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Abstract This paper proposes a novel scheme named CodeHop, which provides both information reliability

and security using code hopping based on low-density parity-check (LDPC) codes. In contrast to traditional

systems that perform error correction and encryption at different layers, CodeHop combines these two operations

into a single step at physical layer, such that each plaintext message is jointly encoded and encrypted by a hopping

parity-check matrix. According to a pseudo-random number generator (PRNG), the hopping matrix may rapidly

switch among a sequence of LDPC parity-check matrices, which is randomly generated by a structured-random

protograph expanding technique. Simulations show that reliable communication can be achieved by CodeHop

with good error-correcting performance. In the meantime, CodeHop may improve the security of traditional

systems such as GSM. Taking the A5/1 stream cipher used in GSM as the PRNG, it is shown that CodeHop is

resistant to existing chosen-plaintext attacks that break A5/1 cipher already. Moreover, the security of CodeHop

will be enhanced in the presence of channel errors as well.
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1 Introduction

Information reliability and security are both critical issues in wireless communications [1]. Due to the

broadcast nature of wireless medium, there are channel noise and potential wiretappers over wireless

channels. As shown in Figure 1, traditional communication systems cope with channel noise by error-

correcting codes at physical layer and defend against wiretappers by cryptographic algorithms at upper

layers [2]. Thus, it is assumed that channel errors are removed at physical layer and the received ciphertext

at upper layers is error-free for both Bob and Eve. Therefore, the security of information only relies on

data encryption in upper layers, which, however, cannot be perfectly guaranteed since it has been proved

that some widely used ciphers are not secure any more, such as A5/1 stream cipher used in GSM [3].
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Figure 2 Block diagram of a joint channel coding and encryption scheme.

Instead of handling reliability and security separately at different layers, joint design of channel coding

and encryption emerges recently, aiming to tackle these two critical issues together at physical layer.

For instance, information-theoretic physical layer security [1] has received much attention after Wyner’s

work of wiretap channel [4], where it has been proved that perfect secrecy is feasible if the channel of the

legitimate receiver (Bob) is less noisy than that of the eavesdropper (Eve). Besides, the supremum of all

the achievable secure transmission rates is characterized by secrecy capacity. There are several coding

techniques developed to approach the secrecy capacity of wiretap channels, especially for the application of

low-density parity-check (LDPC) codes to binary erasure channel (BEC) [5], binary symmetric channel

(BSC) [6], and Gaussian channel [7]. However, restricted by the superior channel condition for Bob,

perfect secrecy is so rigorous that secrecy capacity varies frequently over wireless channels. In some

scenarios, it will be very low or even zero. Hence, in this paper, security will be addressed at physical

layer from a cryptographic perspective, since it has been shown in the literature that error-correcting

codes and encryption algorithms can be combined together as shown in Figure 2, which can effectively

improve the security level or reduce the power assumption or hardware usage of the whole system.

Random channel errors in received ciphertexts of Eve are exploited by joint channel coding and en-

cryption schemes to improve system security by making the cryptanalysis of Eve more difficult. In [8],

Zuquete et al. swapped the order of encryption and channel coding by first encoding plaintexts to code-

words and then encrypting them with a stream cipher, which will be resistant to known-plaintext attacks

because of channel errors. But if the channel of Eve becomes noiseless, a ciphertext-only attack is feasible

by using the redundancy in codewords [9]. In [10], Harrison discussed how to exploit the effect of error

amplification when stopping sets occur in LDPC decoding, which requires Bob’s channel to be better

than Eve’s. Due to the diffusion property of block ciphers [11], the resulting error propagation effect

will randomly change half number of bits in the decrypted plaintext, which weakens the reliability of

transmission in block-ciphered systems. With sacrificing the bit error rate (BER) after decryption, Wei

et al. [12] considered a trade-off between security and reliability, which improves the security in terms

of increasing the required plaintext-ciphertext pairs in known-plaintext attacks for the cipher feedback

(CFB) mode of Data Encryption Standard (DES).

Some other joint schemes can obtain shorter processing time or more efficient implementation, with

1) Note that Alice, Bob and Eve in the figure represent sender, legitimate receiver and eavesdropper, respectively.
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combining channel coding and encryption in a single step. Mathur et al. [13] designed the high diffusion

codes as a substitute for the diffusion layer of advanced encryption standard (AES) [14], which can correct

channel errors with built-in security features. In [15], Adamo et al. presented the error correction based

cipher (ECBC), which takes a fixed and private generator matrix as the secret key and a pseudo-random

sequence as the artificial noise. The artificial noise will be expanded by a block cipher to confuse Eve,

which, however, is broken by Chai [16].

Considering the joint schemes mentioned above, there are two categories, depending on whether the

parity-check matrix is private or not. If it is public, channel errors will be beneficial when Bob’s channel

condition is better than Eve’s, otherwise a trade-off between security and reliability is required since

channel errors can influence both Bob and Eve. If the matrix becomes private, security can be improved

without affecting the error correcting performance. However, the parity-check matrix is possible to be

recovered under chosen-plaintext attacks, due to the fact that channel coding is a linear transformation

and the parity-check matrix is fixed for all codewords, which will be proved in Subsection 5.1.

