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Abstract For massive multiple-input multiple-output (MIMO) antenna systems, time division duplexing

(TDD) is preferred since the downlink precoding matrix can be obtained through the uplink channel estimation,

thanks to the channel reciprocity. However, the mismatches of the transceiver radio frequency (RF) circuits

at both sides of the link make the whole communication channel non-symmetric. This paper extends the total

least square (TLS) method to the case of self-calibration, where only the antennas of the access points (APs) are

involved to exchange the calibration signals with each other and the feedback from the user equipments (UEs)

is not required. Then, the proof of the equivalence between the TLS method and the least square (LS) method

is presented. Furthermore, to avoid the eigenvalue decomposition required by these two methods to obtain

the calibration coefficients, a novel algorithm named as iterative coordinate descent (ICD) method is proposed.

Theoretical analysis and simulation results show that the ICD method significantly reduces the complexity and

achieves almost the same performance of the LS method.
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1 Introduction

As promising techniques for the next generation mobile communication systems, massive multiple-input

multiple-output (MIMO) [1, 2] and distributed MIMO [3–5] are proposed to greatly improve the spec-

tral efficiency by simultaneously serving multiple users in the same time-frequency resource. The uplink

achievable rate of a single-cell multi-user massive MIMO system has been analyzed in [6], which showed

that circularly distributed massive MIMO system largely outperforms centralized massive MIMO system.

In time division duplexing (TDD) operation, the transmitter can enable the multi-user joint precoding

according to the estimation of the uplink channel state information (CSI) thanks to the channel reci-

procity. Unfortunately, the transceiver radio frequency (RF) circuits at both sides of the link are not

symmetric [7]. The mismatches disable the reciprocity of the whole communication and lead to a severe

degradation in the system performance.

Recently, to avoid introducing extra calibration circuits, some methods have been proposed where

the calibration procedure entirely takes place in the signal space. In [8], total least square (TLS) based
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calibration was proposed for MIMO systems. However, this method is based on exchanging the calibration

signals between the transmitter and the receiver, which causes large feedback overhead for CSI in massive

MIMO systems [9]. Ref. [10] showed that we only need to perform calibration at the transmitter since

the RF mismatches at the user equipment (UE) have a negligible impact on the system performance. In

order to reduce the feedback, the over-the-air method was presented in [11], where only one or several

UEs with good channel condition are chosen to estimate and feed back the downlink CSI to the base

stations. Furthermore, to exclude UEs from the calibration procedure, a calibration method, referred to

as Argos method, was presented in [12] for massive MIMO systems. The Argos method only involves

the antennas of the base station and exchanges the calibration signals with a reference antenna. Similar

to the Argos method, the master-slave protocol was proposed for distributed MIMO systems to realize

the synchronization [13] and perform the calibration [14] in all access points (APs). All other APs

are required to receive a beacon signal and exchange calibration signals with the master/reference AP.

However, the Argos method and the master-slave protocol are very sensitive to the placement of the

reference antenna/AP, and the system performance cannot keep stable unless all other antennas/APs

have large signal-to-noise ratio (SNR) to the reference antenna/AP. To generalize the Argos method, an

elegant solution named LS method was devised in [15], which defines the calibration problem as a LS

cost function. The LS method makes use of the calibration pilot signals of all antennas and achieves

essentially the performance of the perfect calibration.

In this paper, we extend the TLS method to the case of self-calibration. The feedback from UEs

is not required, and only the APs are involved in exchanging calibration signals. Then, we give the

proof that the TLS method is equivalent to the LS method. However, the optimal solutions of these

two methods are based on singular value decomposition (SVD) or eigenvalue decomposition (EVD), and

the computational complexity becomes very high for large-scale MIMO systems. Therefore, we propose

an iterative algorithm named as iterative coordinate descent (ICD) method, of which the complexity is

significantly reduced and the performance is very close to the perfect calibration.

