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Abstract In this paper, we investigate the distributed formation tracking problem of multiple marine surface

vehicles with model uncertainty and time-varying ocean disturbances induced by wind, waves, and ocean cur-

rents. The objective is to achieve a collective tracking with a time-varying trajectory, which can only be accessed

by a fraction of follower vehicles. A novel predictor-based neural dynamic surface control design approach is pro-

posed to develop the distributed adaptive formation controllers. We use prediction errors, rather than tracking

errors, to construct the neural adaptive laws, which enable the fast identification of the vehicle dynamics without

incurring high-frequency oscillations in control signals. We establish the stability properties of the closed-loop

network via Lyapunov analysis, and quantify the transient performance by deriving the truncated L2 norms of

the derivatives of neural weights, which we demonstrate to be smaller than the classical neural dynamic surface

control design approach. We also extend the above result to the distributed formation tracking using the relative

position information of vehicles, and the advantage is that the velocity information of neighbors and leader are

required. Finally, we give the comparative studies to illustrate the performance improvement of the proposed

method.

Keywords dynamic surface control, distributed formation tracking, predictor, marine surface vehicles, neural

networks

Citation Peng Z H, Wang D, Li T S. Predictor-based neural dynamic surface control for distributed formation

tracking of multiple marine surface vehicles with improved transient performance. Sci China Inf Sci, 2016, 59(9):

092210, doi: 10.1007/s11432-015-5384-9

1 Introduction

In recent years, there has been a surge of interest in cooperative control of multi-vehicle systems. Ap-

plications can be found everywhere; in space, air, land, and sea. Examples include formation flying of

spacecrafts and aircrafts, formation control of mobile robots, and fleet control of marine vehicles, includ-

ing surface vehicles and underwater vehicles. Apparently, multi-vehicle systems enable individuals to
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collaborate with each other to execute difficult missions, offering greater advantage over a single one in

the sense of enhanced effectiveness and efficiency [1, 2].

Formation control of marine vehicles has drawn great attention from control communities. In the

literature, a variety of approaches to this problem have been reported [3–11]. In general, these approaches

fall into three categories, namely, virtual structure, behavioral approach, and leader-follower strategy.

Most works are practiced within the leader-follower framework [3–10]. In [3], a coordinated path following

scheme is proposed to solve the geometric task and dynamic task in a rigid leader-follower formation.

In [4], a passivity-based design is presented for synchronized path following where the path variables

are coordinated in a decentralized manner. A similar coordinated path following solution can be found

in [5]. In general, this approach is able to achieve rigid formations if a predefined path is assigned to each

vehicle. However, once the mission changes or something unexpected happens, the original paths must be

redesigned for the new situation. In [6], a guided leader-follower formation control scheme is presented,

where no path information is known as a priori. In [7], a leader-follower synchronization approach without

velocity information is proposed. In [8], a virtual leader-based formation control scheme is proposed for

underactuated underwater vehicles. In [9, 10], l − ψ leader-follower formation controllers are developed

for autonomous surface vehicles where the uncertain vehicle dynamics is taken into account. In the

aforementioned studies, the formation control objective can be achieved if each vehicle is able to obtain

the leader information in global coordinates. However, the leader information may not be known to all

vehicles due to the limitations of communication bandwidth and sensing range. Besides, it will be costly

to convey the leader information to each vehicle. This situation worsens when a large number of vehicles

are involved.

In fact, distributed control strategy has been widely suggested for multi-agent systems; see references

[12–15]. Its key advantage is that the global objective can be achieved via neighbor-to-neighbor informa-

tion exchange, which is closely related to consensus problem [16–32]. Different from traditional tracking

control of a single system, the main challenge is to seek local policies such that the final states of all

agents can reach an agreement. Today, as consensus theory evolves, studies have been devoted to its ap-

plications in real-world agents, such as spacecrafts [33], mobile robots [34], and autonomous underwater

vehicles [35]. From the standpoint of marine engineering, it will be interesting to apply consensus theory

to address the formation control of marine surface vehicles (MSVs).

On the other hand, since the dynamics of MSV belongs to a class of nonlinear systems in strict-

feedback form [36], the backstepping technique has been a powerful design tool to develop the tracking

controllers [37–42] and the formation controllers [3–5,8,9]. A disadvantage with backstepping is the

problem of “explosion of complexity”, which is caused by the repeated differentiations of virtual control

signals. In [43], a dynamic surface control (DSC) design technique was proposed to avoid the repeated

differentiation problem of virtual controllers in the backstepping design. The key is introducing a first-

order filtering of the synthesized virtual control law at each step of the backstepping design procedure.

In [44], a neural DSC (NDSC) design approach is first proposed for tracking of uncertain nonlinear strict-

feedback systems. From then on, substantial efforts have been devoted to neural network-based DSC

design for nonlinear systems [44–51].

However, the traditional NDSC approach suffers from poor transient performance phenomenon, which

can be speculated as follows: First, the system states can be far different from the filtered virtual

control signals during transient (i.e., in the initial stage or transitions between different equilibrium

points). It may deteriorate the NN learning process and experience the control signals of large-amplitude,

which are unacceptable for practical applications. Second, high-gain learning rates are often required to

achieve system performance in the face of large uncertainties. However, updating laws with high learning

rates may yield signals of high-frequency, which can, for example, excite unmodeled dynamics, and even

result in instability for real-world applications. There have been great efforts on modifications of control

architectures or updating laws for improving the transient performance of adaptive control systems [52–

54]. However, most works are practiced within the model reference adaptive control framework. Up

until now, it seems that no attempt has been made to improve the transient performance of neural DSC

approach, although it shows potential usage in many real-world applications.
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In this paper, we focuses on the distributed formation tracking (DFT) of multiple MSVs, each of which

is governed by nonlinear dynamics with model uncertainty and unknown ocean disturbances induced by

wind, waves, and ocean currents. The objective is to achieve a collective tracking with a time-varying

trajectory that can be accessed by a fraction of the follower vehicles. We define a new type of predictor-

based neural dynamic surface control (PNDSC) design method by combining a predictor, neural networks

(NNs), and a DSC design approach, with which the control performance can be substantially improved.

