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Abstract Finding effective ways to collect the usage of network resources in all kinds of applications to ensure a

distributed control plane has become a key requirement to improve the controller’s decision making performance.

This paper explores an efficient way in combining dynamic NetView sharing of distributed controllers with

the behavior of intra-service resource announcements and processing requirements that occur in distributed

controllers, and proposes a rapid multipathing distribution mechanism. Firstly, we establish a resource collecting

model and prove that the prisoner’s dilemma problem exists in the distributed resource collecting process in

the Software-defined Network (SDN). Secondly, we present a bypass path selection algorithm and a diffluence

algorithm based on Q-learning to settle the above dilemma. At last, simulation results are given to prove that the

proposed approach is competent to improve the resource collecting efficiency by the mechanism of self-adaptive

path transmission ratio of our approach, which can ensure high utilization of the total network we set up.
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1 Introduction and motivation

Software-defined networking (SDN) [1, 2] allows network administrators to manage network services

through abstraction of lower level functionalitie. Presently, the reference implementation for SDN archi-

tecture is creating a performance bottleneck and is a single point of failure in large networks [3]. High

availability and maintaining low response time are among the reasons that a network needs multiple

controllers [4]. Therefore, many researchers are trying to provide a scalable yet efficient solution to dis-

tributed SDN network architecture for management, such as [5, 6]. Another aspect, Ref. [7] describes

its experience in the design of HybNET, which is a framework for automated network management of

a hybrid net infrastructure. Ref. [8] describes a FlowN architecture that gives each tenant the illusion

of its own address space, topology, and the controller, and leverages database technology to efficiently

store and manipulate mappings between virtual networks and physical switches. However, none of these

methods have settled the issue completely. As we know, many management tasks such as traffic ac-

counting, traffic engineering, load balancing and performance diagnosis [9, 10] all rely on accurate and
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Figure 1 (Color online) The cognitive ability of distributed controllers in SDN.

timely apperceiving of a large variety of network resources at different time-scales. However, there is

little research about the resource collecting and optimal management mechanism of multiple controllers

on SDN [11]. Only Ref. [12] identifies problems with the current state-of-the-art network configuration

and management mechanisms and demonstrates how SDN can improve common network management

tasks. And most of the previous work is about network measurements [13–15] that have explored several

measurement primitives at switches/routers for measurement tasks [10, 16]. We consider that a SDN

distributed controller needs to manage more resources carefully in order to ensure accuracy behavior of

traffics, so does the result of resource politic collecting. The controllers managing efficiency [17] keep close

to the frequency and content of collection, therefore, a solution to increases the processing capacity of

the controller without obvious additional resource management communication expenses is needed. We

get some enlightenment from the experience in the design of [18], which provides a scalable yet efficient

solution to distributed SDN network management, that manages and coordinates among distributed SDN

controllers. But the NetView it puts forward is limited for specific applications such as for the purpose of

improving controllers’ load. We hope to find a more scalable NetView and some optimal methods to dy-

namically update its view resources, which can be great of help to manage the SDN networking. In order

to obtain timely and accurate information during the course of collection, information collection programs

are deployed on each switches/router in the SDN network. And the controller shouldn’t connect with

any forwarding node to obtain the current resource information. Thus the distributed resource collector

should be added to collect resource information between the controller and all kinds of switches/routers.

Nowadays, a large SDN network is partitioned in multiple information collecting domains [19]; each dis-

tributed controller is responsible for local information collection and part of resource for other controllers

in order to enforce global policies.