In this paper, motivated by the widely applied techniques of frequency hopping, time hopping and

beam hopping [17], we extend the concept of hopping to channel coding and propose a novel scheme

named CodeHop, in which each plaintext message is jointly encoded and encrypted by a hopping parity-

check matrix of LDPC codes. Synchronized by a pair of pseudo-random number generators (PRNG) at

Alice and Bob, the parity-check matrix will fast switch among a sequence of LDPC parity-check matrices,

which is secretly generated using a structured-random protograph expanding technique. Compared to

traditional systems, CodeHop can be regarded as a cross-layer security scheme [18], which may improve

system security without sacrificing error correcting performance. Besides, CodeHop outperforms joint

schemes in the literature, since it is resistant to known or chosen plaintext attacks owing to the hopping

property of parity-check matrices. Therefore, information reliability and security can be both successfully

guaranteed at physical layer by CodeHop.

The rest of the paper is organized as follows. In Section 2, the framework of CodeHop is described in

detail. Then, a structured-random expanding technique for the hopping sequence of LDPC parity-check

matrices is discussed in Section 3. After that, the encoder and decoder design Schemes are proposed in

Section 4. In Section 5, cryptanalysis of CodeHop under chosen-plaintext attacks is presented. Finally,

Section 6 concludes the paper.

2 Framework of CodeHop

As is known, frequency hopping and time hopping are introduced against jamming or eavesdropping by

rapidly switching the carrier frequency or transmission time slot according to a pseudo-random number

sequence. Inspired by these ideas, CodeHop is proposed to employ hopping in channel coding such that

LDPC coding with a fast hopping sequence of secret parity-check matrices H1,H2, . . . ,Hi is performed,

which combines the operations of encryption and error correction in a single step. Specifically, each

plaintext message mi will be encoded and encrypted by a unique parity-check matrix Hi to obtain a

codeword xi as the ciphertext. Then, each ciphertext xi will be transmitted over a noisy channel and

received by Bob as yi, which can be jointly decoded and decrypted by Hi to obtain the plaintext m̂i.

As for the eavesdropper Eve, each ciphertext is received as erroneous zi which will be analyzed by him

to recover the plaintext without knowing Hi. To avoid leakage of plaintext messages in the information

bits of systematic codewords, nonsystematic codes are necessary in CodeHop. Then, it is impossible for

Eve to directly recover the plaintext mi from codewords. Furthermore, CodeHop is immune to chosen-

plaintext attacks, when the hopping of parity-check matrices Hi is controlled by a proper pseudo-random

number generator (PRGN). Therefore, the reliability and security of information can be guaranteed at

the same time by the proposed CodeHop.

For a session of secure transmission, the block diagram of CodeHop is illustrated in Figure 3. To be

clear, all the notations and procedures in the figure are explained as follows.

• The secret message source to be transmitted by Alice is divided into k-bit plaintext messages mi
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Figure 3 Block diagram of the proposed CodeHop. Note that Eve will try his best to recover the plaintext message mi

without knowing the parity-check matrix Hi.

for i = 1, 2, 3, . . ., which are then expected to be correctly and securely recovered by Bob.

• With a session key k and an initialization vector iv, the PRNG produces a binary keystream, which

is divided into h-bit vectors ri and then used to synchronize the hopping sequence of parity-check matrices

Hi between Alice and Bob.

• In the parity-check matrix generator (PCMG), every secret parity-check matrix Hi = H(ri) is gen-

erated according to the keystream vector ri using a structured-random protograph expanding technique,

which will be shown completely in Section 3.

• At Alice, each plaintext mi is encoded and encrypted by a generator matrix Gi to obtain an n-bit

codeword ci via LDPC encoding. Then, the ciphertext xi is given by

xi = ci ⊕ ei = mi ·Gi ⊕ ei, (1)

which is produced by disturbing the codeword ci with an intentional random error vector ei. Note that

the generator matrix Gi is converted from Hi during LDPC encoding.

• The ciphertext xi is broadcasted over a noisy channel, which then will be received by Bob and Eve

as erroneous ciphertexts yi and zi, respectively.

• At Bob, the erroneous ciphertext yi is decoded and decrypted by the synchronized hopping parity-

check matrix Hi to obtain the plaintext message m̂i via LDPC decoding. Meanwhile, without knowing

Hi, Eve will fail to decode and decrypt zi.

A5/1 stream cipher is considered for the PRNG, which is standardized in global system for mobile

communications (GSM) and widely used all over the world. As known for its low hardware implementation

complexity, A5/1 is a linear feedback shift register (LFSR) based stream cipher, which has been analyzed

by cryptographers for years. For example, correlation attack proposed by Barkan et al. [3] is one of the

best chosen-plaintext attack. However, it will be shown that CodeHop can improve the security level

of the original A5/1 by joint channel encoding and encryption with LDPC codes. Note that CodeHop

can be also generalized for block ciphers such as AES in operational modes like CFB or output feedback

(OFB), which is much more complicated to implement.

The session key k in CodeHop and A5/1 cipher is the same, which is assumed to be privately agreed

between Alice and Bob. Besides, the initialization vector iv contains information about initial state of

the PRNG and general structure of the hopping sequence of parity-check matrices, which is required to be

non-repeating for different sessions and can be transmitted to Bob publicly in the beginning of a session.