A predictor is, for the first time, introduced in the traditional NN-based DSC design. The prediction

errors, rather than the tracking errors, are employed to update the NN parameters, which enable smooth

and fast learning without incurring high-frequency oscillations. With this new design approach, robust

adaptive DFT controllers are developed for directed graphs containing a spanning tree. The stability

properties of the closed-loop systems are established building on Lyapunov theory and graph theory. In

addition, we qualify the transient performance of the proposed PNDSC architecture in terms of truncated

L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical NDSC

design approach by rigorous analysis. An extension to DFT using the relative position information of

vehicles is further studied; i.e., the velocity information of leader and neighbors are all not required for im-

plementation. Comparative studies are given to illustrate the performance improvement of the proposed

approach.

Compared with existing results, the contribution of this paper is three-fold.

• First, in contrast to the NN-based DSC approach [44–51], a new type of PNDSC design methodol-

ogy, by combining a predictor, NNs, and a DSC technique, is proposed. The predictor is first introduced

into the NN-based DSC design. The prediction errors are employed to identify the unknown dynamics

for each vehicle, and an additional adjustable parameter is provided to enable smooth and fast learn-

ing not only in steady state, but also in transient state. The undesired learning transient when using

NDSC approach due to large initial tracking errors can be completely avoided. In this regard, the

proposed design methodology is an enhanced version of NDSC approach proposed for nonlinear sys-

tems in Ref. [44], with guaranteed steady and transient performance. To the best of our knowledge,

it is the first attempt to address the transient performance of NN-based DSC design as apposed to

Refs. [44–51].

• Second, this paper aims to address the DFT control of multiple MSVs with a dynamic leader over

directed graphs because of the lack of global information on the reference trajectory; i.e., only a fraction

of follower MSVs can receive the information of the leader. This is different from the tracking control

of single MSV in [37–41] and the leader-follower formation control of multiple MSVs in [3–10], where

the leader or path information is known to each vehicle. Inherently, this work was inspired by formation

control of multi-agent systems with first-order and second-order dynamics. However, the dynamics of

MSVs cannot be described by first-order and second-order dynamics because two reference frames are

commonly used for marine vehicles. By defining a distributed formation tracking error expressed in

body-fixed reference frame, the DFT problem can be readily solved without incurring complexity. This

also does not seem to have been reported in the marine literature.

• Third, robust adaptive DFT controllers are developed based on the new PNDSC approach, and

an extension to DFT using the relative position information is further studied. Note that the velocity

information of leader and neighbors can be recovered on-line by the proposed predictors for the second

case. This is practically useful in case only the local sensors (e.g. visual sensors) are equipped. It is

worthwhile to mention that the traditional trajectory tracking of MSVs can be considered as a special

case of the results derived in this paper.

The rest of this paper is organized as follows: Section 2 introduces some preliminaries and the problem

formulation. Section 3 presents the DFT design together with the stability analysis. Section 4 extends

the above result to DFT using relative position information. Section 5 provides simulation results to

illustrate the theoretical results. Section 6 concludes this paper.
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2 Preliminaries and problem formulation

2.1 Preliminaries

2.1.1 Notation

Throughout the paper, the n-dimensional Euclidean space is denoted by R
n. In represents an identity

matrix of dimension n. The superscript T means transpose for real matrices. diag{ai} is a block-

diagonal matrix with matrixes ai, i = 1, . . . , N, on its diagonal. For a square matrix, the eigenvalue,

the smallest eigenvalue and the largest eigenvalue are denoted by λ(·), λmin(·), and λmax(·), respectively.
‖ · ‖ is the Euclidean norm for a given vector, and ‖ · ‖F is the Frobenius norm for a matrix. Given

p > 1 and v ∈ R
n, the Lp norm and truncated Lp norm is defined by ‖v‖Lp

= (
∫∞

0 ‖v(s)‖pds)1/p and

‖v‖Lp,t∗ = (
∫ t∗

0
‖v(s)‖pds)1/p with t∗ > 0, respectively.

2.1.2 Graph theory

A graph G = {V , E} consists of a node set V = {n1, . . . , nN} and an edge set E = {(ni, nj) ∈ V × V}
with element (ni, nj) that describes the communication from node i to node j. An adjacency matrix is

defined as A = [aij ] ∈ R
N×N with aij = 1, if (nj , ni) ∈ E ; and aij = 0, otherwise. Self connections are

not allowed, i.e., aii = 0. The Laplacian matrix L associated with the graph G is defined as L = D −A
where D = diag{d1, . . . , dN} with di =

∑N
j=1 aij , i = 1, . . . , N . A directed path in the graph is an

ordered sequence of nodes such that any two consecutive nodes in the sequence are an edge of the graph.

A digraph has a spanning tree if there is a node called the root, such that there is a directed path from

the root to every other node in the graph. Finally, define a diagonal matrix A0 = diag{a10, . . . , aN0} to

be a leader adjacency matrix, where ai0 > 0 if and only if the ith vehicle has access to the information

of the leader; otherwise ai0 = 0. For simplicity, let H = L+A0.

