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Abstract This paper presents a method for planar motion measurement of a swimming multi-joint robotic

fish. The motion of the robotic fish is captured via image sequences and a proposed tracking scheme is employed

to continuously detect and track the robotic fish. The tracking scheme initially acquires a rough scope of the

robotic fish and thereafter precisely locates it. Historical motion information is utilized to determine the rough

scope, which can speed up the tracking process and avoid possible ambient interference. A combination of

adaptive bilateral filtering and k-means clustering is then applied to segment out color markers accurately. The

pose of the robotic fish is calculated in accordance with the centers of these markers. Further, we address the

problem of time synchronization between the on-board motion control system of the robotic fish and the motion

measurement system. To the best of our knowledge, this problem has not been tackled in previous research on

robotic fish. With information about both the multi-link structure and motion law of the robotic fish, we convert

the problem to a nonlinear optimization problem, which we then solve using the particle swarm optimization

(PSO) algorithm. Further, smoothing splines are adopted to fit curves of poses versus time, in order to obtain

a continuous motion state and alleviate the impact of noise. Velocity is acquired via a temporal derivative

operation. The results of experiments conducted verify the efficacy of the proposed method.
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1 Introduction

The past decade has witnessed increasing interest and a plethora of research studies on robotic fish. Of

these, one critical research topic is motion measurement of the robotic fish, including acquisition of pose,

linear (angular) velocity, and acceleration. This is because motion information is indispensable for motion

performance evaluation [1], model parameter identification [2], and real-time motion control feedback [3].

In general, there are two kinds of sensors that can be used for motion measurement of robotic fish in

a laboratory environment: image sensor and inertial measurement unit (IMU). However, civilian IMUs

can not offer precise and reliable estimation of position and linear velocity, owing to temperature drift

and accumulated error. A good alternative is to measure motion using cameras, as they can obtain

more reliable, accurate, and abundant motion information. As a result, computer vision is widely used
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as means for motion measurement of robotic fish. The contents of this paper are focused on computer

vision-based methods. According to the positions in which the cameras are installed, the adopted vision

systems can be divided into two categories: on-board vision systems and global vision systems.

As the term suggests, on-board vision systems [4, 5], refer to cases in which the robotic fish carry

cameras on themselves. Such cameras are just like the eyes of the robotic fish and move together with

them. Robotic fish can extract their motion information from the visual features captured by their

eyes. Compared with global vision systems, the application of on-board vision systems is not constrained

to indoor environments. On-board vision systems may also operate in natural waters. However, motion

measurement by on-board vision systems is very challenging, because of lack of features, weak illumination

and poor image quality. At present, the accuracy of on-board systems is lower than that of global vision

systems.

Global vision systems are suitable for pose measurement in indoor experimental environments. In this

kind of systems, cameras are installed above or around a water tank with their fields of view covering

the range of motion of the robotic fish. Global vision systems can use either of two different approaches

to obtain motion information. One kind of approach [6, 7] extracts and tracks the whole posture or

silhouette of the robotic fish in each image. This kind of approach is able to obtain the full-body

motion information of the robotic fish. However, as a sword has double edges, this kind of approach

is time-consuming and therefore is not suitable for real-time applications. The other kind of approach

only tracks specific regions on the robotic fish, rather than considering the entire body. So this kind

of approach is much simpler, faster, and is consequently more commonly used. Various markers have

been established to designate the regions, such as light-emitting diodes (LEDs) [8], punctate markers [2,9]

attached along the midline of the robotic fish, and rectangular patches with specific colors [10]. Algorithms

have also been developed to detect the regions, with most of them based on background subtraction [11,12]

and threshold segmentation [8, 10, 11]. Tracking algorithms, e.g., Kalman filters [12], have also been

applied to motion state estimation. It has been observed that fluctuations and reflections on the water

surface caused by the motion of a robotic fish would lead to numerous false alarms after the background

subtraction operation. With respect to threshold segmentation methods, parameter tuning is tedious,

and image segmentation results are readily influenced by illumination changes. Yu et al. [10] proposed

an adaptive thresholding method to alleviate the effect of ambient light by analyzing the color statistics

of the background. However, appearance variations of markers are not only from ambient illumination

changes, but also from attitude changes and immersion by water. Consequently, realization of accurate

segmentation of markers through the above threshold-based methods is difficult.