Wu X C, et al. Sci China Inf Sci September 2016 Vol. 59 092301:3

More flexible SDN applications and optimized services are the major and minor premises on which

timely and accurate information collection are based. The information we care about includes local

and global topology information, service state etc. Therefore, deployment of soft sensors in physical

forwarding nodes is taken into account in the proposed scheme. Besides, cognitive [20,21] server is added

to complete collection and processing network resource in distributed controllers. Owing to the high

impact on deploying the location of cognitive server, we should consider the cost of connection between

the soft sensor and cognitive server as well as the cost of processing. With the expansion scale of the

forwarding plane, a distributed architecture of controllers with cognitive function has been deployed as

shown in Figure 1. The local network view needs to be consistent [22], which contains the information

of the topology, resource statistics, traffic cost and so on. And a reliable transmission path from one

distributed controller to another needs careful consideration. Besides, the transmission overhead and

the continuity are also challenging. On one hand, the convergence time of global network view can be

released. On the other hand, the soft sensors and the distributed controllers will both benefit from reliable

transmission path. The resource information needs to be sent out in time and resources should avoid

being repeatedly transmitted, which reduces the cost of the whole network. It also plays a crucial role in

reducing the computation cost of regional cognitive function.

The distributed controller needs to timely report the local view information it collected to the other

distributed controller. Even in a service, as shown in Figure 1, the functions of each point of distributed

controllers are not symmetrical, a traditional pub-sub system or some sort of broadcast protocols are not

suitable for such architecture of distributed controllers. Therefore rapid and uninterrupted transmittal

paths between these distributed controllers are very important, which can bring benefit to information

accepter and the sender itself. There are two ways to achieve this. One is forwarding the packets from

switches in a timely manner to the controller for reporting resource information, and the other way is

cutting down the transmittal overhead and computational overhead from reducing duplication of transfer.

Ref. [23] also shows a load balancing scheme with hop-by-hop routing, by using the burstiness features

of flows to make sure that the packets of the same flow arrive at the receiving end in order. Therefore,

multiple paths for updating the view information are suitable in our design. The view sharing models

will enable us to dynamically build information transfer paths according to the network environment and

the utilization of network resources at the moment. More specifically, the contributions of this paper are

summarized as follows:

(1) This paper proposes, to the best of our knowledge, a cognitive framework of muti-distributed view

gathering scheme in SDN.

(2) This paper presents a rapid multi-path distribution mechanism that enables timely NetView infor-

mation to be consistent among muti-distributed controllers.

(3) Our work differs from previous related works in that we offer a more scalable NetView updating

methods that takes the dynamic characteristics of controllers and load balance of the control plane into

consideration instead of just increasing the cognitive information processing power of controllers.

This paper is structured as follows. The problem of prisoner’s dilemma in cooperative collecting

information dispatching is presented in Section 2. Section 3 discusses the rapid multi-path distribution

mechanism in detail. Section 4 presents the rapid multi-path distribution mechanism which consists of a

bypass path selection algorithm and a diffluence algorithm based on Q-learning. Section 5 gives out the

experimental results and analysis. The conclusion and potential future work are listed in Section 6.

2 The problem of prisoner’s dilemma in cooperative collecting information

dispatching

As mentioned above, consistency of network view of distributed controllers in SDN lies on the timely and

effectively collected information, which consumes a lot of bandwidth, computation and storage resources.

So each controller is always interested in things such as the conservation of resources, the improvement of

the efficiency and is apt to decline to help other distributed controllers in transferring collected informa-
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Figure 2 The location of distributed controller.

tion. Thus each distributed controller running different service is apt to be rebellious as follows, which is

termed as not cooperative behavior.

Definition 1. The set of collection nodes is C : {1, 2, . . . , i, . . . , j, . . . , n}, the information collection of

node i is Ni. The discrete time slot (t = 1, 2, . . . , n). The set of agent node is U , U ∪C 6= i. The number

processing node i in U at time slot is s(t), the number of i sending information to U at time slot is k(t). b

is the income of I, which helps the set of agent U . c is the overhead of I, which helps the set of agent U .

b and c are constants. Therefore, the revenue function of node i according to cooperative processing is

given by

Ui(t) = bsi(t)− cki(t). (1)

As any node in a set of U hopes to obtain the maximal profit according to the cooperative behaviour,

the node i will choose optimal treatment strategy. We define k′i(t) as its maximal revenue function. The

policy of maximal k′i(t) is as follows:

k′i(t) = argmax
fi>0

Ui(s
′
i(t), ki(t)), (2)

whatever the value of b, c and si(t) when ki(t) = 0, Ui(t) can get the maximal value. Then the node i

in the network (i ∈ C) will choose the policy of k′i(t) = 0, so for any i, si(t) = 0. Therefore we can

get Ui(t) = 0. The above results mean that any forwarding node in this network will never help other

forwarding nodes to send or process the information they collected. The throughput of collecting and

processing will be zero, it is a problem of prisoner’s dilemma.