2.2 Problem formulation

To describe the motion of MSV, two reference frames, as shown in Figure 1, are commonly used, a earth-

fixed frame and a body-fixed frame. A three degree-of-freedom (DOF) dynamic model for MSVs in a

horizontal plane can be found in [55], and consists of kinematics

η̇i = R(ψi)νi, (1)

and kinetics

Miν̇i = −Ci(νi)νi −Di(νi)νi + τi +RT(ψi)τiw(t), (2)

where

R(ψi) =









cosψi − sinψi 0

sinψi cosψi 0

0 0 1









, (3)

ηi = [xi, yi, ψi]
T ∈ R

3 represents the earth-fixed position and heading; νi = [ui, vi, ri]
T ∈ R

3 includes

the body-fixed surge and sway velocities, and the yaw rate; Mi = MT
i ∈ R

3×3, Ci(νi) ∈ R
3×3, Di(νi) ∈

R
3×3 denote the inertia matrix, coriolis/centripetal matrix, and damping matrix, respectively; τi =

[τiu, τiv, τir ]
T ∈ R

3 denotes the control force; τiw(t) = [τiwu(t), τiwv(t), τiwr(t)]
T ∈ R

3 is the disturbance

vector caused by unknown wind, waves, and ocean currents. In practice, Ci(νi), Di(νi), and τiw(t) are very

hard to model or measure accurately, and here, they are treated as completely unknown functions. Note

that the value ofMi, Ci(νi), and Di(νi) can be different; hence, the vehicles considered are heterogenous.

Consider a reference η0 ∈ R
3 that acts as a leader (labeled as n0), and then the communication

graph among the N vehicles and the reference trajectory η0 can be described by an augmented graph
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Figure 1 Reference frames: earth-fixed and body-fixed.

Ḡ = {V̄, Ē} where V̄ = {n0, n1, . . . , nN}, and Ē = {(ni, nj) ∈ V̄ × V̄}. To move on, the following

assumption is required.

Assumption 1. The augmented graph Ḡ contains a spanning tree with the root node being the leader

node n0.

Definition 1. A geometric pattern between the vehicles is defined in the earth-fixed frame as P = {Pi}
and Pi = [pix, piy, piψ]

T where pix, piy, piψ are constants. Pij = Pi − Pj represents the desired relative

deviation between the ith vehicle and jth vehicle.

Without lose of generality, we assume that
∑N
i=1 Pi = [0, 0, 0]T, which means that the center of the

geometric pattern P is at the origin.

Remark 1. Note that a common reference frame is needed to define the geometric pattern; however,

this can be naturally satisfied for MSVs because they use global positioning systems (GPS) to acquire

their positions [55]. Otherwise, one has to alteratively resort to distributed algorithms [56] to estimate

the common reference frame.

The DFT problem is stated as below.

The control objective is to design a distributed control law τi for each vehicle with the kinematics (1)

and kinetics (2) to track a reference signal η0 with the desired geometric pattern P such that

lim
t→∞

‖ηi − ηj − Pij‖ 6 δ1, i, j = 1, ..., N, (4)

lim
t→∞

∥

∥

∥

∥

N
∑

i=1

ηi
N

− η0

∥

∥

∥

∥

6 δ2, (5)

for some constants δ1 and δ2.

Remark 2. Inequality (4) means that the MSVs achieve the geometric formation pattern P with

bounded errors; while inequality (5) indicates that the geometric center of the MSVs converge to the

reference η0 with small errors.

3 DFT using neighbors’ velocity information

In this section, we consider the case where the position and velocity information of neighboring vehicles

are available for feedback. A new PNDSC design approach is proposed to devise the distributed formation

controllers, under which a relative formation can be achieved for directed graphs containing a spanning

tree.
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3.1 Controller design

Step 1. To start with, a distributed surface tracking error zi1 is defined as follows:

zi1 = RT(ψi)

{

N
∑

j=1

aij(ηi − Pi − ηj + Pj) + ai0(ηi − Pi − η0)

}

, (6)

where aij and ai0 are defined in Section 2. ηj is the earth-fixed position and heading for jth vehicle. Pi is
the deviation between the ith vehicle and the reference trajectory η0. Whether the ith vehicle has access

to the reference trajectory η0 is determined by the network links.

Remark 3. Note that the surface tracking error zi1 is defined in the body-fixed reference frame, which

makes the consensus theory well suitable for the applications of marine vehicles. This also means that

the controller gains will not depend on the heading of the vehicle, as pointed out in [42]. Compared with

diffeomorphic coordinate transformation z = RT(ψi)(ηi − η0) introduced for tracking control of single

vehicle as in [39,42], here, distributed diffeomorphic coordinate transformation is introduced to solve the

coordinated control of multiple MSVs.

Further, a global formation tracking error si is defined as

si = ηi − Pi − η0. (7)

Let z1 = [zT11, . . . , z
T
N1]

T and s = [sT1 , . . . , s
T
N ]T be the error vectors of the network, and their relationship

can be expressed as

z1 = RT(H⊗ I3)s, (8)

where R = diag(R(ψ1), . . . , R(ψN )), and H is defined in Section 2.

The following lemma holds for (8).

Lemma 1 [19, 27]. Under Assumption 1, ‖s‖ 6 ‖z1‖/o(H) where o(H) denotes the minimal singular

value of H.
The time derivative of zi1 with (1) is given by

żi1 = −riSzi1 + aidνi −
N
∑

j=1

aijR
T
i Rjνj − ai0R

T
i η̇0, (9)

where aid = di + ai0, Ri = R(ψi), Rj = R(ψj), and S is defined by

S =









0 −1 0

1 0 0

0 0 0









. (10)

In order to stabilize zi1, a virtual kinematic law αi1 is proposed as follows:

αi1 =
1

aid

(

− ki1zi1 +

N
∑

j=1

aijR
T
i Rjνj + ai0R

T
i η̇0

)

, (11)

where ki1 = diag{ki11, ki12, ki13} with ki11 ∈ R, ki12 ∈ R, ki13 ∈ R being positive constants.

Let αi1 pass through a first-order filter bank with a time constant γi1 ∈ R to obtain the filtered control

signal νir as follows:

γi1ν̇ir = αi1 − νir, αi1(0) = νir(0), (12)

where γi1 > 0.

Step 2. The second surface tracking error zi2 is defined as follows:

zi2 = νi − νir. (13)
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Its time derivative with (2) can be described by

Miżi2 =τi − fi(ξi, t)−Miν̇ir, (14)

where fi(ξi, t) = Ci(νi)νi +Di(νi)νi − RT(ψi)τiw(t), and ξi = [1, ηTi , ν
T
i ]

T.

