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Appendix A Description of PRESENT-like Cipher
Assuming that the block size of the PRESENT-like is nm-bit and the number of rounds is N . Each round of the cipher

has three layers of operations: the key addition layer, the S-box layer and the permutation layer. However, being different

from PRESENT cipher, the PRESENT-like cipher contains secret components which may be the secret S-boxes and secret

permutations. In this paper, we focus on the PRESENT-like cipher with secret S-boxes, which can be described as Algorithm

A1. The cipher Maya corresponds to the PRESENT-like cipher with n = 16 and m = 4.

Algorithm A1 N -rounds PRESENT-like cipher

Require: nm-bit plaintext X; main key K

Ensure: nm-bit ciphertext C = EK(X)

1: Derive n m-bit S-boxes Sj (0 6 j 6 n − 1) and round keys Ki (1 6 i 6 N) from the main key K

2: STATE = X

3: for i = 1 to N do

4: Parse STATE as STATE0||STATE1|| · · · ||STATEn−1

5: for j = 0 to n − 1 do

6: STATEj = Sj(STATEj)

7: end for

8: Apply the bit permutation to STATE

9: Add round key Ki to STATE

10: end for

11: return

Appendix B Description of slender-set differential cryptanalysis
Definition 1. Given e ∈ Fm

2 and S : Fm
2 → Fm

2 , we denote the set of all pairs {x, y} such that S(x)⊕S(y) = e by De. Here,

we consider the pairs {x, y} and {y, x} to be identical. A pair {x, y} belonging to a set De where e has Hamming weight ‘1’ is

called a slender-pair. A set consisting of slender-pairs is called a slender-set. We denote wt1(e) as the Hamming weight of e.

It holds that there are m slender-sets and |De| = 2m−1 for each e 6= 0 according to Definition 1. We focus on the

PRESENT-like cipher Maya. The block size is nm = 64 and the size of S-box is m = 4 in cipher Maya. Without loss of gen-

erality, we explain how to recover the leftmost 4-bit secret S-box. In order to determine the slender-sets, we encrypt a certain

number of plaintexts Pri with the form of Pri = {(x||ri) : x ∈ F4
2}, where each ri ∈ F60

2 is chosen randomly. The different

plaintexts (x||ri), (y||ri) in the set Pri is the right pair arising the input difference with the form of (x||ri)⊕(y||ri) = (?||060).

And the output difference after leftmost secret S-box S in the first S-box layer is S(x) ⊕ S(y) = e. We denote p({x, y}) as

the probability of which only one S-box is active in the ciphertext difference when the plaintext pair is {x||ri, y||ri}. As
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Figure B1 The differential path with weight two
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Figure B2 The candidate slender-set from the perspec-

tive of the value e.

Figure B3 The candidate slender-set from the perspec-

tive of the value wt(e).

mentioned above, the weight of the output difference S(x) ⊕ S(y) = e will determine the number of active S-boxes in the

second round. Thus the probability p({x, y}) is determined by the pairs {x||ri, y||ri}. Hence, given S(x) ⊕ S(y) = e, we

can denote this probability pe = p({x, y}). The lower weight output difference S(x)⊕ S(y) = e will cause active S-boxes in

the next round. The Borghoff’s method is based on the following two assumptions.

Assumption 1. The probability p({x, y}) only depends on the value of S(x) ⊕ S(y), not on the pair {x, y} specifically.

Hence, given S(x) ⊕ S(y) = e, we can denote this probability pe = p({x, y}).

Assumption 2. The probability pe is higher when e has Hamming weight 1, than when e has Hamming weight greater

than 1.

Borghoff et al. estimated the probabilities pe by the counter described as follows:

C({x, y}) = #{ri : ∃j, s.t.E(x||ri) ⊕ E(y||ri) = 04j ||?||060−4j}

where ri ∈ F60
2 is chosen randomly and 0 6 j 6 15. For every pair {x, y}, 0 6 x 6= y 6 15, there are C2

16 = 120 counters

totally. After encrypting enough number of plaintexts with the form of (x||ri), (y||ri), we sort the counters C({x, y}) in

descending order. Then we can partition the 120 pairs {x, y} into several sets up to the descending order of the counters.