As mentioned before, there are many researches about game theory to settle down this problem, which

is against the whole system’s self-profit behaviour. In this paper, we put forward incentive strategy based

on cooperation by which each controller benefits not only itself but also others, which is a double winning

strategy.

3 Multipath rapid distribution mechanism

The rapid distribution mechanism of paths consists of the selection algorithm of the bypass paths and

the distribution algorithm of the information. As we know, the collected information should be sent

from one distributed controller to the other. We suppose that there are only two pieces of paths that

can be chosen by the collection node, one is the shortest route and the other is the bypass route. For

example, as shown in Figure 2. A can choose the shortest route IJK or the bypass route IBK. As

usual, we are prone to choose the shortest route to send our information, but if link JK is busier than

the bypass route, we should choose IBK to avoid packet loss. Packet reordering caused by multi-path

transmitting will be settled down according to the tag and cache in the accepted node. We denote the

probability of the shortest route we choose by αt
i, then the probability of bypass route is 1 − αt

i. The

probability of information arriving in node j is λt
i. The probability of information leaving from source
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Figure 3 Network topology description.

node to destination j via the shortest path in t is

βt
lj = 1−

∏

kl∈{shortestpath}

(1− β
tkl
kl

), l ∈ Rt
j ,

where Rt
j is the node set from source to destination j in time slot t. Then, leaving from the source node

to destination j via the bypass path in t is

ωt
lj = 1−

∏

gl∈{passbypath}

(1 − β
tgl
gl ), l ∈ Rt

j ,

the state information of all nodes that arrive at their destination via the shortest route in t is
∑

l∈Rt
l
αt
lλ

t
j

× (1− βt
lj), so the bypass route will be

∑

l∈Rj
(1− αt

l)λ
t
j(1− ωt

lj), the information sent out from the set

of node Rt
j in t, the throughput of j is θj = [

∑

l∈Rj
αt
lλ

t
j(1−βt

lj)+
∑

l∈Rj
(1−αt

l)λ
t
j(1−ωt

lj)] ∗H
t
j , where

Ht
j is the state information that should be transferred in j at time of t. Therefore, the throughput of

state information collected in the whole network is θ =
∫∞

t=0

∑N
j=1 θj . Our aim is to find the best split

point for all forwarding nodes.

(α1, α2, . . . , αN ) = argmax
α∈[0,1]

∫ ∞

t=0

N
∑

j=1





∑

l∈Rj

αt
lλ

t
j(1− βt

lj) +
∑

l∈Rj

(1 − αt
l)λ

t
j(1− ωt

lj)



 ∗Ht
j dt.

Definition 2. θ(αi, α−i) is the collected information transmission throughput for the whole network.

(α∗1, α
∗
2, . . . , α

∗
−i, . . . , α

∗
N ) is a Nash equilibrium point. If and only if ∀i ∈ N, 0 6 αi 6 1, we have

θ(α∗i , α
∗
−i) > θ(αi, α

∗
−i).

It is a game system composed of N collectors, and the Nash equilibrium is a steady state. We can’t

obtain more benefits if the probability of the path any collector chosen deviates from the Nash equilibrium

point. We have proved that the function is a strictly concave function. The biggest diversion probability

sequence (α∗1, α
∗
2, . . . , α

∗
i , . . . , α

∗
N ) for each utility function is the Nash equilibrium point.

The way mentioned above is a compromise of fairness and selfishness between distributed collectors

and intra-domain collectors. The cost and interest of each node has been considered in path selection.

In this paper, in order to gain the optimum decision, the methods of reinforcement learning have been

introduced to improve the routing strategy.

3.1 A bypass path selection algorithm based on Q-learning

According to the description of the topology matrix in network view, the topology matrix should be fixed

when there are fixed number of controllers. As Figure 3 shows, node c is the sender, while nodes A, B,

D, F and E are receivers.