When the function fi(ξi, t) is perfectly known, a desired kinetic control law can be chosen as follows:

τi =− ki2zi2 + fi(ξi, t) +Miν̇ir, (15)

where ki2 = diag{ki21, ki22, ki23} with ki21 ∈ R, ki22 ∈ R, ki23 ∈ R being positive constants.

In practice, an accurate knowledge of fi(ξi, t) may not be available; hence, additional schemes should

be developed. Before constructing the kinetic control law, the following assumption is required.

Assumption 2. The function fi(ξi, t) can be represented by an NN as

fi(ξi, t) =WT
i (t)ϕi(ξi) + ǫi(ξi), ∀ξi ∈ D, (16)

where Wi(t) is an unknown time-varying matrix satisfying ‖Wi(t)‖F 6 W ∗
i and ‖Ẇi‖F 6 W ∗

id with

W ∗
i ∈ R,W ∗

id ∈ R being positive constants; ϕi(ξi) : D → R
s is a known vector function of the form

ϕi(ξi) = [bi, ϕi1(ξi), ϕi2(ξi), . . . , ϕis(ξi)]
T satisfying ‖ϕi‖ 6 ϕ∗

i with ϕ∗
i a positive constant, and D is a

compact set; ǫi(ξi) is the reconstruction error satisfying ‖ǫi(ξi)‖ 6 ǫ∗i with ǫ∗i a positive constant.

Remark 4. A bias term bi > 0 in ϕi(ξi) is introduced, and it captures the effect of external disturbances

imposed on vehicle dynamics. If the NN is replaced by fuzzy logic systems [57,58], similar results can be

derived without any difficulty.

Then, a practical kinetic controller is proposed as follows:

τi = −ki2zi2 +Miν̇ir + ŴT
i ϕi(ξi), (17)

where Ŵi is an estimate of Wi.

Following the classical NDSC approach [44, 45], the adaptive law for Wi is directly given by

˙̂
Wi = Γi[ϕi(ξi)z

T
i2 − kW Ŵi], (18)

where kW ∈ R and Γi ∈ R are positive constants.

The stability properties of close-loop signals using NDSC approach can be established as in [44, 45].

However, the above adaptive control scheme may suffer from the poor learning transient, which can be

speculated as follows: First, in order to achieve the desired performance in the presence of large system

uncertainties, high-gain learning rates Γi are necessary for the neural updating law (18). However,

adaptive laws using high-gain learning rates may cause signals of high-frequency oscillations, which may

exceed the bandwidth of the actuators, and even result in instability for practical applications [52–54].

Second, the tracking error zi2 can be nonzero during transient state, which may deteriorate the learning

phase and result in control signals of large-magnitude that are unacceptable for actuators. To overcome

the above long standing obstacles in NDSC approach, a new updating scheme is developed in this paper,

which is capable of achieving smooth and fast learning without generating high-frequency oscillations and

yields improved transient performance.

Let ν̂i be an estimate of νi, and a state predictor is proposed as follows:

Mi
˙̂νi = −ŴT

i ϕi(ξi) + τi − (hi1 + ki2)ν̃i, (19)

where ν̃i = ν̂i − νi and hi1 = diag{hi11, hi12, hi13} with hi11 ∈ R, hi12 ∈ R, hi13 ∈ R being positive

constants.

The update law for Ŵi is designed as

˙̂
Wi = Γi[ϕi(ξi)ν̃

T
i − kW Ŵi]. (20)
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Figure 2 Distributed formation control architecture.

The resulting closed-loop network can be written by














żi1 = −riSzi1 − ki1zi1 + aid(−ν̃i + ẑi2 + qi1),

Mi
˙̃νi = −(hi1 + ki2)ν̃i − W̃T

i ϕi(ξi) + ǫi,

Mi
˙̂zi2 = −ki2ẑi2 − hi1ν̃i,

(21)

where qi1 = νir − αi1, ẑi2 = ν̂i − νir, and W̃i = Ŵi −Wi.

Taking the time derivative of qi1 and using (12), we have q̇i1 = −qi1/γi1 − α̇i1, whose solution is

qi1(t) = e
− t

γi1 qi1(0)−
∫ t

0 e
− t−τ

γi1 α̇i1(τ)dτ.

Then, we can compute an upper bound for qi1 as

‖qi1(t)‖ 6 e
− t

γi1 ‖qi1(0)‖+ γi1α
∗
i1d, (22)

where α∗
i1d is the upper bound for α̇i1. Note that the bound for α̇i1 exists as long as the inputs are

bounded. Since the energy to drive the vehicles is limited, the boundedness of α̇i1 is naturally satisfied

for practical marine applications.

Remark 5. When setting qi1(0) = 0, there exists a positive constant q∗i1 such that ‖qi1‖ 6 q∗i1 with

q∗i1 = γi1α
∗
i1d. By decreasing γi1, the bound for qi1 can be reduced accordingly.

To illustrate, a visualization of the distributed formation control architecture for the ith MSV is given

in Figure 2. For the ith MSV, it receives the position and velocity information from its neighbors and

makes decision based on neighborhood information. Local NNs based on its own states are used to

identify the vehicle dynamics. A key feature of the suggested control scheme is that the prediction errors

are used to update the NN adaptive laws at the kinetic level, which enables smooth and fast learning,

not only in steady state, but also in transient state.

3.2 Stability analysis

Theorem 1. Consider the closed-loop networked system consisting of the vehicle dynamics (1) (2),

the control law (17), the adaptive law (20), the first-order filter (12), together with the predictor (19)

under Assumptions 1 and 2. Then, all signals in the closed-loop system are uniformly ultimately bounded

(UUB), and inequalities (4) and (5) hold for some constants δ1 and δ2, provided that the control param-

eters are selected to satisfy






































κi11 = λmin(ki1)−
3aid
2

> 0,

κi12 = λmin(ki2)−
aid + 1

2
− λmax(hi1)

2
> 0,

κi13 = λmin(hi1 + ki2)−
λmax(hi1) + 1

2
> 0,

κi14 =
kW
2

− 1

2Γi
> 0.