The top four sets (contain 32 pairs) can be treated as the slender-sets. For the 16-round Maya, we give an example in the

data collection phase by using Liu’s improving method with 228 data complexity (see Table B1). One can see that the

first 8 pairs in the descending order is the correct slender-set from the perspective of the value S(x) ⊕ S(y) = e. And the

second to fourth slender-set consist of the remaining pairs are incorrect (see Figure B2). More correct slender-sets require

higher data complexity. In order to reduce the data complexity, Liu et al. pointed out that they can swap the elements

in the incorrect pairs properly to construct the correct slender-sets by a pruning search algorithm. However, we note that

the values of the weight wt(e) corresponding to the top 32 pairs in the descending order are almost equal to weight one

using the same data complexity (see Figure B3). In this paper, we consider recovering the 4-bit secret S-box by algebraic

techniques directly instead of dividing the slender-sets into four partitions accurately.
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Table B1 The top 32 pairs in the descending order with 228 data complexity

{x, y} Order e wt(e) {x, y} Order e wt(e)

{5,14} 10.87 (1) < 1 > {0,12} 3.58 (8) < 1 >

{6,12} 10.78 (1) < 1 > {0,2} 3.55 (4) < 1 >

{2,9} 10.41 (1) < 1 > {1,7} 3.54 (8) < 1 >

{13,15} 9.83 (1) < 1 > {4,8} 3.48 (4) < 1 >

{1,4} 8.07 (1) < 1 > {6,14} 3.37 (4) < 1 >

{8,11} 7.30 (1) < 1 > {2,11} 3.30 (2) < 1 >

{0,10} 6.63 (1) < 1 > {4,10} 3.18 (2) < 1 >

{3,7} 6.43 (1) < 1 > {1,11} 3.17 (4) < 1 >

{11,13} 4.41 (8) < 1 > {6,10} 3.06 (8) < 1 >

{0,1} 4.23 (2) < 1 > {5,12} 3.00 (4) < 1 >

{5,13} 4.21 (2) < 1 > {3,15} 3.00 (4) < 1 >

{9,14} 4.05 (8) < 1 > {2,5} 2.90 (8) < 1 >

{3,4} 3.91 (8) < 1 > {4,11} 2.84 (5) < 2 >

{3,6} 3.90 (2) < 1 > {8,9} 2.82 (2) < 1 >

{7,12} 3.88 (2) < 1 > {8,10} 2.81 (6) < 2 >

{14,15} 3.66 (2) < 1 > {4,14} 2.78 (14) < 3 >

Appendix C Experimental results
Table C1 shows the list of one possible solution.

Table C1 The list of one possible solution for the equations system

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s0(x) 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 1

s1(x) 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1

s2(x) 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1

s3(x) 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1

Table C2 shows the average data complexities and success rates of our attack.

Table C2 The average data complexity to 9-16 rounds PRESENT-like with randomly chosen secret S-boxes in this paper

Round 9 10 11 12 13 14 15 16

Data complexity 212.5 216 218 220.5 222 224.2 225.8 228

Success rate 100% 100% 100% 100% 100% 100% 100% 100%
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Table C3 The 184 equations for recovering secret S-box

x[6] ⊕ x[15] ⊕ x[22] ⊕ x[31] ⊕ x[38] ⊕ x[47] ⊕ x[54] ⊕ x[63] = 1;

(x[6] ⊕ x[15]) ∗ (x[22] ⊕ x[31]) ⊕ (x[38] ⊕ x[47]) ∗ (x[54] ⊕ x[63]) = 0;

x[7] ⊕ x[13] ⊕ x[23] ⊕ x[29] ⊕ x[39] ⊕ x[45] ⊕ x[55] ⊕ x[61] = 1;

(x[7] ⊕ x[13]) ∗ (x[23] ⊕ x[29]) ⊕ (x[39] ⊕ x[45]) ∗ (x[55] ⊕ x[61]) = 0;

x[3] ⊕ x[10] ⊕ x[19] ⊕ x[26] ⊕ x[35] ⊕ x[42] ⊕ x[51] ⊕ x[58] = 1;