3 Structured-random LDPC codes

In this section, we will show how to construct a hopping sequence of LDPC parity-check matrices for

CodeHop via structured-random protograph expanding. This problem will be tackled in the following four
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parts. Firstly, compared with systematic codes, nonsystematic LDPC codes are analyzed how to avoid

leakage of plaintext messages. Then, the protograph expanding technique [19] is extended to construct a

large set of LDPC parity-check matrices in a structured-random manner, which can be applied to generate

the hopping sequence. Moreover, the implementation of LDPC encoders for hopping generator matrices

is discussed. Lastly, the structured-random technique is demonstrated and evaluated with an example.

3.1 Systematic vs. nonsystematic

To start with, it is necessary to explain why nonsystematic LDPC codes are needed for CodeHop. If

systematic LDPC codes are adopted, the plaintext message mi will be included in the ciphertext xi

as information bits and then transmitted over the channel. Even though the received ciphertext zi is

erroneous, Eve is possible to recover mi without LDPC decoding when channel condition is good enough

and without knowing the secret parity-check matrix Hi. Therefore, systematic LDPC codes are not

resistant to ciphertext-only attacks.

Assume a rate-1/2 channel code over the additive white gaussian noise (AWGN) channel. In Figure 4,

BER curves of plaintext messages leaked to Eve for systematic and nonsystematic codes are illustrated.

For nonsystematic codes, the plaintext message mi is not transmitted in the ciphertext xi, which implies

the BER of leaked mi will be always 0.5. However, for systematic codes, although the codeword zi is

hard decided from modulation symbols without LDPC decoding, mi is transmitted in xi and there is

just about 3 dB degradation in Eb/N0 for the BER of leaked mi to Eve compared with uncoded BPSK.

From the figure, it can be seen that the BER of leaked mi will be lower than 10−6 when Eb/N0 > 14 dB,

which means that the plaintext messages mi will be completely recovered by Eve in high Eb/N0 regions.

Therefore, nonsystematic codes should be considered to avoid the transmission of information bits mi.

3.2 Structured-random protograph expanding

In this part, we will construct a large set of nonsystematic LDPC codes via structured-random protograph

expanding. The concept of protograph was introduced by Thorpe in [19], which can be regarded as

the minimal base Tanner graph to describe an LDPC code. Using protograph, the accumulate-repeat-

accumulate (ARA) [20] code is constructed and standardized by CCSDS [21], which is known as one

of the best LDPC code. Different from the systematic ARA code, our target is to puncture all of the

k information bits and transmit only the n parity bits in the original (n + k)-bit codeword. However,

without the help of information bits, the iterative decoding of nonsystematic codes is difficult to converge.

Fortunately, Brink investigated the design of nonsystematic RA codes in [22]. As shown in Figure 5, it is

proved that iterative decoding can be triggered by the method of code doping, which requires that there

exits at least one accumulate node satisfying dc,i = 1 for i = 1, . . . , n.

As for a rate-1/2 nonsystematic LDPC code, the result of an optimized protograph P = (V,C,E) is

give in Figure 6, which is equivalent to a 4× 6 base parity-check matrix HB,0 as shown below,

HB,0 =




1 1 0 0 1 0

1 1 0 0 0 1

3 1 1 1 0 0

0 1 1 2 0 0



. (2)

Note that the elements in the base parity-check matrixHB,0 indicate the number of parallel edges between

a variable node and a check node in the protograph P . There are a variable node set V = {v1, v2, ..., v6},

a check node set C = {c1, c2, ..., c4} and an edge set E = {e1, e2, ..., e16} in the protograph P . Among

all of these variable nodes, the information nodes denoted by v1 and v2 will be punctured. Therefore, to

trigger the convergence of the iterative decoding, the check node c4 is designated to be connected to only

one punctured variable node v2 according to the requirement of code doping.

Starting with the protograph P , a larger Tanner graph can be obtained by copy-and-permute operation.

Let each edge e ∈ E stand for a unique edge type. If expanded with a factor of T , the copy-and-permute
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operation firstly replicates the protograph P for T times and forms a set of T edge copies for each edge

type, whose endpoints are then permuted among the variable and check nodes in the set. Thus the T

copies of the protograph are all interconnected in the derived graph, which defines the Tanner graph for

the derived code. Note that the operation of edge expanding is equivalent to matrix expanding for each

element in the base matrix HB,0. Each element of value w will be expanded to a T × T matrix with w

ones in each row or column, and thus the equivalent parity-check matrix can be of size 4T × 6T .

Instead of using random permutations on the set of each edge type, permutations defined by algebraic

structures such as cyclic shift are preferred for the ease of description and efficient implementation. That

is to say, the protograph can be expanded by choosing appropriate T ×T circulant permutation matrices

(CPMs) IT (t) for each edge type, and the derived parity-check matrix will become a T -circulant matrix,

which can be regarded as Quasi-Cyclic LDPC (QC-LDPC) codes [23, 24]. Note that each row in IT (t)

can be obtained by one bit cyclic right shifting its previous row, and thus IT (t) is defined by its first row

uT (t), where uT (t) = (0, . . . , 0, 1, 0, . . . , 0) and the shift value t ∈ J0, T − 1K 2) denotes the position of the

unique one in the vector. Therefore, given the protograph P , the derived LDPC code can be described

2) Note that Ja, bK := {a, a+ 1, . . . , b}, which denotes the set of integers between a and b.



Chen Z, et al. Sci China Inf Sci October 2016 Vol. 59 102309:7

by shift values of all the CPMs.