(23)
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Proof . Consider the Lyapunov function candidate

V1(zi1, ẑi2, ν̃i, W̃i) =
1

2

N
∑

i=1

{

zTi1zi1 + ẑTi2Miẑi2 + ν̃Ti Miν̃i + Γ−1
i tr(W̃T

i W̃i)
}

. (24)

Its time derivative along (21) can be expressed as

V̇1 6

N
∑

i=1

{

− zTi1ki1zi1 + aidz
T
i1(−ν̃i + ẑi2 + qi1)− ẑTi2ki2ẑi2 − ẑTi2hi1ν̃i

− ν̃Ti (hi1 + ki2)ν̃i − kW tr(W̃
T
i Ŵi) + ν̃Ti ǫi − Γ−1

i tr(W̃T
i Ẇi)

}

. (25)

Using the following inequalities |ν̃Ti ǫi| 6 1
2‖ν̃i‖2 + 1

2ǫ
∗2
i , |zTi1qi1| 6 1

2‖zi1‖2 + 1
2q

∗2
i1 , |zTi1ẑi2| 6 1

2‖zi1‖2+
1
2‖ẑi2‖2, |zTi1ν̃i| 6 1

2‖zi1‖2+ 1
2‖ν̃i‖2, Γ

−1
i tr(W̃T

i Ẇi) 6
1

2Γi
‖W̃i‖2F+ 1

2Γi
W ∗2
id , −kW tr(W̃T

i Ŵi) 6 −kW
2 ‖W̃i‖2F

+kW
2 W ∗2

i , ẑTi2hi1ν̃i 6
λmax(hi1)

2 ‖ẑi2‖2 + λmax(hi1)
2 ‖ν̃i‖2, it can be followed from (25) that

V̇1 6

N
∑

i=1

{

−
(

λmin(ki1)−
3aid
2

)

zTi1zi1 −
(

λmin(ki2)−
aid + 1

2
− λmax(hi1)

2

)

ẑTi2ẑi2

−
(kW

2
− 1

2Γi

)

‖W̃i‖2F −
(

λmin(hi1 + ki2)−
λmax(hi1) + 1

2

)

ν̃Ti ν̃i

}

+ ε1, (26)

where ε1 =
∑N
i=1{ 1

2ǫ
∗2
i + 1

2q
∗2
i1 + kW

2 W ∗2
i + 1

2Γi
W ∗2
id }.

Using (23) and letting κ1 = mini=1,...,N{2κi11, 2κi12/λmax(Mi), 2κi13/λmax(Mi), 2κi14Γi}, the inequal-
ity (26) becomes

V̇1 6 −κ1V1 + ε1. (27)

Therefore, all signals in the closed-loop network (e.g., zi1, ẑi2, W̃i, ν̃i) are UUB [59]. Solving the inequality

(27) gives

V1 6
ε1
κ1

(

1− e−κ1t
)

+ V1(0)e
−κ1t. (28)

Note that ‖z1‖2/2 6 V1, and then

‖z1‖2 6
2ε1
κ1

(

1− e−κ1t
)

+ 2V1(0)e
−κ1t,

from which we derive that the tracking error ‖z1‖ 6
√

2ε1/κ1 as t → ∞. By Lemma 1 and Assump-

tion 1, one has ‖si‖ 6
1

o(H)

√

2ε1/κ1 as t→ ∞. In addition, note that ‖ηi− ηj −Pij‖ 6 ‖si‖+ ‖sj‖, then
Eq. (4) is satisfied with δ1 = 2

o(H)

√

2ε1/κ1.

Since ‖∑N
i=1

ηi
N − η0‖ 6

∑N
i=1

‖zi1‖

N , it implies (5) with δ2 = 1
o(H)

√

2ε1/κ1.

By appropriately increasing the parameter κ1, the bounds δ1 and δ2 can be reduced. The proof is

complete.

Remark 6. In a related work [10], leader-follower formation controllers were developed for MSVs

based on the NDSC approach. Compared to [10], the differences are two-fold. First, the work in [10]

considers the formation control of MSVs being lack of sharing information; while in this paper, distributed

formation controllers based on information of neighbors are constructed. Second, the proposed PNDSC

design approach results in new distributed formation controllers.

3.3 Transient analysis

In the following section, we quantify the transient performance of the proposed method by deriving

truncated L2 norm of Ẇi. This metric relates to the frequency characteristics of a signal [60]. Generally,

a larger L2 norm of Ẇi in a specified time duration implies more oscillations contained in the signal of

Wi. In this subsection, we show that the L2 norm of Ẇi of the proposed PNDSC architecture is smaller

than that of NDSC approach by selecting the parameter hi1, and thus yields the improved transient

performance.
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3.3.1 Transient analysis using PNDSC approach

Recalling (21), the prediction error dynamics of ν̃i can be written as

Mi
˙̃νi = −(hi1 + ki2)ν̃i − W̃T

i ϕi(ξi) + ǫi. (29)

Note that the control signal τi serves as an input to both systems, i.e., the plant (2) and the predictor

(19); however, the stability of the prediction error dynamics does not depend on the control input τi.

This means that the estimation loop is decoupled from the control loop since the updating law (20) only

depends on the prediction error ν̃i.

Here, we first establish the transient property for ν̃i in terms of its truncated L2 norm; and then, we

derive the transient property for
˙̂
Wi by making use of (20).