(x[3] ⊕ x[10]) ∗ (x[19] ⊕ x[26]) ⊕ (x[35] ⊕ x[42]) ∗ (x[51] ⊕ x[58]) = 0;

x[14] ⊕ x[16] ⊕ x[30] ⊕ x[32] ⊕ x[46] ⊕ x[48] ⊕ x[62] ⊕ x[64] = 1;

(x[14] ⊕ x[16]) ∗ (x[30] ⊕ x[32]) ⊕ (x[46] ⊕ x[48]) ∗ (x[62] ⊕ x[64]) = 0;

x[2] ⊕ x[5] ⊕ x[18] ⊕ x[21] ⊕ x[34] ⊕ x[37] ⊕ x[50] ⊕ x[53] = 1;

(x[2] ⊕ x[5]) ∗ (x[18] ⊕ x[21]) ⊕ (x[34] ⊕ x[37]) ∗ (x[50] ⊕ x[53]) = 0;

x[9] ⊕ x[12] ⊕ x[25] ⊕ x[28] ⊕ x[41] ⊕ x[44] ⊕ x[57] ⊕ x[60] = 1;

(x[9] ⊕ x[12]) ∗ (x[25] ⊕ x[28]) ⊕ (x[41] ⊕ x[44]) ∗ (x[57] ⊕ x[60]) = 0;

x[1] ⊕ x[11] ⊕ x[17] ⊕ x[27] ⊕ x[33] ⊕ x[43] ⊕ x[49] ⊕ x[59] = 1;

(x[1] ⊕ x[11]) ∗ (x[17] ⊕ x[27]) ⊕ (x[33] ⊕ x[43]) ∗ (x[49] ⊕ x[59]) = 0;

x[4] ⊕ x[8] ⊕ x[20] ⊕ x[24] ⊕ x[36] ⊕ x[40] ⊕ x[52] ⊕ x[56] = 1;

(x[4] ⊕ x[8]) ∗ (x[20] ⊕ x[24]) ⊕ (x[36] ⊕ x[40]) ∗ (x[52] ⊕ x[56]) = 0;

x[12] ⊕ x[14] ⊕ x[28] ⊕ x[30] ⊕ x[44] ⊕ x[46] ⊕ x[60] ⊕ x[62] = 1;

(x[12] ⊕ x[14]) ∗ (x[28] ⊕ x[30]) ⊕ (x[44] ⊕ x[46]) ∗ (x[60] ⊕ x[62]) = 0;

x[1] ⊕ x[2] ⊕ x[17] ⊕ x[18] ⊕ x[33] ⊕ x[34] ⊕ x[49] ⊕ x[50] = 1;

(x[1] ⊕ x[2]) ∗ (x[17] ⊕ x[18]) ⊕ (x[33] ⊕ x[34]) ∗ (x[49] ⊕ x[50]) = 0;

x[6] ⊕ x[14] ⊕ x[22] ⊕ x[30] ⊕ x[38] ⊕ x[46] ⊕ x[54] ⊕ x[62] = 1;

(x[6] ⊕ x[14]) ∗ (x[22] ⊕ x[30]) ⊕ (x[38] ⊕ x[46]) ∗ (x[54] ⊕ x[62]) = 0;

x[10] ⊕ x[15] ⊕ x[26] ⊕ x[31] ⊕ x[42] ⊕ x[47] ⊕ x[58] ⊕ x[63] = 1;

(x[10] ⊕ x[15]) ∗ (x[26] ⊕ x[31]) ⊕ (x[42] ⊕ x[47]) ∗ (x[58] ⊕ x[63]) = 0;

x[4] ⊕ x[5] ⊕ x[20] ⊕ x[21] ⊕ x[36] ⊕ x[37] ⊕ x[52] ⊕ x[53] = 1;

(x[4] ⊕ x[5]) ∗ (x[20] ⊕ x[21]) ⊕ (x[36] ⊕ x[37]) ∗ (x[52] ⊕ x[53]) = 0;

x[4] ⊕ x[7] ⊕ x[20] ⊕ x[23] ⊕ x[36] ⊕ x[39] ⊕ x[52] ⊕ x[55] = 1;