Usually searching for only one good code is satisfactory for channel coding. However, now it is far more

challenging to construct a large number of highly efficient LDPC codes for CodeHop to guarantee both

reliability and security. Expanding with just one single stage is not enough, so we solve this problem with a

structured-random protograph expanding technique, which can be referred to as a multi-stage expanding

scheme [25]. Specifically, the protograph P will be expanded via L stages such that for l ∈ J1, LK, the

total expanding factor T satisfies

T = T1T2 · · ·Tl · · ·TL, (3)

where L > 1 and each Tl is the expanding factor in the l-th expanding stage, respectively. Equivalently,

the base matrix HB,0 will also be expanded and the expanded matrix in the l-th expanding stage is

denoted by HB,l. Note that all the L expanding stages can be divided into two categories as follows.

• Structured expanding: In the first L− 1 stages, the protograph is carefully expanded to avoid short

loops, low-weight codewords or parallel edges, which can restrict the general structure of the code. After

L− 1 stages, all the non-zero elements in HB,L−1 will equal 1.

• Random expanding: In the L-th stage, all of the edges in the Tanner graph will be randomly

expanded, or equivalently, all the non-zero elements in HB,L−1 will be expanded to CPMs according to

the keystream vector ri produced by the PRNG.

After expanding the protograph P in Figure 6, each parity-check matrix Hi in the hopping sequence is

a TL-circulant matrix with a size of n× (n+ k), which can be written as Hi = [A(ri),B(ri)] such that

A(ri) =
[
Aw

αβ

]
2×4

=




A1
11 A1

12

A1
21 A1

22

A3
31 A1

32

0 A1
42



, (4)

B(ri) =
[
Bw

αβ

]
4×4

=




0 0 B1
13 0

0 0 0 B1
24

B1
31 B1

32 0 0

B1
41 B2

42 0 0



. (5)

Here, n = 4T , k = 2T , and the first k = 2T nodes are punctured as information nodes among all the

n + k = 6T variable nodes. If we define a TL × TL circulant matrix as a micro-block, each block-entry

(hi)i1,j1 in Hi is a micro-block for i1 ∈ J1, n
TL

K and j1 ∈ J1, n+k
TL

K, which is expanded from an element

in HB,L−1. There are totally J = |E|T/TL non-zero elements in HB,L−1, each of which will be then

replaced by a TL × TL CPM ITL
(t). Meanwhile, all the zero elements in HB,L−1 will be replaced by a

TL × TL zero matrix 0TL×TL
. Then we have

(hi)i1,j1 =

{
ITL

(ri,j(i1 ,j1)), if (HB,L−1)i1,j1 = 1;

0TL×TL
, if (HB,L−1)i1,j1 = 0,

(6)

where j(i1, j1) ∈ J0, J − 1K indicates the index of each non-zero element (HB,L−1)i1,j1 in a certain order,

and ri,j(i1 ,j1) is the corresponding shift value in ri. Now, we rewrite the binary keystream vector ri as

ri = (ri,0, ri,1, . . . , ri,j , . . . , ri,J−1), (7)

where each number ri,j ∈ J0, TL − 1K is an unsigned integer represented by log2 TL bits in the keystream

ri. Therefore, all the random shift values in the L-th stage will be controlled by the keystream vector ri,

whose length is required to be h = J log2 TL bits. Except for the random expanding stage, parameters

selected in the first L − 1 stages, i.e. all the expanding factors and shift values, are constant during

the whole transmission session and will be publicly sent to Bob in the initialization vector iv before the

session begins.
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What is more, we also denote a T
TL

× T
TL

block matrix with micro-block entries as a macro-block. Each

T ×T submatrix Aw
αβ or Bw

αβ in (4) and (5) is a macro-block, which is expanded from a non-zero element

in the base parity-check matrix HB,0, and the variable w at the top-right corner indicates that there are

w permutation matrices ITL
(t) in each of its micro-block row or column. Therefore, it can be known that

except for A3
31, B

2
42 and zero matrices 0, all the other macro-blocks in A(ri) and B(ri) are permutation

matrices because their w = 1.

3.3 An example

With the structured-random expanding technique, we generate a hopping sequence of parity-check ma-

trices for (2048, 1024) nonsystematic LDPC codes as an example. From the protograph P in Figure 6,

each parity-check matrix Hi in the hopping sequence will be constructed by a total expanding factor

T = T1T2T3 = 4× 4× 32 = 512 via L = 3 stages.

In the first two stages, the protograph P is expanded twice by factors of T1 = T2 = 4, which is

intended to separate all the parallel edges and guarantee the girth is larger than 4 in the derived Tanner

graph. The equivalent parity-check matrix HB,2 is shown in Figure 7. In the third stage, totally there

are |E|T/T3 = 256 edges to be randomly expanded by a factor of T3 = 32, which is described by the

keystream vector ri with a length of h = J log2 TL = 1280 bits. Thus there will be a large set of parity-

check matricesH = {H(r) : r ∈ J0, 21280−1K} available to be randomly chosen in the hopping sequence of

CodeHop. The period of the hopping sequenceHi = H(ri) ∈ H is decided by the period of the keystream

ri produced by the PRNG. E.g. for the A5/1 cipher with a 64-bit key, the period of the keystream will

be nearly 264, which means the period of the hopping sequence Hi is at least 2
64/1280 ≈ 253.6.