Theorem 2. Consider the prediction error dynamics (29) together with the adaptive law (20); then,

the truncated L2 norms of ν̃i and
˙̂
Wi satisfy

‖ν̃i‖L2,t∗ 6
1

√

2λmin(hi1 + ki2)− 1

(

√

λmax(Mi)‖ν̃i(0)‖+
‖W̃i(0)‖F√

Γi
+
√

2ε∗1t
∗

)

, (30)

and

‖ ˙̂
Wi‖L2,t∗ 6

√
2Γiϕ

∗
i

√

2λmin(hi1 + ki2)− 1

(

√

λmax(Mi)‖ν̃i(0)‖+
‖W̃i(0)‖F√

Γi
+
√

2ε∗1t
∗

)

+
√
2ΓikW

(

√

2Γiε∗1
κiT

+
√

λmax(Mi)‖ν̃i(0)‖
√

Γi + ‖W̃i(0)‖F +W ∗
i

)

√
t∗. (31)

Proof . Consider the following Lyapunov function candidate

V (t) =
1

2
ν̃Ti Miν̃i +

1

2Γi
tr(W̃T

i W̃i). (32)

The time derivative of V (t) along (20) and (29) is given by

V̇ (t) = −ν̃Ti (hi1 + ki2)ν̃i − kW tr(W̃T
i Ŵi) + ν̃Ti ǫi − Γ−1

i tr(W̃T
i Ẇi), (33)

which can be further formed into

V̇ (t) 6 −
(

λmin(hi1 + ki2)−
1

2

)

ν̃Ti ν̃i −
(kW

2
− 1

2Γi

)

‖W̃i‖2F + ε∗1, (34)

where ε∗1 = 1
2ǫ

∗2
i + kW

2 W ∗2
i + 1

2Γi
W ∗2
id .

Letting κiT = min{2λmin(hi1 + ki2)− 1, ΓikW − 1} > 0, the inequality (34) can be written as V̇ (t) 6

−κiTV (t) + ε∗1, whose solution is

V (t) 6
ε∗1
κiT

(

1− e−κiT t
)

+ V (0)e−κiT t. (35)

Similarly, we can derive that ‖ν̃i‖ and ‖W̃i‖ are bounded by

‖ν̃i‖ 6
1

√

λmin(Mi)

(

√

2ε∗1
κiT

+
√

λmax(Mi)‖ν̃i(0)‖+
‖W̃i(0)‖F√

Γi

)

(36)

and

‖W̃i‖F 6
√

Γi

(

√

2ε∗1
κiT

+
√

λmax(Mi)‖ν̃i(0)‖+
‖W̃i(0)‖F√

Γi

)

, (37)

where the inequality
√
a+ b 6

√
a+

√
b with a > 0 and b > 0 has been used.
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Recalling the inequality (34), we obtain

(

λmin(hi1 + ki2)−
1

2

)

‖ν̃i‖2 6 −V̇ (t) + ε∗1, (38)

by integration of which over t ∈ [0, t∗] gives

‖ν̃i‖2L2,t∗ 6
V (0)

λmin(hi1 + ki2)− 1/2
+

ε∗1t
∗

λmin(hi1 + ki2)− 1/2
. (39)

Noting that

√

V (0) 6

√

λmax(Mi)√
2

‖ν̃i(0)‖+
‖W̃i(0)‖F√

2Γi
, (40)

one has (30).

Next, we explicitly derive the upper bound for ‖ ˙̂
Wi‖. To this end, recalling the expression of

˙̂
Wi

in (20), we have

‖ ˙̂
Wi‖F 6 Γi‖ϕi(ξi)‖‖ν̃i‖+ ΓikW ‖Ŵi‖F . (41)

Using the bounds for ϕi(ξi) and Wi and noting (37), we have

‖ ˙̂
Wi‖F 6 Γiϕ

∗
i ‖ν̃i‖+ ΓikW (W̃ ∗

i +W ∗
i ), (42)

which results in

‖ ˙̂
Wi‖2L2,t∗ 6 2Γ 2

i ϕ
∗2
i ‖ν̃i‖2L2,t∗ + 2Γ 2

i k
2
W (W̃ ∗

i +W ∗
i )

2t∗, (43)

where W̃ ∗
i =

√
Γi(
√

2ε∗1/κiT +
√

λmax(Mi)‖ν̃i(0)‖+ ‖W̃i(0)‖F /
√
Γi). Here, we can obtain

‖ ˙̂
Wi‖L2,t∗ 6

√
2Γiϕ

∗
i ‖ν̃i‖L2,t∗ +

√
2ΓikW (W̃ ∗

i +W ∗
i )
√
t∗. (44)

From (30) and (37), we finally have (31).

Remark 7. From (30) and (31), it is clear that by increasing λmin(hi1), one can decrease the L2 norms

of ν̃i and
˙̂
Wi; i.e., reduce the oscillations in neural adaptive control signals.

Remark 8. The state of the predictor (19) can be easily initialized such that ν̂i(0) = νi(0); then, the

truncated L2 norms of ν̃i and
˙̂
Wi are

‖ν̃i‖L2,t∗ 6
1

√

2λmin(hi1 + ki2)− 1

(

‖W̃i(0)‖F√
Γi

+
√

2ε∗1t
∗

)

, (45)

and

‖ ˙̂
Wi‖L2,t∗ 6

√
2Γiϕ

∗
i

√

2λmin(hi1 + ki2)− 1

(

‖W̃i(0)‖F√
Γi

+
√

2ε∗1t
∗

)

+
√
2ΓikW

(

√

2Γiε∗1
κiT

+ ‖W̃i(0)‖F +W ∗
i

)

√
t∗. (46)

3.3.2 Transient analysis using NDSC approach

In order to explicitly demonstrate the transient performance improvement of the proposed method, we

derive the truncated L2 norm of
˙̂
Wi using the NDSC approach.

By substituting the control law (17) into (14), we derive

Miżi2 = −ki2zi2 − W̃T
i ϕi(ξi) + ǫi. (47)
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In light of the updating law (18), one can find that the estimation loop is coupled with the control loop,

since the convergence of tracking error zi2 influences the learning behavior of NN.