In addition to pose measurement, the time information in a motion measurement system should also be

accurate in order to obtain precise motion measurement via global vision. The time of the motion mea-

surement system should definitely be synchronized with that of the on-board control system of the robotic

fish. Although nonconformity with this condition has only a minor impact on the calculation of velocity

and acceleration, it can lead to inaccuracy in the time information corresponding to a motion state. A mi-

nor inaccuracy in time information can cause significant differences in joint states or controlled quantities.

Further, it can affect some motion information applications, e.g., dynamic simulation [8] and identifica-

tion of hydrodynamic parameters [2]. Thus, time synchronization is another crucial technique in the

measurement system. Distributed modules in sensory systems usually demand a common synchronized

time reference for data integration [13], localization [14], and coordinated actuation [15], etc. In general,

time synchronization is solved by dedicated hardware [16], network synchronization protocols [17], and

timestamp filters [18]. For instance, Nakadai et al. [16] installed a potentiometer in their sound-tracking

wheeled robot to synchronize the sound signal and angle information captured from a sound card and an

encoder respectively. To implement a robot musical accompaniment, Lim et al. [17] synchronized audio

and visual cues via network time protocol. Nevertheless, owing to the additional hardware and software

synchronization capabilities needed in sensory systems, approaches based on hardware or communication

are often undesirable, especially in low-cost flexible solutions [18]. Furthermore, filtering methods are

often conducted under certain assumptions of noise probability distribution that may be impractical.

This paper proposes a method for precise planar motion measurement of a multi-link robotic fish. We
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summarize the contributions of this paper from the following three aspects. First, a simple and practicable

tracking scheme is proposed for continuous robotic fish detection and tracking. The main idea underlying

the tracking scheme is initial acquisition of a rough scope of the robotic fish followed by precise localization

thereafter. Historical motion information is utilized to determine the rough scope. This can speed up the

tracking process and avoid some ambient interference. Then, a combination of adaptive bilateral filtering

and k-means clustering is applied to accurately segment out color markers. The pose of the robotic

fish is calculated according to the centers of these markers. Second, an algorithm that synchronizes the

time of the motion measurement system with the on-board control system, which is different from any

traditional time synchronization methods, is presented. Exploiting both the multi-link structure of the

robotic fish and the motion law of joints, the problem is converted into a nonlinear optimization problem

with two unknown variables, and solved using the particle swarm optimization (PSO) algorithm. Third,

smoothing splines are adopted to fit curves of poses versus time in order to obtain a continuous motion

state and reduce the impact of noise. Velocity is further acquired by a derivative operation. The results

of experiments conducted verify the efficacy of the proposed method.

The remainder of this paper is organized as follows. Section 2 gives basic information about the

multi-link robotic fish and the motion measurement system. Section 3 elaborates on the tracking scheme.

Section 4 outlines the time synchronization problem and our corresponding solution. Section 5 presents

the proposed velocity estimation method. In Section 6, the experiments conducted on the robotic fish

prototype are described. Finally, Section 7 concludes this paper.

2 The robotic fish and the motion measurement system

The motion measurement method is oriented to a multi-link robotic fish built in our laboratory [19]. The

mechanical structure of the robotic fish is depicted in Figure 1(a). In brief, the robotic fish is composed

of a rigid head and a self-propulsive body. The body is designed as a multi-link hinge structure, which is

a popular style for robotic fish. This multi-link structure comprises four aluminum skeletons connected

in series along the body. In addition, the body ends with a rigid caudal fin affixed to the last link.

This configuration corresponds to four oscillating joints, which are actuated by servomotors with strong

torque and high speed. More specifically, each servomotor has a maximum output torque of 1.6 N·m and

maximum angular speed of 1000◦/s. The servomotors are controlled by a controller embedded in the

head of the robotic fish. This controller is equipped with an radio frequency (RF) transceiver to receive

commands or send data. Waterproof markers are attached to the skin out of the rigid shell, as shown in

Figure 1(b), which help to distinguish the robotic fish from the environment.