(x[4] ⊕ x[7]) ∗ (x[20] ⊕ x[23]) ⊕ (x[36] ⊕ x[39]) ∗ (x[52] ⊕ x[55]) = 0;

x[8] ⊕ x[13] ⊕ x[24] ⊕ x[29] ⊕ x[40] ⊕ x[45] ⊕ x[56] ⊕ x[61] = 1;

(x[8] ⊕ x[13]) ∗ (x[24] ⊕ x[29]) ⊕ (x[40] ⊕ x[45]) ∗ (x[56] ⊕ x[61]) = 0;

x[15] ⊕ x[16] ⊕ x[31] ⊕ x[32] ⊕ x[47] ⊕ x[48] ⊕ x[63] ⊕ x[64] = 1;

(x[15] ⊕ x[16]) ∗ (x[31] ⊕ x[32]) ⊕ (x[47] ⊕ x[48]) ∗ (x[63] ⊕ x[64]) = 0;

x[1] ⊕ x[13] ⊕ x[17] ⊕ x[29] ⊕ x[33] ⊕ x[45] ⊕ x[49] ⊕ x[61] = 1;

(x[1] ⊕ x[13]) ∗ (x[17] ⊕ x[29]) ⊕ (x[33] ⊕ x[45]) ∗ (x[49] ⊕ x[61]) = 0;

x[1] ⊕ x[3] ⊕ x[17] ⊕ x[19] ⊕ x[33] ⊕ x[35] ⊕ x[49] ⊕ x[51] = 1;

(x[1] ⊕ x[3]) ∗ (x[17] ⊕ x[19]) ⊕ (x[33] ⊕ x[35]) ∗ (x[49] ⊕ x[51]) = 0;

x[2] ⊕ x[8] ⊕ x[18] ⊕ x[24] ⊕ x[34] ⊕ x[40] ⊕ x[50] ⊕ x[56] = 1;

(x[2] ⊕ x[8]) ∗ (x[18] ⊕ x[24]) ⊕ (x[34] ⊕ x[40]) ∗ (x[50] ⊕ x[56]) = 0;

x[5] ⊕ x[9] ⊕ x[21] ⊕ x[25] ⊕ x[37] ⊕ x[41] ⊕ x[53] ⊕ x[57] = 1;

(x[5] ⊕ x[9]) ∗ (x[21] ⊕ x[25]) ⊕ (x[37] ⊕ x[41]) ∗ (x[53] ⊕ x[57]) = 0;

x[7] ⊕ x[15] ⊕ x[23] ⊕ x[31] ⊕ x[39] ⊕ x[47] ⊕ x[55] ⊕ x[63] = 1;

(x[7] ⊕ x[15]) ∗ (x[23] ⊕ x[31]) ⊕ (x[39] ⊕ x[47]) ∗ (x[55] ⊕ x[63]) = 0;

x[3] ⊕ x[12] ⊕ x[19] ⊕ x[28] ⊕ x[35] ⊕ x[44] ⊕ x[51] ⊕ x[60] = 1;

(x[3] ⊕ x[12]) ∗ (x[19] ⊕ x[28]) ⊕ (x[35] ⊕ x[44]) ∗ (x[51] ⊕ x[60]) = 0;

x[5] ⊕ x[11] ⊕ x[21] ⊕ x[27] ⊕ x[37] ⊕ x[43] ⊕ x[53] ⊕ x[59] = 1;

(x[5] ⊕ x[11]) ∗ (x[21] ⊕ x[27]) ⊕ (x[37] ⊕ x[43]) ∗ (x[53] ⊕ x[59]) = 0;

x[2] ⊕ x[12] ⊕ x[18] ⊕ x[28] ⊕ x[34] ⊕ x[44] ⊕ x[50] ⊕ x[60] = 1;

(x[2] ⊕ x[12]) ∗ (x[18] ⊕ x[28]) ⊕ (x[34] ⊕ x[44]) ∗ (x[50] ⊕ x[60]) = 0;

x[7] ⊕ x[11] ⊕ x[23] ⊕ x[27] ⊕ x[39] ⊕ x[43] ⊕ x[55] ⊕ x[59] = 1;

