 3 Static circuit power consumption (PC dBm) 40

Number of sub-channels (N) 12 Power amplifier efficiency (η) 30%

Length of each time interval (τ ms) 300 Peak-to-average power ratio (ε dB) 12

Path-loss exponent (α) 3 Noise power (σ2 dBm) −128

Reference distance (d0 m) 10

ψυ+1
l,u =

[
ψυl,u − κ̄υ2

(
u−1∑

i=0

El,i −
k−1∑

i=0

Econ

l,i −
u∑

i=k

Econ
l,i

)]+
, (36)

where l ∈ {1, 2, . . . , L}; u ∈ {k, k + 1}; υ is the integer iteration number; κυ2 and κ̄υ2 are the sequences of

scalar step size.

The online cross-layer transmission and energy scheduling algorithm is presented in Algorithm 2. The

convergence of the algorithm converges with a superlinear convergence rate, which is proved in [18].

Algorithm 2 Online cross-layer transmission and energy scheduling algorithm

Require: ∆ → 0+ and q → 0+;

if υ=0 then{
ρυ
l

}
L×1

⇐ I and
{
φυ
l,u

}

L×2
⇐ I;

end if

k ⇐ 1;

while k 6 12 do

flag ⇐ 1;

while flag do

{ρυ+1
l

}L×1 ⇐
[
ρυ
l
− κυ2

(
k−1∑
i=0

Econ
l,i +

k+1∑
i=k

Econ
l,i

−
(

k+1∑
i=0

El,i −EC

)+
)]+

L×1

;

{ψυ+1
l,u

}L×2 ⇐
[
ψυ
l,u

− κ̄υ2

(
u−1∑
i=0

El,i −
k−1∑
i=0

Econ
l,i −

u∑
i=k

Econ
l,i

)]+

L×2

;

{K̃l,k}L×1 ⇐
{

k+1∑
u=k

ψl,u − ρl + q

}

L×1

and {K̃l,k+1}L×1 ⇐ {ψl,k+1 + q}L×1;

{H̃n,l,i}N×L×1 ⇐
{( ∑

g∈ϕ∗
n,i

γ2
n,g,i

K̃g,i

)2/
γ2
n,l,i

}

N×L×1

;

{p̂υ+1
n,l,i

}N×L×1 ⇐
[

1

H̃n,l,iK̃
2

l,i

(
L∑

l=1

γ2

n,l,i

K̃l,i

/(ξ ln 2)− 1

)]+

N×L×1

;

D̄ON ⇐
N∑

n=1

k−1∑
i=0

Bn,i +
N∑

n=1

k+1∑
i=k

Rn,i(p̂n,l,i)τ and Q̄ON(p̂n,l,i, k) ⇐
L∑

l=1

k−1∑
i=0

Econ
l,i +

L∑
l=1

k+1∑
i=k

Econ
l,i

(p̂n,l,i);

FON(p̂n,l,i, k) ⇐
D̄ON(p̂n,l,i,k)

Q̄ON(p̂n,l,i,k)
;

if

∣∣∣q −FON(p̂υ+1
n,l,i

, k)
∣∣∣ < ∆ then

{p̂∗
n,l,k

}L×1 ⇐ {p̂υ+1
n,l,k

}L×1;

flag ⇐ 0;

end if

υ ⇐ υ + 1 and k ⇐ k + 1;

end while

end while

5 Numerical analysis

Numerical results of the optimal and the online cross-layer transmission and energy scheduling solution3)

are presented under given profile of energy arrival rates and Rayleigh channels. Without loss of generality,

simulation parameters obtained from [3] and [5] are listed in Table 1.

3) They are named as the optimal algorithm and the online algorithm for brevity in the following, respectively.



Li H J, et al. Sci China Inf Sci October 2016 Vol. 59 102310:12

Figure 5 Weighted CNR’s and allocated power during 10 TI’s during one randomly selected TF for 3 RRU’s. (a) Weighted

CNRs during the 1st TI; (b) allocated power during the 1st TI; (c) weighted CNRs during the 3rd TI; (d) allocated power

during the 3rd TI; (e) weighted CNRs during the 5th TI; (f) allocated power during the 5th TI; (g) weighted CNRs during

the 7th TI; (h) allocated power during the 7th TI.