An intelligent agent starts from node C and its destination is another distributed collector for the same

service. The black area is the obstacle which the agent can’t pass over. A reward for 100 when the agent
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arrives at the destination, then return to node C for searching new path to the next destination. In the

process of searching, it will get comeuppance of −10 when the agent comes across barriers. Another value

of award should be measured by the load of a node.

Q-learning algorithm (Algorithm 1) is shown as follows:

Q(s, α) is the function of Q-learning, storing it according to its exchange from matrix to table, the

size of it is S × A, i.e., the result of Cartesian product. The state s ∈ S denotes the action α ∈

A : {up, down, left, right}. We define the heuristic function H(s, α) = 2

√

∑N
i=1(wih(s′h))

2 which is the

Weighted Euclidean distance from the next action to the destination action, it records the environment

information when the action α is in the state of s. hα(s,H) = argmaxH(s, α), where hα(s,H) denotes

the worst action.

Algorithm 1 A bypass path seletion algorithm based on Q-learning

step1 initialize Q(s, α), Model(s, α);∀s ∈ S,α ∈ A

step2 do while

step3 record the state of s in time t;

step4 the agent choose an action according to greedy algorithm:α← ε greedy(s,Q);

step5 perform an action and observe the state of s′ and r

step6 Q(s, α) = Q(s, α) + α{rt + γmax′α∈A[Q(s′, α′)−Q(s, α)]};

step7 Model(s, α)← s′, r

step8 α← hα(s,H)

step9 if s′, a! ∈ Model random choose s, α;

step10 otherwise s′, r ← Model(s, α)

step11 renew Q(s, α), H(s, α) : Q(s, α) = Q(s, α) + α{rt + γmax′α∈A[Q(s′, α′)−Q(s, α)]}; s′ ← S

step12 judging finished or not, if not then goto step 9;

3.2 A diffluence algorithm based on Q-learning

Definition 3. A stochastic game model with n nodes as multi-component system 〈n, S,A1, . . . , An, R1,

. . . , Rn, P 〉, which is on behalf of nodes in states pace S, the action space of node i is Ai, joint action

space is A1 × · · · ×An, the reward function of node i is ri, P is the state transition probability and P is

the state transition probability and P : S × A1 × · · · × An → ∆(s) where ∆(s) is the probability of the

state space distribution set.

Definition 4. Multiplexing Policys is he state set S. si becomes two parts {s1, s2}, s1 denotes the

distribution probability, αi ∈ [0 : 1], s2 represents the information throughput transferred by the node i.

An agent should choose one action in Ai = {αi − 2ε, αi − ε, αi + ε, αi + 2ε}. ε is a change factor of the

distribution probability. Policy π : s → A is the mapping from states to actions. π∗ is the optimal

strategy.

Algorithm 2 is shown as follows. There are two kinds of policies in this algorithm, i.e., the current strat-

egy π(s, α) and the average strategy π̄(s, α′), respectively. The optimal action is α = argmaxαQ(s, α′).

We should increase the step δ when it’s easy to obtain the maximal Q function, otherwise we should

slow down the speed of action such as decrease δ
γ . The algorithm revises the strategy π(s, α′) to average

strategy π̄(s, α′). For instance, when
∑

α π(s, α′)Q(s, α) >
∑

α π̄(s, α′)Q(s, α), learning at a speed of δ1;

Otherwise, learning at a speed of δh.

4 Experiments and conclusion

A set of numerical experiments is carried out to assess the performance of the bypass path selection

algorithm and the distribution algorithm based on Q-learning. We implement these two algorithms by
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Algorithm 2 A diffluence algorith based on Q-learning

step1: Initialize

Q(s, α)← 0; π(s, α)←
1

γ
; C(s)← 0

step 2: Node i random choose Ai in

{αi − 2ε, αi − ε, αi + ε, αi + 2ε}.