Now a hopping sequence of LDPC codes has been generated, with each code randomly selected from

the set H by the PRNG. But, to evaluate the error correcting performance of CodeHop, it is different

from what is usually done with a fixed LDPC parity-check matrix. The BER of one hopping sequence will

be evaluated as how CodeHop works, that is to say, by performing numerical simulations with switching

parity-check matrices. Then, random initial states of the stream cipher will be tested to generate different

hopping sequences, whose BERs are then collected to compute the average BER performance of CodeHop.

As shown in Figure 8, the average BER performance of the structured-random nonsystematic (2048, 1024)

LDPC codes is plotted, which is compared with the LDPC code standardized by CCSDS. Note that the

LDPC code in CCSDS is systematic and fixed, which is expected to be much better than a sequence of

nonsystematic codes in CodeHop. The iterative decoding will be repeated until the parity checks are all

satisfied or the maximum number of iterations 63 is reached in the simulation. It can be seen that it is
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slightly degraded by no more than 0.2 dB in Eb/N0 for the average BER of nonsystematic LDPC codes,

which means reliable transmission can be guaranteed by CodeHop.

4 Efficient encoder and decoder design

4.1 Encoder design

To implement LDPC encoders for CodeHop, each parity-check matrix Hi needs to be converted to a

k × n nonsystematic generator matrix Gi for each plaintext message mi, which is derived by

Gi =
(
B(ri)

−1 ·A(ri)
)T

= ((gi)i2,j2) k
TL

× n
TL

, (8)

where Gi is a TL-circulant matrix and can be written as a k
TL

× n
TL

block-circulant matrix consisting

of micro-blocks (gi)i2,j2 for i2 ∈ J1, k
TL

K and j2 ∈ J1, n
TL

K. According to (5), the submatrix B(ri) is full

rank, which indicates that its inverse B(ri)
−1 is also TL-circulant [26]. Since A(ri) and B(ri)

−1 are both

TL-circulant, Gi is TL-circulant.

On the other hand, Gi can be partitioned into eight macro-blocks (Gi)a,b as follows,

Gi =
(
B(ri)

−1
·A(ri)

)T

= ((Gi)a,b)2×4

=

[
(A3

31)
TD1 (A3

31)
TD3 AT

11B13 AT
21B24

AT
32D1 ⊕AT

42D2 AT
32D3 ⊕AT

42C
T AT

12B13 AT
22B24

]
, (9)

where we define the following macro-blocks by

D1 =
(
I ⊕B31B

T
41C

TBT
32

)
B31, (10)

D2 = CTBT
32B31, (11)

D3 = B31B
T
41C

T, (12)

C =
(
(B2

42)
T ⊕BT

32B31B
T
41

)−1
. (13)

Note that the transpose of a matrix is denoted by (·)T, and the value of w for macro-blocks Aw
αβ and

Bw
αβ is neglected when w = 1.

Compared with efficient encoders for QC-LDPC codes with a fixed parity-check matrix such as CCSDS

[26,27], it can be seen from (9) to (13) that the additional computational complexity for CodeHop will be

the inversion operation to derive the macro-block C in (13). Nevertheless, Bogdanov et al. [28] showed

that a parallel hardware architecture can be implemented to finish the inversion of a binary matrix via

Gaussian elimination in O(n) time. What is more, inherited from the quasi-cyclic structure of hopping

matrices Hi, Gaussian elimination for the macro-block C can be executed on micro-blocks, which further

reduces the computational complexity by a factor of TL.

Then, with the macro-block C, there is no need to explicitly compute and store macro-blocks D1 to

D3. Alternatively, we can multiply information bits with the macro-block matrices which derive D1

to D3 in several steps as in [29]. For example, to multiply by D3 can be divided into three steps by

successively multiplying by B31, B
T
41 and CT. Hence, similar to the encoders for QC-LDPC codes, since

the macro-blocks are all circulant, all of the required multiplication operations can be done in O(n) time.

According to (13), the size of the macro-block C is about 1/8 of the size of the generator matrix Gi.

Therefore, compared with LDPC encoders for a fixed QC-LDPC code, there will be a slight increase in

storage of about 1/8 for CodeHop because of the matrix inversion module for C. Nevertheless, owing to

the block-circulant property of Hi, the encoding processing still can be completed in O(n) time.

4.2 Decoder design

As for an efficient decoder of CodeHop, it can be extended from the conventional decoder of QC-LDPC

codes [30], since the structured-random LDPC codes constructed in Section 3 are also quasi-cyclic. The
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only difference is that, for conventional QC-LDPC decoders, the shift values of CPMs in the parity-check

matrix are fixed, which, however, become flexible now and will be updated for each hopping matrix Hi.

When the shift values are successfully updated for Hi, the iterative decoding process is exactly the same.

According to (6) and (7), the shift values ri,j(i1,j1) of CPMs, i.e. non-zero micro-blocks (hi)i1,j1 , will

be determined by the binary keystream ri of the PRNG. It is worth noting that each hopping matrix Hi

is very sparse, e.g. there are only 256 CPMs and 1280 bits of a keystream for each Hi in the example

mentioned in Subsection 3.3. Meanwhile, the LFSR-based stream cipher to generate binary keystreams

is easy to be implemented on shift registers. Furthermore, the shift values of Hi+1 can be computed in

advance when the i-th ciphertext yi is being decoded by Hi. Therefore, the updating time for the shift

values can be neglected and a negligible increase of storage for the next binary keystream ri+1 is needed.

