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Software testing is the primary way to ensure
software quality, but occupies more than 50% the
cost of software development [1]. It was estimated
that software failures cost the US economy alone
about 60 billion each year largely due to inade-
quate software testing infrastructures [2].

In software industry, white-box testing is one
testing method to exercise internal structures of
programs. The testers choose appropriate test in-
puts to exercise program paths in the code and
verify the outputs. However, manually conducting
this task has several challenges: (1) Identifying in-
puts is very time-consuming due to the heavy com-
putation of path conditions from a large number
of paths; (2) Different code coverage criteria, e.g.,
statement, branch, logical [3], and data flow cover-
age criteria [4], are required to be enforced in dif-
ferent scenarios; (3) Infeasible test objectives (the
paths from the program entry to such objectives
are unexecutable) further undermine the effective-
ness of coverage-driven testing.

The aforementioned challenges underline the
importance of automating white-box testing. To
this end, we propose a novel testing approach,
which combines two state-of-the-art techniques,
i.e., dynamic symbolic execution [5] and software
model checking [6], to automate coverage-driven
white-box testing. The key insight is to reduce

the problem of finding testing inputs for test objec-
tives (e.g., statements, branches, or def-use pairs)
to the problem of finding program paths to reach
them. At the high level, given the program and
the intended coverage criterion, our approach (1)
identifies all test objectives w.r.t. the coverage cri-
terion, (2) outputs the test inputs to exercise them,
and (3) eliminates infeasible ones — without any
false positives.

In white-box testing, statement and branch cov-
erage answer whether each statement and each
branch of a conditional statement have been ex-
ecuted, respectively. Data-flow coverage [4] aims
to cover each pair of a variable definition and
its corresponding use. To achieve more efficient
coverage-driven testing, we introduce three key
parts of our approach in the following, i.e., (1)
guided symbolic execution, (2) adapted model
checking, and (3) combining them together. Here
we represent a program path as a sequence of con-
trol points denoted by line numbers, written in the
form l1, . . . , li, . . . , ln.

Guided symbolic execution. Dynamic symbolic
execution (DSE) is a program analysis technique,
which intertwines symbolic execution with con-
crete execution. It starts with an execution path
triggered by an initial test input, and then works
in the loop below: from the execution path
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p = l1, . . . , li−1, li, . . . , ln, DSE picks an executed
branch (e.g., at the statement li) according to
the underlying path exploration strategy, and then
tries to flip the original branch direction (i.e., li)
to its opposite (denoted by l̄i). If the path con-
straint collected from l1, . . . , li−1 conjuncted with
the negation of the condition at li is feasible, a
new test input t is generated. This input can
drive the program execution to follow a new path
p′ = l1, . . . , li−1, l̄i, . . . , which deviates from the
original path at l̄i. If the target test objective is
covered by p′, we obtain the test input.

To counter the path explosion problem in
DSE, we designed several guided path exploration
strategies [7] on top of our symbolic execution en-
gine [8]: (1) Cut-point guided search (CPGS). We
identify a sequence of control points that must be
passed through before reaching the target state-
ment. These points are used as intermediate goals
to narrow down the path exploration space. (2)
Shortest distance branch first (SDBF). We prefer
to flip the branch whose opposite branch has short-
est distance toward the target statement. The in-
tuition is that a shorter path is easier to reach the
target.

Adapted model checking. Counterexample-
guided abstraction refinement (CEGAR) is a
model checking approach, given the program code
and a property of interest, it either statically
proves its correctness, or outputs a counterexam-
ple to demonstrate its violation. This CEGAR-
based approach works in two phases: model check-
ing and tests from counter-examples. It checks
whether the statement l of interest is reachable
such that a property q holds at l. If l is reachable,
a test input can be generated from this path. Oth-
erwise, it can conclude that no test inputs could
reach l when q holds.

In our context, we treat the coverage-driven
testing as path reachability checking. We instru-
ment the property (i.e., the test obligation of a
test objective) into the program, and consult the
reachability from a model checker. If the test ob-
jective at the target statement l is reachable, a
test input is obtained. Otherwise, it is an in-
feasible objective. In particular, for statement or
branch coverage, the property q is set as true. For
data flow coverage, a similar code instrumentation
strategy [7] can also be designed.

Combining symbolic execution and model check-

ing. In principle, DSE dynamically explores pro-
gram paths to identify test inputs for feasible test
objectives, but fails to cover infeasible ones and

wastes testing time on them. However, CEGAR
can tell the feasibility of test objectives by doing
reachability checking but its performance is lim-
ited by its statically checking procedure. Thus, we
combine these two state-of-the-art techniques to
complement each other. In practice, our approach
works as follows: (1) DSE is first used to cover
as many test objectives as possible within prede-
fined testing resources; (2) CEGAR is then used to
test those remaining uncovered objectives: it can
cover feasible ones as well as eliminate infeasible
ones. As a result, more efficient coverage-driven
testing can be achieved by further improving code
coverage and reducing testing time than just using
these two approaches alone.
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