The notation adopted in this paper conforms to the following convention. Vectors are denoted in lower

case bold: x. Matrices are upper case bold: A. [A]ij denotes the ith row jth column element of A. (·)
∗
,

(·)
T
and (·)

H
represent conjugate, transpose, and Hermitian transpose, respectively. Tr (A) denotes the

trace of A. diag (x) is a diagonal matrix with x on its diagonal, and diag (A) denotes a column vector

with the main diagonal of A.

2 System model and fundamentals

In this paper, we assume that APs and UEs are the transmitters and receivers respectively in the downlink

transmission. The antennas involved in the calibration may be co-located at one AP or distributed in

different APs, which are corresponding to co-located MIMO or distributed MIMO respectively.

2.1 Mismatch model of transceiver RF circuits

In practice, the whole communication channel consists of not only the wireless propagation part, but also

the transceiver RF circuits of the antennas at both sides of the link. As shown in Figure 1, each antenna

has a transmitting RF and a receiving RF module. It is assumed that there are M antennas in total at

the APs and K antennas at the UEs. Thus, the overall wireless channel matrix is H ∈ CK×M , and the

uplink and downlink channel matrices are characterized as

GUL = CAP,rH
TCUE,t, (1)

GDL = CUE,rHCAP,t, (2)

where CAP,t and CAP,r denote the transmitting and receiving RF gain matrices of the APs respectively.

CUE,t and CUE,r denote the transmitting and receiving RF gain matrices of the UEs respectively. All of
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Figure 1 RF circuits include antennas, mixers, filters, analog to digital (A/D) converters, power amplifiers, etc., and are

highly related to the temperature and humidity of the environment [8].

these matrices are diagonal. Define

CAP,t = diag (tAP,1, . . . , tAP,m, . . . , tAP,M ) ,

CAP,r = diag (rAP,1, . . . , rAP,m, . . . , rAP,M ) ,

CUE,t = diag (tUE,1, . . . , tUE,k, . . . , tUE,K) ,

CUE,r = diag (rUE,1, . . . , rUE,k, . . . , rUE,K) ,

where tAP,m, rAP,m (m = 1, . . . ,M) and tUE,k, rUE,k (k = 1, . . . ,K) are the RF gains of the APs and

the UEs, respectively. Note that the whole communication channel becomes non-reciprocal due to the

mismatches of RF gains, i.e. GDL 6= GT
UL.

2.2 Downlink signal model

Given the uplink CSI for the TDD operation, the multi-user precoding matrix can be designed for

downlink transmission. Considering zero-forcing precoding, the overall downlink received signals at the

UEs are written as

y = βGDLG
∗
UL

(

GT
ULG

∗
UL

)−1
x+ n, (3)

where β =

√

1/Tr[(GT
ULG

∗
UL)

−1
] is the scaling factor to satisfy the transmit power constraint, y =

[y1, . . . , yK ]T is the receiving signal vector, x = [x1, . . . , xK ]T is the signal vector transmitted to the UEs

with the power constraint E [xkx
∗
k] = P , and n is the complex additive white Gaussian noise (AWGN)

vector, in which the elements are independent and identically distributed (i.i.d.) complex Gaussian

random variables with zero mean and variance σ2
n.

Substituting GUL and GDL by (1) and (2) respectively, Eq. (3) is given by

y = βCUE,rWC−1
UE,tx+ n, (4)

where

W =
(

HCAP,tC
∗
AP,rH

H
) (

HCAP,rC
∗
AP,rH

H
)−1

. (5)