(x[7] ⊕ x[11]) ∗ (x[23] ⊕ x[27]) ⊕ (x[39] ⊕ x[43]) ∗ (x[55] ⊕ x[59]) = 0;

x[6] ⊕ x[13] ⊕ x[22] ⊕ x[29] ⊕ x[38] ⊕ x[45] ⊕ x[54] ⊕ x[61] = 1;

(x[6] ⊕ x[13]) ∗ (x[22] ⊕ x[29]) ⊕ (x[38] ⊕ x[45]) ∗ (x[54] ⊕ x[61]) = 0;

x[4] ⊕ x[16] ⊕ x[20] ⊕ x[32] ⊕ x[36] ⊕ x[48] ⊕ x[52] ⊕ x[64] = 1;

(x[4] ⊕ x[16]) ∗ (x[20] ⊕ x[32]) ⊕ (x[36] ⊕ x[48]) ∗ (x[52] ⊕ x[64]) = 0;

x[3] ⊕ x[6] ⊕ x[19] ⊕ x[22] ⊕ x[35] ⊕ x[38] ⊕ x[51] ⊕ x[54] = 1;

(x[3] ⊕ x[6]) ∗ (x[19] ⊕ x[22]) ⊕ (x[35] ⊕ x[38]) ∗ (x[51] ⊕ x[54]) = 0;

x[9] ⊕ x[16] ⊕ x[25] ⊕ x[32] ⊕ x[41] ⊕ x[48] ⊕ x[57] ⊕ x[64] = 1;

(x[9] ⊕ x[16]) ∗ (x[25] ⊕ x[32]) ⊕ (x[41] ⊕ x[48]) ∗ (x[57] ⊕ x[64]) = 0;

x[9] ⊕ x[10] ⊕ x[25] ⊕ x[26] ⊕ x[41] ⊕ x[42] ⊕ x[57] ⊕ x[58] = 1;

(x[9] ⊕ x[10]) ∗ (x[25] ⊕ x[26]) ⊕ (x[41] ⊕ x[42]) ∗ (x[57] ⊕ x[58]) = 0;

x[8] ⊕ x[14] ⊕ x[24] ⊕ x[30] ⊕ x[40] ⊕ x[46] ⊕ x[56] ⊕ x[62] = 1;

(x[8] ⊕ x[14]) ∗ (x[24] ⊕ x[30]) ⊕ (x[40] ⊕ x[46]) ∗ (x[56] ⊕ x[62]) = 0;

x[10] ⊕ x[11] ⊕ x[26] ⊕ x[27] ⊕ x[42] ⊕ x[43] ⊕ x[58] ⊕ x[59] = 1;

(x[10] ⊕ x[11]) ∗ (x[26] ⊕ x[27]) ⊕ (x[42] ⊕ x[43]) ∗ (x[58] ⊕ x[59]) = 0;

(x[1] ⊕ x[2] ⊕ 1) ∗ (x[17] ⊕ x[18] ⊕ 1) ∗ (x[33] ⊕ x[34] ⊕ 1) ∗ (x[49] ⊕ x[50] ⊕ 1) = 0;

(x[1] ⊕ x[3] ⊕ 1) ∗ (x[17] ⊕ x[19] ⊕ 1) ∗ (x[33] ⊕ x[35] ⊕ 1) ∗ (x[49] ⊕ x[51] ⊕ 1) = 0;

(x[1] ⊕ x[4] ⊕ 1) ∗ (x[17] ⊕ x[20] ⊕ 1) ∗ (x[33] ⊕ x[36] ⊕ 1) ∗ (x[49] ⊕ x[52] ⊕ 1) = 0;

.

.

.

(x[14] + x[16] + 1) ∗ (x[30] + x[32] + 1) ∗ (x[46] + x[48] + 1) ∗ (x[62] + x[64] + 1) = 0;

(x[15] + x[16] + 1) ∗ (x[31] + x[32] + 1) ∗ (x[47] + x[48] + 1) ∗ (x[63] + x[64] + 1) = 0.