Renew Q according to r′(A′|S′) :

Q(s, α)← (1− α)Q(s, α) + α[r + γ max
α′∈A

Q(s′, α′)];

Renew the average policy π̄, j ← j + 1

∀α ∈ π̄(s, α′)← π̄(s, α′) +
1

j
(π(s, α′)− π̄(s, α′))

Renew

(s, α′)← π(s, α′) +







δ, ifα = argmaxαQ(s, α′),

− δ
γ
, other,

(3)

δ =







δ, δ1
∑

α π(s, α′)Q(s, α) >
∑

α ∀α ∈ π̄(s, α′)Q(s, α),

δh, other.
(4)

δh is the rapid increase of the step value, δ1 is the slow step value δh = γδ1

step 3: the repeat do step 2 when ∀i ∈ N ,|∆si | 6 δ algorithm convergence.
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Figure 4 Forwarding network topology and the topology matrix.

C language and employ Matlab together with NS2 to illustrate the results. There are two parts in our

experiments. One is the view convergence performance algorithm from the two groups of distributed

controllers as senders. The other is the performance variation of information transmission throughput

in the network with different scales of collectors. We define ten controllers’ nodes for the structure of a

network topology as shown in Figure 4. The network topology matrix is as Figure 4 shows [24].

4.1 View convergence performance from two groups of distributed controllers

Firstly, each controller runs the election agreement to determine the location of distributed controllers

for one service. The result is that node 1 and 3 belong to one group of distributed controllers, the same

as 4 and 5. Then, node 1 will send the resource information to node 3. Node 4 will send its resource to

node 5 as Figure 4 shows.

We define the normalization weight of all the nodes in this topology of network as

Wij =









0 · · · 0.8
...

. . .
...

0.8 · · · 0









, i, j < 10.

For us, packet loss rate is the prime important consideration. As Figure 5 shows, the shortest path of 3-1
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Figure 6 (Color online) The influence of diffluence algorithm on distribution probability and normalized throughput.

and the optimized path of 3-0-1 can be calculated by our Q-learning algorithm when the network load

is low. However, another optimized path of 3-0-2-1 can be calculated by our Q-learning algorithm when

the network is on condition of heavy load such as the link of 3-1 and 0-1 are in congestion state. It is the

same with the optimized path from node 5 to node 4 is 5-0-4, and the shortest path is 5-4. We calculate

the weight of 3-1 and 3-0-1 are (0.3,0.6), and the weight of 5-4 and 5-0-4 are (0.4,0.7). The best flow

equilibrium point of the two paths to node 3 is (45,55), to node 5 is (38,62).

As shown in Figure 6, the initial distribution probability of node 3 is (0.99,0.01), and the initial

distribution probability of node 5 is (0.01,0.99). The distribution probability and throughput change

dynamically with the number of iterations. To the final convergence, node 3 and node 5 do a lot of

explore work, and then they find the optimal diffluent equilibrium (55,38) according to 1800 iterations.

In the beginning, 1% perception information of the total data sent from node 3 to intermediate node 0.

And 99% perception information of the total data is sent from node 5 to intermediate node 0. After

a period of reinforcement learning, 55% perception information of the total data sent from node 3 to

the competitive node 0 by game, and perception information from node 5 to the competitive node 0

are decreasing to 62%. The experiment results show that node 5 subsumes its own interests, and the

perception of information throughput of the whole network is improved, which is brought about the Nash

equilibrium.

4.2 With scale of collectors, performance changes by acquisition information throughput

in the whole network

We test the bypass path selection algorithm and the diffluence algorithm based on Q-learning algorithm

with different scales of collectors using link congestion from (1,3), (2,6), (0,9) and (4,5). Figure 6 shows

the influence of throughput in the whole network.
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With the reinforced learning algorithm, the convergence of network throughput is increased by 50%

and 20%, respectively, regardless of the introduction of diffluence mechanism or not.

As shown in Figure 7, the throughput in the whole network is raised with the increasing cooperation

nodes caused by link congestion. But the trend is weakened. Experiments show that the bypass path se-

lection algorithm and diffluence algorithm are competent to improve the network throughput by collecting

the resource information in time, which greatly reduces packet losses and the delay in retransmissions.
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