Since CAP,t 6= CAP,r, W is not an identity matrix. From (4), it can be seen that the non-symmetric

characteristic of the transceiver RF circuits at the APs will cause the multi-user interference. Hence, the

received signal of the ith UE is

yi = β[W ]iixi + β

K
∑

j=1,j 6=i

[W ]ijxj + ni, (6)

and the SINR of the ith UE is

γmis
i =

ρ · β2 · |[W ]ii|
2

ρ · β2 ·
∑K

j=1,j 6=i |[W ]ij |
2 + 1

, (7)
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where ρ = P
/

σ2
n. Then the sum-rates of all UEs with RF mismatches are

Rmis =

K
∑

i=1

Rmis
i =

K
∑

i=1

log
(

1 + γmis
i

)

. (8)

2.3 Reciprocity calibration

Multiply the precoding matrix by a diagonal calibration matrix Ccal on the left, which satisfies

Ccal = αcalC
−1
AP,tCAP,r, (9)

and we can rewrite (3) as

y = βcalGDLCcalG
∗
UL

(

GT
ULG

∗
UL

)−1
x+ n, (10)

where βcal is the scaling factor to satisfy the transmit power constraint with calibration. Therefore, the

received signals at the UEs with perfect calibration are written as

y = βcalCUE,rC
−1
UE,tx+ n. (11)

According to (11), the multi-user interference caused by the RF mismatches at the APs can be eliminated

through the calibration matrix Ccal.

3 TLS method for the self-calibration

TLS method was proposed in [8] to formalize the non-reciprocity model into a TLS problem. However,

this method is based on exchanging calibration signals between the transmitters and receivers. To avoid

involving the UEs in the calibration process, we extend TLS method to the case of self-calibration, where

the feedback from UEs is not required, and only the APs are involved in exchanging calibration signals.

In the calibration procedure, each antenna transmits a time-orthogonal pilot signal with power Pcal in

sequence to the other antennas of the APs. The observation matrix is given by

Ycal = CAP,rHcalCAP,t +N , (12)

where

[Ycal]m,n =

{

rAP,m[Hcal]m,ntAP,n + [N ]m,n m 6= n,

0 m = n
(13)

is the calibration signal which is transmitted from the nth antenna of the APs and received at the

mth antenna of the APs. [N ]m,n is the equivalent AWGN with zero mean and variance 1/ρcal, where

ρcal = Pcal

/

σ2
n and σ2

n are the power of thermal noise. Since calibration pilots are time-orthogonal,

increasing the length of the calibration pilot is equal to increasing the SNR of the calibration pilot.

Hcal ∈ CM×M is the calibration channel matrix, [Hcal]m,n denotes the channel coefficient between the

nth antenna of the APs and the mth antenna of the APs, and [Hcal]m,n = 0 when m = n. We have

Hcal = HT
cal because of the wireless channel reciprocity. Then, if the observation matrix Ycal is noiseless,

we have

C−1
AP,rYcalC

−1
AP,t = C−1

AP,tY
T
calC

−1
AP,r. (14)

From (9), we have Ccal = αcalC
−1
AP,tCAP,r. Eq. (14) reduces to

YcalCcal = CcalY
T
cal. (15)

Then, in the presence of observation noise, Ccal can be obtained by solving an optimization problem as

follows

argmin
{Ccal}

∥

∥YcalCcal −CcalY
T
cal

∥

∥

2

F
. (16)
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Eq. (16) can be also shown as

argmin
{Ccal}

∥

∥vec (YcalCcal)− vec
(

CcalY
T
cal

)∥

∥

2
. (17)

According to the computation principle of matrix

vec (AM×NBN×P ) = (IP ⊗A) vec (B) =
(

BT ⊗ IM
)

vec (A) , (18)

one obtains

vec (YcalCcal)− vec
(

CcalY
T
cal

)

= (IM ⊗ Ycal − Ycal ⊗ IM ) vec (Ccal) . (19)

Defining the calibration coefficient vector ccal = diag (Ccal) = [c1, . . . , cm, . . . , cM ]T, and simplifying (19),

Eq. (17) can be written as

argmin
{ccal}

‖Ωccal‖
2
, (20)

where Ω is an [M (M − 1) /2]×M matrix,

Ω =
[

ΦT
1 · · ·ΦT

i · · ·ΦT
M−1

]T
, (21)

and Φi is an i×M matrix,

[Φi]u,v =















−[Ycal]u,i+1 v = i+ 1,

[Ycal]i,u u = v,

0 others.