5 Cryptanalysis

In this section, the security of CodeHop will be analyzed under chosen plaintext attacks. Firstly, it is

shown that how a fixed secret parity-check matrix H0 can be recovered by Eve when hopping is not used.

Then, it will be proved that chosen-plaintext attacks cannot break CodeHop when the secret parity-check

matrix Hi rapidly hops according to a pseudo-random sequence produced by a PRNG, such as the A5/1

stream cipher. Furthermore, the security of the scheme will be enhanced in the case of noisy channels.

5.1 Security of a non-hopping parity-check matrix

To evaluate the security of a fixed and single parity-check matrix, we assume that the secret parity-check

matrix keeps constant H0 = [A,B] without hopping in the whole session. It can be seen that once Eve

accumulates enough number of plaintext-ciphertext pairs, H0 will be recovered. Thus, the security of

H0 is defined as how many plaintext-ciphertext pairs are required to recover it. Note that Eve needs

to mount the attack by analyzing the structure of G0, since the n × (n + k) parity-check matrix H0 is

converted to a k × n nonsystematic generator matrix G0 = (B−1A)T during LDPC encoding.

From (8), it can be known that G0 can be referred to as a k
TL

× n
TL

block-circulant matrix, where each

block-entry (g0)i2,j2 is a TL×TL circulant micro-block. Note that each (g0)i2,j2 can be represented by the

first row of it, thus each micro-block row of G0 can be also recovered by its first row, which needs only

one plaintext-ciphertext pair. So, k
TL

plaintext-ciphertext pairs are required to learn all the micro-block

rows of G0, which finishes the recovering of the generator matrix.

Let us take the (2048, 1024) nonsystematic LDPC code constructed in Section 3.3 as an example. Here,

G0 is a 32-circulant matrix with k
TL

= 32 micro-block rows and n
TL

= 64 micro-block columns, where each

micro-block is a 32× 32 circulant matrix. Then, 32 plaintext-ciphertext pairs are enough to reconstruct

the whole G0. For i2 ∈ J1, 32K, the i2-th micro-block row of G0 can be recovered by the ciphertext

zi2 = mi2 ·G0 by choosing plaintexts to be mi2 = u1024(32 · (i2 − 1)) .

When transmitting over noisy channels, the ciphertext z̃i2 received by Eve will be erroneous as

z̃i2 = zi2 ⊕ ei2 = mi2 ·G0 ⊕ ei2 , (14)

where ei2 is the channel error vector. In this case, the erroneous ciphertext z̃i2 cannot be directly

exploited to recover the generator matrix G0. Eve needs to detect the error vector ei2 and remove it to

obtain the correct ciphertext zi2 . An effective way for Eve can be a repetition coding strategy as follows.

Repeating the same plaintext mi2 for N times, the ciphertext zi2 will be transmitted over the channel

for N times and the required number of plaintext-ciphertext pairs will be 32N . Then, for each bit in the

original ciphertext zi2 , it forms a rate−1/N repetition code, where maximum likelihood (ML) decoding

can be used to find the most likely transmitted bit value. Hence, the BER of decoded ciphertext bits can

be significantly decreased. From Figure 9, it can be seen that as the number of plaintext-ciphertext pairs

grows, the BER of decoded ciphertext bits after repetition coding will be decreased to a very low level,

which then will be used to successfully recover the generator matrix G0. Therefore, joint channel coding

and encryption with a fixed parity-check H0 can be easily broken by chosen-plaintext attacks.
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Figure 9 (Color online) For a non-hopping parity-check matrix, given Eb/N0 of the received ciphertext z̃i2 , the BER

curves of decoded ciphertext bits after repetition coding are illustrated with regarding to the number of plaintext-ciphertext

pairs.

5.2 Security of hopping parity-check matrices

In CodeHop, the secret parity-check matrix Hi fast switches in a hopping sequence, such that each Hi is

used only for one plaintext message mi to be encoded and encrypted. As mentioned in Section 2, we take

A5/1 stream cipher as the PRNG. A5/1 is an LFSR-based stream cipher which has been used in GSM

for air-interface encryption. LFSR-based stream ciphers are generally designed for high speed secure

data transmission, which can be easily implemented in hardware with very low complexity and power

assumption. However, it was reported by Barkan et al. [3] in 2006 that the session key k of A5/1 can

be recovered by correlation attack in 133 s in average, with 2000 frames’ known keystream, where each

frame consists of 224 bits. Such amount of keystream can be captured using just 9.2 s’ transmissions

of known plaintext-ciphertext pairs, which indicates that A5/1 cipher is not immune against known-

plaintext attacks. To improve the security of wireless communication without increasing complexity,

CodeHop will perform joint channel coding and encryption, combining LDPC codes with stream ciphers,

such as the already broken A5/1 as the PRNG.

To attack CodeHop, Eve will try to find out the hopping sequence of parity-check matrices Hi, which

depends on the keystream ri produced by the PRNG via structured-random expanding. As discussed

above, each Hi is converted to Gi during LDPC encoding, and Gi cannot be inferred from just one

plaintext-ciphertext pair (mi, zi). Thus Eve can only obtain some relationships between keystream bits

in ri. We will prove that CodeHop can resist known or chosen plaintext attacks when transmitting over

noiseless channels, and the security of CodeHop will be enhanced over noisy channels.