To measure the planar motion of the robotic fish, as illustrated in Figure 2, a measurement system was

constructed. The robotic fish swims in a pool filled with water. A video camera is mounted above the

pool and connected to a host computer. The camera has a resolution of 1292×964 and a maximum frame

rate of 30 fps (frames per second). In order to avoid strong reflection from the water surface, lighting

sources are shielded from the front cover. The side effect of this is that the illumination is weakened and

so the camera requires longer exposure time. In actuality, the camera operates at a frame rate around

22 fps for adequate exposure time during measurements. The camera sends captured image sequences

to the host computer via a USB interface. The computer stores these image data for off-line analysis,

or processes them on-line. In addition, the computer communicates with the robotic fish via an RF

transceiver, which operates at the same frequency. Thereby, commands or data are wirelessly exchanged

between the robotic fish and the host computer.

3 Pose measurement via global vision

Attached markers designate the pose of the robotic fish. It is necessary to find and segment out the

markers in each image as completely as possible for high accuracy. To reduce computation cost, searching

in an entire image every time should be avoided. Historical motion data during swimming helps to narrow
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Figure 1 Multi-link robotic fish. (a) Internal structure; (b) prototype with markers.

Figure 2 Schematic of the motion measurement system.

the search scope. Thus, as illustrated in Figure 3, a tracking scheme is adopted to detect and track the

color markers continuously in captured image sequences. The main idea of the tracking scheme is to

determine an approximate scope in which the robotic fish can first be located and then obtain an exact

location. The motion information in a previous frame is applied to predict a possible region in the next

frame. Further, the condition that the robotic fish may disappear from the “field of view” during tracking

is considered in the tracking scheme, which is handled through a rediscovery mechanism. In essence, the

tracking scheme can be regarded as a universal tracking framework. The concrete process of each part

of the tracking scheme is detailed below:

(1) Search globally. In this step, the markers are searched in the entire scope of an image. Under

normal circumstances, it is applied to initialize a region of interest (ROI) at the very first frame because
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Figure 3 Diagram of the tracking scheme.

no historical motion data exists. Further, this step can also be invoked when the “search around” fails

to find the markers. The searching process is mainly based on appearance discrepancies between the

markers and the background. The rectangular marker has the characteristic that its pixel values are

obviously higher than the background in the R channel of a normalized RGB image. In like fashion,

it is also observed that the Cb components of the triangular markers are lower than the background in

the YCrCb space. To reduce the impact of illumination, we propose a color histogram based adaptive

threshold (CHAT) method specific to the markers. The following method is for the case of the rectangular

marker. An RGB image is first converted to a normalized RGB image. Then, a cumulative histogram is

built for the R channel of the normalized RGB image. Assume that the R components of the markers are

higher than the background. Given a percentage of the pixel number of the markers to that of the whole

image, a threshold value can be calculated according to the cumulative histogram built. The region of

the markers can be obtained through a thresholding process using the threshold value. Once settled, the

percentage value functions well although illumination changes in a normal range. It is not necessary to

tune the percentage value repeatedly to split off the whole marker, because only a rough position of the

robotic fish is required in this step. Area size information is also applied to filter out underlying false

alarms. The coordinate of the marker’s center, denoted by (x̄, ȳ), can be calculated as follows:

x̄ =
1

n

n
∑

i=1

xi, ȳ =
1

n

n
∑

i=1

yi, (1)

where n is the number of pixels in the region acquired, and (xi, yi) is the coordinate of the ith pixel in

the region. Finally, this step outputs (x̄, ȳ). The strategy above can also be applied to the other marker.

The search process is more reliable when both markers are detected at the same time.

(2) Set ROI. Given a center (x̄, ȳ), an ROI is set as a rectangular region of an image:
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where W and H are the width and height of the image respectively, and w and h are the width and

height of an ROI.