(22)

Consequently, we introduce a model perturbation on Ω because of the thermal noise. Then, we formulate

(20) into the following TLS problem [8]

argmin
{∆Ω,ccal}

‖∆Ω‖F s.t. (Ω +∆Ω) ccal = 0, (23)

where ∆Ω is the correction term of the TLS optimization problem. Given the SVD of Ω,

Ω = UDV H,

the estimated solution for ccal lies in the last column of V corresponding to the smallest singular value

in D [16]. Further, we define the matrix Ψ = ΩHΩ, the element of which is given by

[Ψ ]u,v =







∑M

i=1,i6=u

∣

∣

∣
[Ycal]i,u

∣

∣

∣

2

u = v,

− [Ycal]
∗
v,u [Ycal]u,v u 6= v.

(24)

Then, [16, 17] proved that the objective function in (23) is also equivalent to the formula as follows:

min f (ccal) =
cHcalΨccal

cHcalccal
. (25)

According to the principle of Hermite matrix, we have

λmin 6 f (ccal) 6 λmax, (26)

where λmin and λmax denote the minimum and maximum eigenvalue of Ψ , respectively. Thus, the solution

for ccal is the eigenvector of Ψ corresponding to λmin.

By expanding cHcalΨccal, we can turn (25) into the following equivalent constrained optimization prob-

lem as

min g (ccal) = cHcalΨccal =

M
∑

i,j=1

∣

∣

∣
ci[Ycal]j,i − cj [Ycal]i,j

∣

∣

∣

2

s.t. cHcalccal = 1. (27)

Recently, a novel calibration algorithm named as LS method was presented in [15]. Coincidentally,

the optimization problem in [15] is the same as (27), and the solution of ccal is also the eigenvector

corresponding to λmin of Ψ . Thus, the TLS method for the self-calibration is consistent with the LS

method.
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4 Iterative coordinate descent method

Since the TLS method and the LS method need to perform SVD or EVD operation, the computational

complexity will become unacceptable for large-scale MIMO systems. Some iterative algorithms, including

inverse power method and Rayleigh-Ritz method [16], were proposed to find the minimum eigenvalue λmin

and its corresponding eigenvector. However, the complexity of these algorithms is still very high, which

is in the order of O
(

M3
)

because of the matrix inversion operation in each iteration.

In this section, to avoid the matrix inversion, we propose a new iterative algorithm to reduce the

computation complexity, which is named as ICD method. Differentiating g (ccal) with respect to c∗i in

(27) and treating c∗i as a variable independent on ci, one obtains

∂g (ccal)

∂c∗i
= ci

M
∑

j=1,j 6=i

∣

∣

∣
[Ycal]j,i

∣

∣

∣

2

−

M
∑

j=1,j 6=i

cj [Ycal]
∗
j,i [Ycal]i,j . (28)

Then, by setting the partial derivatives to zero, we have

ci =

∑M

j=1,j 6=i cj [Ycal]
∗
j,i [Ycal]i,j

∑M

j=1,j 6=i

∣

∣

∣
[Ycal]j,i

∣

∣

∣

2 . (29)

The ICD method is described as Algorithm 1. According to the principle of coordinate descent [18]

and (29), by fixing other (M − 1) coefficients, the optimal value of the current coefficient ci makes the

objective function g (ccal) achieve a local minimum. Then, this operation is carried out sequently for

every calibration coefficient in each iteration. The complexity of each iteration is only in the order of

O
(

M2
)

. Finally, since g (ccal) is a convex function, the optimal ccal can be obtained when the method

reaches convergence [18, 19]. However, without the norm constraint cHcalccal = 1, the minimization of

the objective function g (ccal) will only give a solution of all-zero vector to ccal. Thus, in order to avoid

the convergence to the all-zero solution, we use the value of f (ccal) in (25) as the condition to decide

when to break the iteration. According to the simulation results in the next section, the value of f (ccal)

converges to a limit which is larger than but very close to λmin when ρcal is in the moderate and high

region. Therefore, although the value of g (ccal) declines to zero with the iterations, we can break the

iteration according to the converged value of f (ccal) to obtain the approximated solution of ccal.