5.1 Snapshots of cross-layer transmission and energy scheduling

Setting M = 10, 5 snapshots of one randomly selected TF show characteristics of power adaptation with

the weighted CNR’s through the optimal algorithm, c.f., Figure 5. Radar plots of Figure 5(a), (c), (e)

and (g) track weighted CNR’s of 3 RRU’s, and radar plots of Figure 5(b), (d), (f) and (h) track the

allocated power, where the radii denote the values of weighted CNR’s or normalized allocated power, and

the dial at every other π/6 rotated from the x-axis reflects sub-channel index of 3 RRU’s distinguished

by different colors. Comparing radar plots of weighted CNR’s and allocated power at the same TI, e.g.,

Figure 5(a) and (b), it can be observed that changing trend of tracked picture contours is the same.

Specifically, for each sub-channel, the larger the weighted CNR of any RRU, the more the allocated

transmit power; the greater the sum of weighted CNR’s of any sub-channel at 3 RRU’s, the greater

the sum of allocated transmit power on the sub-channel; as the weighted CNR of any sub-channel are

below certain values, e.g., 3.4 for RRU 2 in Figure 5(a), the allocated power of corresponding RRU is

zero, which validates the result of (15). Correspondingly, the conclusion can be drawn that if the power

allocation of any RRU l on a certain sub-channel at any TI is obtained, the power allocation of other

RRU’s can be directly obtained with their corresponding weighted CNR’s as given in (15), which brings

along significant operation efficiency by reducing L − 1 times the amount of optimal power allocation

calculation. The results of the online algorithm also comply with the results, which are not provided due

to the space limitation.

5.2 Statistical results of the optimal and online algorithms

To numerically illustrate the relationship between the average throughput and channel state prediction

errors, and show the performance of proposed algorithms, the following metrics derived from the above

results are first presented. In the following, p∗n,l,i and p̂
∗
n,l,i are the optimal power allocations obtained

through the optimal and online algorithm, respectively.

Definition 1. Average throughput of the optimal algorithm in M TI’s is defined as

D∗
OP = DOP(p

∗
n,l,i)/(M · τ). (37)
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Figure 6 Average throughput vs. energy harvesting rate.

Definition 2. Average throughput of the online algorithm in M TI’s is defined as

D∗
ON =

N∑

n=1

M∑

i=1

log2


1 +

(
L∑

l=1

γn,l,i
√
p̂∗n,l,i

)2


/
M. (38)

Definition 3. Average energy efficiency of the optimal algorithm is defined as

F∗
OP = DOP(p

∗
n,l,i)

/ L∑

l=1

N∑

i=1

Econ
l,i (p∗n,l,i). (39)

Definition 4. Average energy efficiency of the online algorithm in M TI’s is defined as

F∗
ON = FON(p̂

∗
n,l,i,M − 1). (40)

Definition 5. The normalized deviation of the online average throughput is defined as

R1

∣∣
(PE=x) = (D∗

OP −D∗
ON

∣∣
(PE=x) )/D∗

OP, (41)

where D∗
ON

∣∣
(PE=x) denotes the sum of transmission data of the online algorithm operated with prediction

errors randomly distributed in range [0 x]; x is valued in set {0%, 1%, 5%, 10%, 15%, 20%}.
Definition 6. The normalized deviation of the online average energy efficiency is defined as

R2

∣∣
(PE=x) = (F∗

OP −F∗
ON

∣∣
(PE=x) )/F∗

OP, (42)

where F∗
ON

∣∣
(PE=x) denotes the online algorithm with all prediction errors randomly distributed in range