(3) Segmentation. Whether the markers can be segmented out accurately in this step determines the

ultimate localization precision. As shown in Figure 4, two stages constitutes the segmentation process:

adaptive bilateral filtering [20] and k-means clustering [21]. The segmentation process is implemented on

each ROI. It is not conducive to subsequent processing that initial images are noisy. Thus, after an ROI is

set up, an adaptive bilateral filter is adopted to smooth the ROI while preserving sharp edges. In essence,

the image filtering process implements a weighted average operation to each pixel by its neighborhood

pixels. Crucially, the weights here are determined by not only the Euclidean distance of pixels but also

the discrepancies of color intensity. Figure 4 shows that the filtering process improves the quality of

an ROI dramatically. Nevertheless, the markers still show considerable intra-regional diversity, owing to

illumination angle differences and immersion by water. It is difficult for a thresholding process to segment

out the markers accurately and completely. Therefore, k-means clustering, a simple unsupervised method,
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Figure 4 The segmentation process.

is adopted. Pixels constituting the markers are collected according to the similarity between each other

rather than an absolute threshold. Each pixel p in the ROI is described by a feature vector composed of

its RGB values, i.e., p = [R G B]T. All the pixels are partitioned to k sets, i.e., Q = {S1, S2, . . . , Sk}, to

minimize the within-cluster sum of squares:

arg
Q

min

k
∑

i=1

∑

p∈Si

(p− ui)
T
· (p− ui), (3)

where ui is the mean of the feature vectors in Si. Compared with general k-means methods, the initial-

ization manner of mean values is different here. Historical data is utilized to reduce iteration times: the

mean vector at frame j is initialized by the corresponding one at frame j − 1 if j > 1, i.e., ui,j = ui,j−1.

Once clustering is accomplished, regions of the markers are among the k sets. In Figure 4, the circled

regions are pixel sets corresponding to the two markers.

(4) Validation. On completion of the segmentation process, pixel sets corresponding to the markers

are selected and checked in this step. The mean RGB values of the two markers in the latest m frames

are recorded, i.e., Ui,j−1 = {ui,j−m, ui,j−m+1, . . . , ui,j−1}. Pixel set Si can be regarded as a candidate

region if
∣

∣ui,j − Ūr,j−1

∣

∣ 6 λ · σr,j−1 and |ai,j −Ar| 6 εr, (4)

where Ur,j−1 is the record of the red marker; Ūr,j−1 and σr,j−1 are the mean vector and the vector of

standard deviation, i.e., Ūr,j−1 = 1
m

∑m

q=1 ur,t−q, σr,j−1 = std(Ur,j−1); λ is a coefficient; ai,j is the area

of Si; Ar is the real area of the red marker; and εr is the allowed area deviation of the red maker. The

criteria described in (4) are also applied to find and check the other marker. If both the markers are

available, this module outputs “normal” and goes to “pose calculation” next. Otherwise, the robotic fish

is deemed to be “missing” and there is a need to search around.

(5) Search around. The scheme in this step is the same as that in “search globally” except for the

search scope. The scope is also set as a rectangular region, whose width and height are doubled relative

to an ROI. If both markers are found, a new ROI is set. Otherwise, “search globally” is activated.

(6) Pose calculation. The position of the head apex is utilized to represent the location of the robotic

fish. The pose at frame j can be calculated as follows:

αj = arctan((yr,j − ye,j)/(xr,j − xe,j))(xa,j , ya,j) = (xr,j + l · cosαj , yr,j + l · sinαj), (5)

where (xa,j , ya,j) is the coordinate of the head apex, αj denotes the yaw angle, l is the distance from the

center of the rectangular marker to the head apex, and (xr,j , yr,j) and (xe,j , ye,j) are the centers of the

two markers, respectively. The centers can be calculated by (1) when regions of the markers are obtained.