5.2.1 Noiseless channel

Firstly we assume that the ciphertext received by Eve is error-free, i.e. zi = mi · Gi. For a circulant

matrix h of size TL × TL, it can be associated with h(x) ∈ F2[x], i.e. a univariate polynomial with

coefficients in F2. The mapping of h to h(x) [31] will take the values in the first row (h1,1, h1,2, . . . , h1,TL
)

of h as h(x) = h1,1 + h1,2x+ · · ·+ h1,TL
xTL−1. Then, each micro-block (hi)i1,j1 in Hi can be denoted by

(hi)i1,j1(x) ∈ F2[x], and Hi can be represented by a matrix of polynomials

Hi(x) = ((hi)i1,j1(x)) n
TL

×n+k
TL

. (15)
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Since the micro-blocks in Hi are all circulant matrices expanded from elements in HB,L−1, according to

(6), we have

(hi)i1,j1(x) =

{
xri,j(i1 ,j1) , if (HB,L−1)i1,j1 = 1;

0, if (HB,L−1)i1,j1 = 0.
(16)

Similarly, the generator matrix Gi can be represented as follows,

Gi(x) = ((gi)i2,j2(x)) k
TL

× n
TL

, (17)

where each (gi)i2,j2(x) represents a micro-block (gi)i2,j2 . Note that from (9), micro-blocks (gi)i2,j2 in the

left four dense macro-blocks, i.e. (Gi)a,b for b = 1 or 2, are too complicated to describe. However, it

is much easier to analyze the right four macro-blocks, i.e. (Gi)a,b for b = 3 or 4, since each of them is

sparse with a unique micro-block of CPM ITL
(ti,(a,j2)) in each micro-block row or column. The variable

a denotes the row index of the macro-block which ITL
(ti,(a,j2)) is located in and j2 ∈ J n

2TL
+ 1, n

TL
K

denotes the micro-block column index of ITL
(ti,(a,j2)) in Gi. With a and j2, the micro-block row index

of ITL
(ti,(a,j2)) can be determined by i2(a, j2). Each ITL

(ti,(a,j2)) is the product of two micro-blocks in

Aαβ and Bαβ. Letting jA(a, j2) and jB(j2) denote the indices of shift values for the two micro-blocks in

the keystream ri, we have

(gi)i2(a,j2),j2(x) = xti,(a,j2) = xri,jB(j2)−ri,jA(a,j2) mod (xTL − 1), (18)

from which we can derive

ti,(a,j2) =
(
ri,jB(j2) − ri,jA(a,j2)

)
mod TL. (19)

For more details, the proof of (18) is presented in Appendix A.

However, CodeHop allows Eve to try just one pair of (mi, zi) for each Gi, which means it is not

possible to reconstruct the whole Gi. Nevertheless, Eve can still learn some equations over bits of the

keystream ri. If the plaintext is chosen to be

mi = (u32(0), . . . ,u32(0)︸ ︷︷ ︸
16

, 0, . . . , 0︸ ︷︷ ︸
16

). (20)

Eve can receive the error-free ciphertext

zi =
(
vi,1, . . . ,vi,j2 , . . . ,vi,32,u32(ti,(1,33)), . . . ,u32(ti,(1,j2)), . . . ,u32(ti,(1,64))

)
, (21)

where vi,j2 is a 32-bit dense vector that accumulates the first rows of (gi)i2,j2 for 1 6 i2 6 16 by XOR

operation and can be represented by the coefficients of the following polynomial

vi,j2 (x) = ⊕
16∑

i2=1

(gi)i2,j2(x), (22)

and u32(ti,(1,j2)) is the first row of (gi)i2(1,j2),j2 . Thus from (18), the equations over bits of ri can be

established as follows, for 33 6 j2 6 64,

(
ri,jB(j2) − ri,jA(1,j2)

)
mod 32 = ti,(1,j2), (23)

where each ti,(1,j2) is obtained from zi. According to (7), each ri,j = (ri,j [4]|| . . . ||ri,j [0]) is described by

5 bits of the keystream ri, where d[v] denotes the v-th bit position of an integer d from right to left with

the least significant bit assigned with the position v = 0. Thus, Eq. (23) can be rewritten as

ri,jA(1,j2)[0]⊕ ri,jB(j2)[0] = ti,(1,j2)[0], (24)

ri,jA(1,j2)[1]⊕ ri,jB(j2)[1]⊕ ri,jB(j2)[0]⊕
(
ri,jA(1,j2)[0] · ri,jB(j2)[0]

)
= ti,(1,j2)[1], (25)

. . . . . . .
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Here, only equations over bit positions 0 and 1 are shown and the other equations over bits 2, 3 and 4

are omitted for simplicity. Recall that correlation attack [3] requires the XOR of two consecutive bits in

the keystream ri, which is not available in CodeHop. Specifically, using chosen plaintext-ciphertext pairs,

Eq. (24) gives the XOR of two keystream bits which are at least 5 bits apart, and Eq. (25) combines an

additional nonlinear term of two keystream bits, not to mention the equations over bits 2, 3, 4. It can be

known that as the position v grows, the equation over the keystream bits is more and more complicated.

Thus, such kind of correlation attack will not work and it is computationally infeasible to break the

A5/1 stream cipher. As a result, CodeHop can withstand chosen-plaintext attacks in the case of noiseless

channels.