The following corollary is straightforward by taking hi1 = 0 and replacing ν̃i with zi2 in proving the

Theorem 2.

Corollary 1. Consider the error dynamics of zi2 together with the adaptive law (20); then, the

truncated L2 norms of zi2 and
˙̂
Wi satisfy

‖zi2‖L2,t∗ 6
1

√

2λmin(ki2)− 1

(

√

λmax(Mi)‖zi2(0)‖+
‖W̃i(0)‖F√

Γi
+
√

2ε∗1t
∗

)

(48)

and

‖ ˙̂
Wi‖L2,t∗ 6

√
2Γiϕ

∗
i

√

2λmin(ki2)− 1

(

√

λmax(Mi)‖zi2(0)‖+
‖W̃i(0)‖F√

Γi
+
√

2ε∗1t
∗

)

+
√
2ΓikW

(

√

2Γiε∗1
κiT

+
√

λmax(Mi)‖zi2(0)‖
√

Γi + ‖W̃i(0)‖F +W ∗
i

)

√
t∗. (49)

Proof . Omitted here.

Remark 9. From (48) and (49), we find that one possible way to decrease L2 norm of
˙̂
Wi is by

decreasing Γi. This results in the classic trade-off performance in neural adaptive control. By choosing a

small adaptive gain Γi, the oscillations in the neural weight Ŵi can be reduced; however, this will results

in poor tracking performance of zi2. Besides, note that zi2 cannot be initialized to be zero to deduce its

impact on ‖ ˙̂
Wi‖L2,t∗ . In short, compared with the NDSC approach, the proposed PNDSC architecture

provides two avenues (extra freedom) to improve the transient performance of NN-based DSC design

in terms of decreasing the L2 norms of key adaptive signals. One is done by increasing the parameters

λmin(hi1); and the other is by initializing ν̂i(0) = νi(0).

4 DFT without using neighbors’ velocity information

In the previous section, both the velocity and position information of neighbors are required for controller

design. However, from a practical perspective, it is desirable to only use the position information of

neighboring vehicles because the velocity information may not be available in some circumstances. On

the other hand, using position information alone may be helpful in decreasing the network burden. In

addition, note that as observed in nature, each individual is able to sense the positions of its neighbors, and

the velocities must be estimated or evaluated by their local controllers. Therefore, the control objective

of this section is to achieve the DFT without using velocity information of neighbors. In this section, we

continue to use the notations defined in the previous section. If they need to be changed, we redefine

them explicitly.

4.1 Controller design

Rewrite the dynamics of zi1 as

żi1 = −riSzi1 + aid[νi − ωi(t)], (50)

where ωi(t) is expressed by

ωi(t) =

∑N
j=1 aijR

T
i Rjνj(t) + ai0R

T
i η̇0(t)

aid
, (51)

which is treated as a composite disturbance imposed on the system. Since the vehicles are mechanical

systems, subject to Newton’s second law, their velocities and accelerations are reasonably bounded.

Therefore, there exist positive constants ω∗
i ∈ R and ω∗

id ∈ R such that ‖ωi(t)‖ < ω∗
i and ‖ω̇i(t)‖ < ω∗

id.
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Consider a state predictor as follows:

˙̂zi1 = −riSẑi1 + aid[νi − ω̂i(t)]− (hi2 + ki1)z̃i1, (52)

where z̃i1 = ẑi1 − zi1; ω̂i(t) is an estimate of ωi(t); hi2 = diag{hi21, hi22, hi23} with hi21 ∈ R, hi22 ∈
R, hi23 ∈ R being positive constants.

The update law for ω̂i(t) is given by

˙̂ωi(t) = Γiω [aidz̃i1 − kωω̂i(t)], (53)

where Γiω ∈ R and kω ∈ R are positive constants.

With the developed predictor, a virtual control law αi2 is proposed as follows:

αi2 =− ki1
aid

zi1 + ω̂i(t). (54)

Let αi2 pass through a first-order filter bank with a time constant γi2 ∈ R to obtain the filtered control

signal νir as follows:

γi2ν̇ir = αi2 − νir, αi2(0) = νir(0), (55)

where γi2 > 0.

The resulting closed-loop system can be described by























˙̂zi1 = −riSẑi1 − ki1ẑi1 − hi2z̃i1 + aid(−ν̃i + ẑi2 + qi2),

˙̃zi1 = −riSz̃i1 − (hi2 + ki1)z̃i1 − aidω̃i(t),

Mi
˙̂zi2 = −ki2ẑi2 − hi1ν̃i,

Mi
˙̃νi = −(hi1 + ki2)ν̃i − W̃T

i ϕi(ξi) + ǫi,

(56)

where qi2 = νir − αi2, and ‖qi2‖ 6 q∗i2 with q∗i2 being a constant.

4.2 Stability analysis

Theorem 3. Consider the closed-loop networked system consisting of the vehicle dynamics (1) (2), the

control law (17) (54), the adaptive law (20) (53), the first-order filter (55), together with the predictor

(19) (52) under Assumptions 1 and 2. Then, all signals in the closed-loop system are UUB, and the

inequalities (4) and (5) hold for some constants δ1 and δ2, provided that the control parameters are

selected to satisfy



































































κi21 = λmin(ki1)−
3aid
2

− λmax(hi2)

2
> 0,

κi22 = λmin(ki2)−
aid + 1

2
− λmax(hi2)

2
> 0,

κi23 = λmin(hi1 + ki2)−
λmax(hi1) + 1

2
> 0,

κi24 =
kW
2

− 1

2Γi
> 0,

κi25 = λmin(hi2 + ki1)−
λmax(hi2) + 1

2
> 0,

κi26 =
kω
2

− 1

2Γiω
> 0.

(57)

Proof . The proof details are similar to the proof of Theorem 1, which are omitted here.

The above procedure illustrates the stability analysis of DFT control without using neighbors’ velocity

information, and the transient properties of neural adaptive terms can be established as the same as in

Subsection 3.3, which are omitted here.
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Figure 3 Communication topology. Figure 4 (Color online) Formation trajectories.