(7) Predict. The rough location of the robotic fish in the next frame can be predicted based on historical

motion data. A constant velocity motion model is adopted to describe the motion of the robotic fish,

although it is inconsistent with the reality. It is easy to calculate the moving distance between two

consecutive frames:

∆j = (xc,j − xc,j−1, yc,j − yc,j−1) , (6)

where (xc,j , yc,j) =
1
2 (xr,j + xe,j , yr,j + ye,j). According to the assumption of constant velocity motion,

we can predict the location of the robotic fish at frame j + 1 as follows:

(x̂c,j+1, ŷc,j+1) = (xc,j , yc,j) + ∆j = (2xc,j − xc,j−1, 2yc,j − yc,j−1) , (7)
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Figure 5 Illustration of timeline.

where (x̂c,j+1, ŷc,j+1) is the predicted position. Specifically, a prediction may be inaccurate, but it can

be used to set the ROI in the next frame because the robotic fish can not move a long distance during a

short time slice.

The tracking process outputs the pose of the robotic fish in each frame. More precisely, poses above

are in the image coordinate system. Through camera calibration, we can obtain corresponding poses in

the world coordinate system.

4 Time synchronization

A single image only reserves the static state of the robotic fish at a point in time. Connecting static

states via a timeline creates the motion information. It is necessary to guarantee an accurate timebase

for a precise motion measurement system. Because the motion measurement system and the on-board

control system have independent time systems, the exact time point when the robotic fish executes a start

command is not knowable by the motion measurement system. Thus, a problem of time synchronization

inevitably arises. This problem has been ignored in previous studies on robotic fish. In this section, this

problem is first analyzed. Then, a method that exploits the multi-link structure of the robotic fish and

the motion law of its joints is proposed to solve the problem.

4.1 Problem analysis

The essence of time synchronization is determination of a precise corresponding time point when each

state of the robotic fish appears. The motion measurement system captures frames one at a time, each

of which records the static state at a time point on a timeline. As illustrated in Figure 5, the origin of

the timeline is the time point where the robotic fish just begins to swim. Frame 1 denotes the first frame

in which motion appears, and time intervals between two consecutive frames are equal. Therefore, we

require the two key time parameters, t1 and T , demonstrated in Figure 5, to obtain an accurate time

point for each frame.

Although it is the motion measurement system that sends the start command, the exact time point at

which the robotic fish starts is unclear to the system. This is because it is the on-board control system

that parses and executes the start command. The start time point can be acquired easily and accurately

in the on-board control system, because the system is dedicated to real-time control tasks. Nevertheless,

the time systems of these two systems are independent and share no common reference. Consequently,

even though an accurate timestamp of the first frame can be obtained, we are uncertain about the time

length from the start time point to the first frame, i.e., t1.

The time interval between two consecutive frames, T , is another important time parameter. The

precise value of the parameter is also mysterious. There are two main reasons for this. Firstly, the

timestamp attached to each frame is not sufficiently accurate to be used, owing to the non-realtime and

non-deterministic scheduling specialties of the operating system (Microsoft Windows) installed on the

host computer. An instance of time intervals is given, which are calculated by the timestamps acquired

from the host computer, as shown in Figure 6. Specifically, the Windows API called query performance

counter is utilized to acquire timestamps. Figure 6 shows that the timestamps attached to the frames are
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Figure 6 Time intervals calculated using timestamps from the host computer.

not consistent with the periodic characteristic of the sampling process of the camera. Secondly, the frame

rate of the camera is related to the time of exposure and readout. Suppose that the readout time keeps

constant for relevant parameters are fixed. Once the exposure time is fixed, the frame rate will remain

constant. When the exposure time is adjusted to meet actual demand, the frame rate will change. A

rough value of frame rate is clear, whereas it is difficult to acquire the precise frame rate of the camera.

Estimating T using a rough frame rate will lead to deviation of T , denoted by ∆T . As a result, time

errors in each frame will accumulate over time. For frame N , the error of its time point will reach N ·∆T .

Note that the control period of the on-board control system is 40 ms. If ∆T = 1 ms, the time errors will

surpass a control period after 40 frames. The increasing time errors will cause significant deviation in the

joint states. An instance demonstrates the angular deviation of the four joints and distance deviation of

the caudal fin’s endpoint when ∆T = 1 ms, as shown in Figure 7. The instance indicates that even a

millisecond error in T can result in a significant deviation. The cumulative time errors lead to significant

mismatch between joint states and motion information, which will affect applications such as model

parameter identification. Therefore, T should be as accurate as possible.