5.2.2 Noisy channel

Practically, we consider transmitting over wireless channels, e.g. AWGN channels. With the synchronized

parity-check matrix Hi, Bob can decode the plaintext messages mi correctly. But for Eve, LDPC

decoding cannot be performed without the parity-check matrix Hi. Thus, channel symbols will be hard

decided, and received ciphertexts are corrupted by channel noise as

z̃i = zi ⊕ ei = mi ·Gi ⊕ ei, (26)

where ei is the channel error vector. Considering BPSK modulation, the BER for Eve after hard decision

is given by pe = Q(
√
2R ·Eb/N0), where Q(·) is the Q-function and R is the LDPC coding rate. For a

rate-1/2 LDPC code, the BER of codeword bits with hard decision will be degraded by 3 dB in Eb/N0

even compared with the uncoded BPSK.

Due to the randomness of channel errors, it is difficult for Eve to tell whether a ciphertext bit is affected

or not. However, some channel errors can still be detected. In z̃i, if there is more than one non-zero bit in

the sub-vector expected to be u32(ti,(1,j2)), it indicates such a sub-vector is erroneous. Thus, Eve can try

to send another chosen-plaintext mi to find an error-free ciphertext zi, which requires more plaintext-

ciphertexts pairs. On the other hand, Eve can try to search all the error patterns ei exhaustively, which

will highly increase the computational complexity of the attack. Therefore, the security of CodeHop will

be improved with the help of channel errors, in terms of increased number of plaintext-ciphertext pairs

or computational complexity.

6 Conclusion

We have presented a CodeHop scheme for physical layer error correction and security. It employs non-

systematic LDPC codes to combine channel coding and data encryption in a single step. In particular,

a hopping sequence of parity-check matrices Hi is secretly generated via structured-random protograph

expanding, which will be synchronized between Alice and Bob according to the pseudo random sequence

produced by a pair of PRNG. Each plaintext message is jointly encoded and encrypted by a unique Hi

to get the codeword as the ciphertext, which is then jointly decoded and decrypted by the same Hi at

the legitimate receiver. The proposed CodeHop may reinforce the security of some traditional communi-

cation systems, e.g. GSM. Taking the A5/1 stream cipher of GSM as the PRNG, the CodeHop has been

cryptanalyzed under chosen-plaintext attacks to recover the hopping sequence, showing the resistance

to the best chosen-plaintext attack effective on A5/1. Moreover, the security of the CodeHop may be

enhanced in the case of noisy channels, preserving error correction performance.

Acknowledgements This work was supported by National Basic Research Program of China (Grant No.

2013CB329001) and National Natural Science Foundation of China (Grants Nos. 61132002, 61101072).

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Liang Y, Poor H V, Shamai S. Information theoretic security. Found Trends Commun Inf Theory, 2009, 5: 355–580



Chen Z, et al. Sci China Inf Sci October 2016 Vol. 59 102309:14

2 Wang B, Mu P C, Yang P Z, et al. Two-step transmission with artificial noise for secure wireless SIMO communications.

Sci China Inf Sci, 2015, 58: 042308

3 Barkan E, Biham E. Conditional estimators: an effective attack on A5/1. In: Selected Areas in Cryptography. Berlin:

Springer, 2006, 3897: 1–19

4 Wyner A D. The wire-tap channel. Bell Syst Tech J, 1975, 54: 1355–1387

5 Thangaraj A, Dihidar S, Calderbank A R, et al. Applications of LDPC codes to the wiretap channel. IEEE Trans Inf

Theory, 2007, 53: 2933–2945

6 Wen H, Gong G, Ho P H. Build-in wiretap channel I with feedback and LDPC codes. J Commun Netw, 2009, 11:

538–543

7 Klinc D, Ha J, McLaughlin S W, et al. LDPC codes for physical layer security. In: Proceedings of the 28th IEEE

Conference on Global Telecommunications. New York: IEEE Press, 2009. 5765–5770
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Appendix A Proof of (18)

Take the submatrix A
T
11B13 as an example. Since A11 and B13 are both TL-circulant permutation matrices, AT

11B13 is also

a T
TL

× T
TL

block matrix with one CPM ITL
(ti,(a,j2)) in each micro-block row or micro-block column, where ITL

(ti,(a,j2))

is the product of two circulant permutation micro-blocks in A11 and B13, respectively. It is easy to know that a = 1 and

j2 ∈ [ n
2TL

+ 1, 3n
4TL

] for the CPM ITL
(ti,(a,j2)) in each micro-block column of AT

11B13. So we have

ITL
(ti,(1,j2)) = I

T
TL

(ri,jA(1,j2)) · ITL
(ri,jB(j2)), (A1)

where jA(1, j2) and jB(j2) are the indices of the shift values in ri for the two circulant permutation micro-blocks in A11

and B13, respectively. Given the initialization vector iv, such indices can be easily determined. Since the transpose of

ITL
(t) is denoted by xTL ( 1

x
)t, then from (A1), we can derive

x
ti,(1,j2) =

(
xTL (1/x)

ri,jA(1,j2)

)
· x

ri,jB(j2) mod (xTL − 1)

= x
ri,jB(j2)−ri,jA(1,j2) mod (xTL − 1), (A2)

which gives the result of (18).
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