[0 x]; x is valued in set {0%, 1%, 5%, 10%, 15%, 20%}.
Figure 6 provides D∗

OP and D∗
ON with varied energy harvesting rates and M ’s, which numerically

exhibits the relationship among the energy harvesting rate, the TF size, and the average throughput. As

for the optimal algorithm, it can be first observed that D∗
OP increases with the TF size increasing. This

is because more global optimization gains on D∗
OP can be obtained as TF size increases. Interestingly

enough, as the energy harvesting rate is lower than 20 Joule/TI, D∗
ON approximates to D∗

OP. As the
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Figure 7 CDF of normalized deviation. (a) CDF of normalized deviation of the online average throughput; (b) CDF of

normalized deviation of the online average energy efficiency.

energy harvesting rate further increases, the maximal difference between D∗
ON and D∗

OP is only 8%.

Compared with time-energy adaptive water filling algorithm in [19], D∗
ON is greater by at least 24%, due

to transmission efficiency improvement brought by joint transmissions and full-duplex energy harvesting.

The above results correspond to our motivation problems 2 and 3, which not only provide the optimal

design limitation of cross-layer transmission and energy scheduling, but also show the better performance

in terms of the throughput in comparison with the existing algorithm.

Seen from CDF curves in Figure 7(a), R1’s with PE = 0%, 1%, 5%, 10%, 15% can be guaranteed

below 8.35%, 11.9%, 12.95%, 14.5% and 21% with probability 100%. Even as PE = 20%, R1 can be

guaranteed below 19% with probability 90%. It can be seen from CDF curves in Figure 7(b) that R2’s

with PE = 1%, 5%, 10% can be guaranteed below 1.5%, 3.6%, and 7.4% with probability 100%. Even as

PE = 15%, 20%, R2’s can be assured below 8% with probability 93% and 97.5%, respectively. Seen from

Figure 7(a) and (b), the impact of x on F∗
ON is well mitigated by the ratio format of (25), compared

with its impact on D∗
ON. Corresponding to the motivation problem 3 of mitigating the performance

degrading effects brought by CSI prediction errors, above numerical results illustrate that the proposed

online algorithm achieves effectively robust to the CSI prediction error, even as it reaches 20%.

6 Conclusion

In this paper, we have studied the optimal and online cross-layer transmission and energy scheduling un-

der full-duplex energy harvesting wireless OFDM joint transmissions. Corresponding to three motivation

problems raised in Section 1, we can draw the following conclusions. (1) To aid the analysis and design

of energy harvesting communication system, this paper has significantly advanced the state of the art

by modeling the energy behavior of full-duplex energy harvesting system, and proving that the model

is equivalent to Harvest-Store-Use as TI is small enough. (2) The optimal cross-layer transmission and

energy scheduling algorithm is proposed to provide a theoretical design limitation. In addition, we find

that if the power allocation of any RRU on a certain sub-channel at any TI is obtained, the power alloca-

tion of other RRU’s can be directly obtained with their corresponding weighted CNR’s as given in (15),

which brings along significant operation efficiency by reducing L− 1 times the amount of optimal power

allocation calculation. (3) The numerical analysis illustrates the degradation effect to the throughput

under different channel prediction errors, and shows that the novel design of the online algorithm has

the performance advantage on reducing the throughput degradation caused by channel prediction errors.

Interesting topics for future work include studying the cross-layer transmission and energy scheduling

under full-duplex energy harvesting wireless OFDM joint transmission for differential QoS requirements.
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Appendix A Proof of Proposition 1

When τ is small enough, the allocated power to RRU l and the amount of harvested power are constant. Then, Eqs. (1)–(3)

can be revised as

Case1 : Sl,i+1 = min

{∫ τ

0
PH
l (t) − PU

l (t)dt + Sl,i, EC

}
= min

{
El,i − Econ

l,i + Sl,i, EC

}
, (A1)

Case2 : Si+1 =

[
Sl,i −

∫ τ

0
PU
l (t) − PH

l (t)dt

]+
=
[
Sl,i − Econ

l,i +El,i

]+
, (A2)

Case3 : Si+1 = min

{
Sl,i +

∫ τ

0
PH
l (t)dt, EC

}
= min

{
Sl,i +El,i, EC

}
. (A3)

As shown in Figure A1, the format of Harvest-Storage-Usage model [2, 7] is given as follows, which only considers two

half-duplex operation processes: storing the harvesting energy and powering the RRU or the load by the storage.