4.2 Solution

The real-time capability of the on-board control system makes for a promising solution to the problem

of time synchronization. Owing to the high-speed characteristic and the innate scheme of closed-loop

control, the servomotors are able to reach a target angle within a control period. The joints rotate

according to a given rule, which provides the target joint angles at different time points. Thus, the joint

states connote corresponding time information. The problem can be solved by matching the joint states

captured by images with the given motion rule.

Specifically, the motion of the joints conforms to the Hopf oscillator-based central pattern generator

(CPG) model [22] below:















ξ̇i = −ωi(ψi − bi) + ξi(Ai − ξi
2 − (ψi − bi)

2) + h1(ξi−1 cosϕ+ (ψi−1 − bi−1) sinϕi),

ψ̇i = ωiξi + (ψi − bi)(Ai − ξi
2 − (ψi − bi)

2
) + h2(ξi+1 sinϕ+ (ψi+1 − bi+1) cosϕi),

θi = ciψi,

(8)

where subscript i indicates the ith oscillator (i = 1, 2, 3, 4), ξi and ψi are the oscillation states, the

“dot” over the head of ξi and ψi represents temporal derivative d./dt, ωi and Ai denote the intrinsic
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Figure 7 Deviation of joint states when ∆T = 1 ms. (a) Deviation of joint angles; (b) distance deviation of the caudal

fin’s endpoint.

Figure 8 Matching a virtual skeleton with the real skeleton of the robotic fish.

oscillation frequency and amplitude, h1 and h2 are the coupling weights, ϕi is the phase difference

between neighboring oscillators, bi denotes the directional bias, ci is the magnification coefficient, and θi
is the output of the ith oscillator (i.e., the target angle of the ith joint). Given the parameters of the

CPG model, the motion law of the joints described in (8) is a function of time t, which can be formalized

concisely as follows:

ηt = fcpg(t|γ), (9)

where γ denotes the parameters of the CPG model, and ηt is a vector composed of the four joint angles

at time t, i.e., ηt = [θ1,t, θ2,t, θ3,t, θ4,t]. Consequently, joint angles corresponding to any time point can

be calculated using (9).

In reality, the joints are covered with a waterproof skin. Consequently, extracting the joint angles

directly in an image is difficult. Fortunately, the joint angles determine the position of the caudal fin’s

endpoint, which is relatively easy to locate. Therefore, we turn to matching of the caudal fin’s endpoint

instead of the joint angles. A virtual skeleton is estimated to fit the shape of the real fish in each image,

as illustrated in Figure 8. The skeleton of the robotic fish is regarded as a multi-link structure. The

virtual skeleton shares the same head with the robotic fish. The position of the head apex and the yaw
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angle in each frame can be obtained in the tracking process. With the head’s pose settled, the position

of the caudal fin’s endpoint Pv,t is determined by the joint angles ηt:















xv,t = xa,t + l0 cosαt +
4
∑

i=1

li cos

(

αt +
i
∑

j=1

θj,t

)

,

yv,t = ya,t + l0 sinαt +
4
∑

i=1

li sin

(

αt +
i
∑

j=1

θj,t

)

,

(10)

where (xa,t, ya,t) is the coordinate of the head apex Pa,t, (xv,t, yv,t) is the coordinate of Pv,t, l0 indicates

the length of the head, and li denotes the length of the ith link. If t is the precise time point corresponding

to a frame, then the endpoint of the virtual skeleton should overlap the endpoint of the real skeleton.

The precise time point corresponding to Frame j can be calculated below:

tj = t1 + (j − 1)T. (11)

It is clear that parameters t1 and T determine tj , the joint angles ηtj , furthermore the location of Pv,tj ,

and eventually the distance between Pv,tj and Pr,tj . Given a set of real endpoints in several images,

t1 and T can be solved by minimizing the square summation of distance between the real and virtual

endpoint pairs as follows:

arg
t1,T

min
∑

j∈I

∥

∥Pr,tj − Pv,tj

∥

∥

2

2
, (12)

where ‖·‖2 denotes the Euclidean norm, I is a set containing indexes of frames at which real endpoints

are given, and I should own at least two elements because there are two parameters to be solved for.