Note that, besides the low complexity, ICD method has another advantage. If the number of antennas

at the APs decreases or increases (which can be seen in dynamical clustering for distributed antenna

systems [20]), we can obtain the new calibration coefficients rapidly by using the old ones as the initial

values. Then, the following two cases are presented.

Case 1: The number of antennas at the APs decreases. We assume that the Mth antenna is removed

from the APs. Then, after eliminating cM and its related calibration pilot signals [Ycal]M,i, [Ycal]i,M ,

(i = 1 . . .M − 1), we can obtain the rest (M−1) new coefficients by taking the current ci (i = 1, . . . ,M − 1)

into the iteration.

Case 2: The number of antennas at the APs increases. We assume that the (M + 1)th antenna is

added into the APs. Then, the initial value of cM+1 can be set by the added observation signals and the

current calibration coefficients ci (i = 1, . . . ,M), which is written as

cM+1 =

∑M

j=1 cj [Ycal]
∗
j,M+1 [Ycal]M+1,j

∑M

j=1

∣

∣

∣
[Ycal]j,M+1

∣

∣

∣

2 . (30)

Then, we can obtain all the (M + 1) new coefficients by taking the current ci (i = 1, . . . ,M + 1) into the

iteration.



Wei H, et al. Sci China Inf Sci October 2016 Vol. 59 102306:7

Algorithm 1 ICD (iterative coordinate descent) method

Requre:

1. Ycal

Initialization:

1. ccurr = [c1, . . . ci, . . . cM ]T, ci = 1, (i = 1 . . .M)

To record the current calibration coefficients in each iteration.

2. cprev = ccurr

To record the previous calibration coefficients in each iteration.

3. e = +∞, ethres
To calculate the calibration error between the current and previous step iteration. To determine

whether to break the iteration.

4. niter = 0, niter max

To count the number of the iteration times. To determine whether to break the iteration.

Iteration:

while e > ethres and niter < nitr max do

1. λprev = f (cprev) according to (25)

2. for i = 1 : M

ci =

∑M
j=1,j 6=i cj [Ycal]

∗
j,i [Ycal]i,j

∑M
j=1,j 6=i

∣

∣

∣
[Ycal]j,i

∣

∣

∣

2

end for

3. λcurr = f (ccurr) according to (25)

4. e = |λprev − λcurr|
2/|λcurr|

2

5. cprev = ccurr

6. niter = niter + 1

end while

Ending:

1. ccal = ccurr

To obtain the calibration coefficients vector.

5 Simulation results

In this section, system simulations have been carried out to illustrate the performance of our proposed

calibration method. A large-scale MIMO system is considered, where there are M antennas in total

at the APs and K antennas at the UEs. For clarity and brevity of discussion, both the transmission

and calibration channel are supposed to be with a fading following a Rayleigh distribution, which is a

zero mean circularly symmetric complex Gaussian random variables of variance 1/2 per dimension. The

amplitudes of the RF gains are assumed to be of log-normal distribution, and the phases are assumed

to be of uniform distribution. The variance of the amplitude mismatches and the range of the phase

mismatches are set to be δ2AP = 2 dB and θAP = π/2, respectively.