Sl,i+1 = min

{(
Sl,i +El,i − Econ

l,i

)+
, EC

}
. (A4)

The format of Harvest-Storage-Usage model can be extensively applied in the full-duplex energy harvesting system. Under

the condition of Case 1 that PH
l,i
(t) > PU

l,i
(t) during τ , (Sl,i + El,i − Econ

l,i
) must be greater than 0, and thus Eq. (A4) can

be revised to (A1). Under the condition of Case 2 that PH
l,i
(t) < PU

l,i
(t) and PH

l,i
(t) + P̄U

l,i
(t) > PU

l,i
(t) during τ , the energy

harvester and ESU jointly power RRU l, and no energy is stored, i.e., Sl,i+1 must be less than EC. Thus, Eq. (A4) can be

reformulated as (A2). Under the condition of Case 3 that PH
l,i
(t) + P̄U

l,i
(t) < PU

l,i
(t) during τ , RRU l cannot be driven to

work and all harvested energy is stored into ESU, i.e., Econ
l,i

= 0. Thus, Eq. (A4) can be revised to (A3).

Therefore, Eq. (A4) is the combination of ESU behaviors of (A1)–(A3). Proposition 1 is proved.



Li H J, et al. Sci China Inf Sci October 2016 Vol. 59 102310:16

Figure A1 The Harvest-Storage-Usage process of energy harvesting enabled RRU l.

Appendix B Proof of Proposition 2

Make D
({
pn,l,i

})
=
∑N

n=1

∑M+1
i=1 Rn,i(pn,l,i)τ =

∑N
n=1

∑M+1
i=1 Dn,i, where

Dn,i = log2



1 +

(
L∑

l=1

γn,l,i
√
pn,l,i

)2


 τ = log2



1 +
L∑

l=1

γ2n,l,ipn,l,i +
L∑

l=1

∑

k 6=l

γn,l,iγn,k,i
√
pn,l,ipn,k,i



 τ. (B1)

Since D
({
pn,l,i

})
is a linear combination of Dn,i, D

({
pn,l,i

})
is concave if Dn,i is concave.

Make G = log2(·), fn,i =
∑L

l=1 γ
2
n,l,i

pn,l,i and gn,i =
∑L

l=1

∑
k 6=l γn,l,iγn,k,i

√
pn,l,ipn,k,i, and then Dn,i can be written

as Dn,i = G(1 + fn,i + gn,i), where n ∈ {1, 2, . . . , N} and i ∈ {1, 2, . . . ,M + 1}, respectively. Since log2(·) is concave and

non-decreasing, and fn,i is linear, Dn,i is concave if gn,i is concave according to the composition rules of convexity [17].

The concavity of gn,i is verified with the first order condition [17].

Making x1 =
[
px1

k,1,i, p
x1

k,2,i, . . . , p
x1

k,L,i

]T
and x2 =

[
px2

k,1,i, p
x2

k,2,i, . . . , p
x2

k,L,i

]T
, we have

gn,i(x1)− gn,i(x2)−∇gn,i(x2)
T (x1−x2)

=
∑

k 6=l



√
px1

n,l,i
px1

n,k,i
− px1

n,l,i

√√√√px2

n,k,i

px2

n,l,i

− px1

n,l,i

√√√√ px2

n,l,i

px2

n,k,i


 γn,l,iγn,k,i

= −
∑

k 6=l




√
px1

n,l,i

(
px2

n,k,i

px2

n,l,i

) 1

4

−
√
px1

n,l,i

(
px2

n,l,i

px2

n,k,i

) 1

4




2

γn,l,iγn,k,i 6 0. (B2)

From (B2), we can see that gn,i(x1) − gn,i(x2) 6 ∇gn,i(x2)T (x1−x2) .

Hence, gn,i is concave, and consequently D
({
pn,l,i

})
is proved to be concave.
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