Consequently, the problem of time synchronization is converted to a nonlinear optimization problem,

which can be formalized by a combination of (9)–(12) as follows:



















































arg
t1,T

min
∑

j∈I

∥

∥Pr,tj − Pv,tj

∥

∥

2

2
,

Pv,tj = g(ηtj |Pa,tj , αtj ),

ηtj = fcpg(tj |γ),

tj = t1 + (j − 1)T,

TL 6 T 6 TU ,

0 6 t1 < T,

(13)

where the function g(·) is a simplified representation of (10), and TL and TU are the lower and upper

bounds of T , respectively. Considering the nonlinearity of the problem described in (13), we adopt the

PSO algorithm [23] to solve for t1 and T . PSO is a population-based stochastic search algorithm, in

which both local and global best known data is used to adjust the action of each particle. An open source

tool [24] that implements the PSO algorithm is applied to solve the problem. As stated above, a set of

endpoints need to be extracted from several images. We mark the endpoints manually because detecting

them automatically and directly is very difficult. Attaching a certain marker to the tailfin would make

automatic detection easy and feasible. A more accurate solution will be obtained when the endpoints are

extracted from images with large indexes. This is attributable to the cumulative effect of errors illustrated

in Figure 7, which can only be terminated by accurate time parameters. Further, the more endpoints we

supply, the more reliable the result will be, although two endpoints can also generate a solution.

5 Velocity estimation

With pose and time information ready, the velocity of the robotic fish can be estimated. First, we need to

determine the continuous relationship between poses and time. Because the poses obtained through the

tracking process are a discrete time series. Furthermore, it is inevitable that the pose data is contaminated
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Figure 9 The segmentation results: from Frame 1 to Frame 298 with a uniform interval of 11 frames.

by noise. Nevertheless, velocity estimation should be implemented with derivative operations, which will

amplify the noise. Thus, steps should be taken to relieve the impact of noise.

To satisfy these two requirements, we adopt smoothing splines [25] to fit the relationship between poses

and time. The smoothing spline method is one of the most popular nonparametric regression methods.

The essence of the regression process is to determine a smoothing spline f(·) that serves as a solution to

the minimization problem below:

min







ρ

N
∑

j=1

[zj − f(tj)]
2
+ (1− ρ)

∫ tN

0

[f ′′(t)]
2
dt







, (14)

where zj denotes the pose extracted from frame j, ρ represents the smoothing parameter (ρ ∈ [0, 1]), and

f(·) is set as a cubic spline for continuous first and second derivatives. The first term in (14) appears

as the residual summation of the squares, whereas the second term is a roughness penalty based on the

second derivative of f(·). The smoothing parameter ρ adjusts the tradeoff between the goodness and

smoothness of fit. After the parameters of the cubic spline are obtained, we calculate the linear (angular)

velocity v using a temporal derivative operation, v = f ′(t).

6 Experiments and analysis

6.1 Pose measurement experiments

We captured video clips to assess the pose measurement performance. The segmentation results in a

video clip are shown in Figure 9. The figure qualitatively illustrates the accuracy and robustness of

the adopted segmentation method. Each image in Figure 9 is an ROI set automatically in the tracking

scheme, which indicates that the prediction strategy is adequate for keeping the robotic fish in focus.

The regions surrounded with enclosed contours are the segmented markers, and the points mark their

centers. It can be seen that the markers can be segmented out virtually completely even though their

appearance varies with ambient illumination and other factors.