Remark 10. In contrast to the previous design where both the position and velocity information of

neighboring agents are required, the proposed design in this section only use the relative position infor-

mation of neighboring agents and its own states. Therefore, the information required to be communicated

is reduced. Moreover, this design is also useful for practical applications where only local sensors (e.g.,

visual sensors) are equipped; i.e., only the relative position information can be available for feedback.

Remark 11. Note that the parameter selection depends on the value of aid, which is connected with

the network links. Once the network is determined, the qualified forms of aid will be known; then, ki1,

ki2, and ki3 can be chosen accordingly. In practical engineering system, ki1 and ki2 are designed based

on the desired output responses. In general, large control gains of ki1, and ki2 lead to fast responses.

However, they may also result in large control signals in the initial stage. Therefore, a trial and try should

be performed to obtain satisfactory performance. As for NN parameters, the adaptive gains Γi can be

selected as large as possible, subject to the limitations of hardware. hi1 and hi2 determine the damping

of NN learning. Hence, by properly selecting hi1, a smoother approximation can be obtained.

5 An example

Consider a network of marine vehicles whose dynamic is governed by a model ship and its parameters

are m11 = 25.8, m22 = 33.8, m23 = m32 = 1.0948, m33 = 2.760, c13 = −c31 = −33.8v − 1.0948r, c23 =

−c32 = 25.8u, d11 = 0.72+1.33|u|+5.87u2, d22 = 0.8896+36.5|v|+0.805|r|, d23 = 7.25+0.845|v|+3.45|r|,
d32 = 0.0313+ 3.96|v|+ 0.130|r|, d33 = 1.90− 0.080|v|+ 0.75|r|. The ocean disturbances are modeled as

the first-order Gauss-Markov processes.

A networked system consisting of five MSVs is considered where the communication topology is de-

scribed by Figure 3 with the vehicle 2 being the leader. The controllers given in Theorem 1 are applied

to the vehicle network. The formation shape is set to P1 = [−1, 0, 0]T, P2 = [− cos(2π/5), sin(2π/5), 0]T,

P3 = [− cos(2π/5), − sin(2π/5), 0]T, P4 = [cos(π/5), sin(π/5), 0]T, P5 = [cos(π/5), − sin(π/5), 0]T. The

control parameters are chosen as hi1 = diag{516, 676, 55.2}, ki1 = diag{2, 2, 2}, ki2 = diag{119, 169, 13.8},
Γi = 10000, kW = 0.001, and γi1 = 0.02. To illustrate, the PNDSC scheme is compared with the NDSC

approach [44], and the same adaptive parameters are selected for the direct adaptive laws in the NDSC

approach.

Figure 4 demonstrates the formation trajectories of the five MSVs, and it can be seen that a star

formation is well established despite being disturbed by the model uncertainty and unknown ocean

disturbances. In Figure 5, (a) and (b) depict the output response of the NDSC and PNDSC approach,

respectively, where x−i = xi − pix, y
−
i = yi − piy and ψ−

i = ψi − piψ. (c) shows the tracking error
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Figure 5 (Color online) Output comparisons of (a) the NDSC and (b) PNDSC approaches. Leader (dot line) and followers

(solid line). (c) Tracking error norms of z1.

norms of z1, and it reveals that the tracking performance for the PNDSC and NDSC is almost the

same, but the transient performance can be quite different. The learning profile of NN using the NDSC

and PNDSC approach, respectively, corresponding to the first vehicle, are shown in Figures 6 and 7.

Figure 6 demonstrates that the NN is able to capture the unknown vehicle dynamics in the steady state,

but experiences poor learning transient. By contrast, Figure 7 shows that a smooth and fast learning

process can be reached using the PNDSC approach. The control signals using the NDSC and PNDSC

approaches are shown in Figure 8, where it demonstrates that the steady control efforts for the NDSC

and PNDSC are the same, however, the PNDSC method has better transient properties than the NDSC

approach, with less oscillations in the control signals.

6 Conclusion

In this paper, we considered the DFT problem of multiple MSVs in the presence of model uncertainty and

time-varying ocean disturbances. DFT controllers are developed with the aid of a new PNDSC approach.

These controllers are designed to ensure that a relative formation among vehicles can be reached in a

distributed manner for directed graphs containing a spanning tree. Lyapunov analysis demonstrated

that all signals in the closed-loop systems are UUB, and the formation tracking errors converge to a

small neighborhood of the origin. An extension to DFT using relative position information is further

studied. Comparative studies are given to show the substantial improvements of well known results in

the literature. Several possible extensions of the presented work are presented as follows:

• First, we considered the state feedback-based DFT of multiple MSVs in this paper. It will be

desirable to extend the result to the output feedback case where only the position information can be

available.
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Figure 6 (Color online) Learning profile of NN using the PNDSC. The NN estimation of (a) fu

1
(·) in the surge direction,

(b) fv

1
(·) in the sway direction, and (c) fr

1
(·) in the yaw direction.

Figure 7 (Color online) Learning profile of NN using the PNDSC. The NN estimation of (a) fu

1
(·) in the surge direction,

(b) fv

1
(·) in the sway direction, and (c) fr

1
(·) in the yaw direction.

• Second, in the presented work the reference trajectory η0 is time dependent. It will be interesting

to study DFT of multiple MSVs in the presence of a parameterized trajectory, i.e., distributed path

following problem.
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Figure 8 (Color online) Control inputs of the NDSC and PNDSC approaches. (a) Scale limits: Time(0-70), τu(0-200),

τv(0-200), τr(0-40); (b) scale limits: Time(0-5), τu(0-200), τv(0-200), τr(0-40); (c) scale limits: Time(0-70), τu(0-8), τv(0-8),

τr(0-8).

• Third, the vehicle considered in this paper is fully actuated. An extension to underactuated MSVs

will also be addressed in the future work.
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