5.1 Convergence analysis

According to (25), λ is defined as the value of f (ccal). Further, λArgos, λLS and λICD are defined as the

values of f (ccal) corresponding to the Argos, LS and ICD method, respectively. Actually, the goal of

the calibration methods is to minimize λ. Thus, we compare λ for these three methods. Figure 2 shows

convergence behavior of the calibration methods for the minimum λ. It can be seen that, ICD method

converges quickly and λICD reaches close to λLS in less than five iterations for all the configurations

(M = 8, 64, 128). Figure 3 illustrates the impact of M on λ. It can be seen that basically the convergence

λ increases as M increases. λLS and λICD are much smaller than λArgos. In the Argos method, the

calibration coefficients are given by [12]

ci =











1 i = n,
[Ycal]i,n
[Ycal]n,i

i 6= n,
(31)

where n denotes the reference antenna. This is equivalent to minimizing g (ccal) subject to the constraint

cn = 1 [15]. When the calibration channels from some antennas to the reference antenna are not good
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Figure 2 Convergence behavior for the minimum λ. The

calibration SNR is set to be ρcal = 20 dB, and the number

of the antennas at APs is set to be M = 8, M = 64 and

M = 128, respectively.

Figure 3 Impact of M on λ. The calibration SNR is set

to be ρcal = 20 dB, and the threshold to break the iteration

is ethres = 10−4.
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n
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Figure 4 Impact of M on niter. The calibration SNR is set to be ρcal = 20 dB, and the threshold to break the iteration

is set to be ethres = 10−3, 10−4, 10−5, respectively.

enough, the estimation error of their calibration coefficients may be very large, which will cause significant

degradation on the system performance.

Figure 4 depicts the relation between niter and M . According to the description in Algorithm 1, the

total complexity of ICD method is
[

niter · O
(

M2
)]

. It can be seen from Figure 4 that niter decreases

slowly when M increases, and smaller ethres leads to larger niter. Since niter is basically less than five,

the ICD method reaches convergence very quickly, and the total complexity is much lower than the LS

method especially when M is very large.

5.2 Sum-rates of the system for downlink transmission

Figure 5 shows the relation between sum-rates and ρcal when M = 128 and K = 16. It can be seen from
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Figure 5 The relation between sum-rates and ρcal. The

average SNR of transmission signals is set to be ρ = 20 dB.

The number of antennas at APs is M = 128, and the num-

ber of antennas at UEs is K = 16.

Figure 6 The relation between sum-rates and ρ. The

average SNR of calibration pilot signals is set to be ρcal =

20 dB. The number of antennas at APs is M = 128, and

the number of antennas at UEs is K = 16.

Figure 5 that the performances of the LS method and the ICD method are very close to the perfect

calibration, and are much better than the Argos method.

Figure 6 illustrates sum-rates performance as a function of ρ when M = 128 and K = 16. It can be

seen that due to the residual interference introduced by the imperfect calibration, there is a ceiling effect

with the Argos method. However, the performances of the LS method and the ICD method are very

close to the perfect calibration, for all values of ρ.

Note that the Argos method has very low complexity (O (M)). However, to achieve better performance

of the large-scale MIMO systems, both the LS method and the ICD method are very attractive. Thus,

compared with the LS and the Argos, the ICD method is a favorable choice in multi-user large-scale

MIMO systems due to the low complexity and the high performance.

6 Conclusion

In this paper, we extended the TLS method to the case of self-calibration for TDD systems. With this

method, UEs are not required to feed back downlink CSI. We proved that the TLS method is equivalent

to the LS method proposed by [15]. Furthermore, in order to greatly reduce the complexity of the LS

method, we proposed a novel algorithm named as the ICD method. Theoretical analysis and simulation

results showed that, the complexity of the ICD method is only in the order of O
(

M2
)

for each iteration,

and it converges close to the performance of the LS method in less than five iterations. When the number

of antennas in all APs is very large (in the case of multi-user large-scale MIMO systems), the performance

of the ICD method achieves almost the perfect calibration, and is much better than the Argos method.
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