For the quantitative evaluation of the accuracy of pose measurement, the position of the head apex

and the yaw angle were taken as quality metric. Head apexes and yaw angles in 100 frames were marked

manually as ground-truth. Further, the distances between the calculated and given head apexes were

regarded as position errors, and the absolute values of the deviation of yaw angles were angular errors. The

poses were expressed in the world coordinate system. Four approaches were accomplished for evaluation

and comparison. Their performances are listed in Table 1. The CHAT method in the “search globally”

module was used as a baseline. In addition, CHAT was utilized to locate ROIs for the meanshift [26] and

the graph-cut algorithms [27]. Gaussian mixture models (GMMs) were applied to model the foreground

and background in the graph-cut framework. The GMMs were trained off-line using collected samples.
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Table 1 Pose measurement performance

Method Position error (mm) Angular error (◦) Average time cost per frame (ms)

CHAT (8.3, 4.1) (2.0, 1.6) 64.8

CHAT+meanshift (9.3, 5.2) (1.9, 2.8) 71.6

CHAT+graph cut (7.4, 3.5) (2.2, 1.6) 102.8

Our method (6.7, 3.4) (1.9, 1.4) 30.3

In Table 1, the position and angular errors are represented in a format (µ, σ), where µ and σ denote

mean value and standard deviation, respectively. It is clear that our method achieves the best precision

among the four methods. Furthermore, it is much faster than the others thanks to the utilization of

the tracking scheme and the manner in which centers are initialized in k-means. In fact, the cost of the

combination of the original k-means algorithm and CHAT, i.e., CHAT+k-means, is approximately 120

ms per frame. Thus, the speed-up effect is significant. The graph-cut method has good position precision,

but it is time-consuming. The meanshift method generates less incomplete segmentation, which affects

the precision. Furthermore, CHAT also exhibits good performance. Indeed, CHAT plays an important

role for the meanshift and the graph cut because it narrows the search scope and thereby eliminates

potential environmental interference.

6.2 Time synchronization experiments

For a video clip captured under fixed exposure time, the two time parameters were obtained by solving

the optimization problem in (13). Three elements in several frames are requisite: the position of the head

apex, the yaw angle of the head, and the position of the endpoint. The yaw angles and positions of the

head apex are products of the pose measurement. Endpoints were marked manually here. To prevent

PSO from getting stuck in a local optimum, the optimization was executed several times with different

initial values for each case. Scattered and adequate marked endpoints (more than 15 from experience)

are conducive to the acquisition of precise solutions. Further, it is beneficial to set the bounds of T as

appropriate as possible. The frame rate of the camera ranged from 20 fps to 25 fps. Therefore, we set

TL = 0.04 and TU = 0.05. We observed that the PSO with a population size of 50 usually converges to

a solution within 40 iterations during a single run. The converged solutions of several runs were always

the same value, which was regarded as the optimum. The time parameters calculated for the video clip

shown in Figure 9 are t1 = 13.33 ms and T = 43.39 ms.

The effect of time synchronization can be demonstrated intuitively through the virtual skeleton, i.e.,

the skeleton state estimated by (9). As shown in Figure 10, the virtual skeleton was superimposed on

the robotic fish in the video clip. It can be seen that the virtual skeleton fits well with the shape of the

robotic fish from the beginning to the end. Specifically, the virtual endpoint and the real endpoint remain

overlapped virtually continuously. The deviation in a total of 81 frames was calculated by the manually

marked endpoints, as shown in Figure 11. The endpoint deviation in the first frame is 4.7 mm, which

indicates the accuracy of the parameter t1. In Figure 11, the curve labeled ∆T = 0 shows the deviation

when T is calculated by the time synchronization method, and ∆T = 1 ms denotes the condition when

the calculated T is added with an offset of 1 ms. The case of ∆T = 1 ms reveals the cumulative effect

of time error, which is of a consistent tendency with the theoretical instance illustrated in Figure 7(b).

By contrast, the deviation in the case of ∆T = 0 fluctuates over a relatively small range. The deviation

originates mainly from the three-dimensional (3D) movement of the robotic fish, i.e., roll and pitch, which

were not in consideration. The virtual skeleton is always planar, whereas the robotic fish appearing in

an image is a projection from 3D space. The projection is affected by the 3D attitude of the robotic

fish. In addition, the pose error introduced by the pose measurement also contributes to the deviation.

Even though the deviation exists, the experimental results still illustrate the accuracy of the estimated

time parameters. We therefore conclude that the time synchronization approach realizes sub-millisecond

precision for T .
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Figure 10 Virtual skeleton with time synchronized: from Frame 1 to Frame 306 with a uniform interval of 18 frames.
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Figure 11 Deviation of the real endpoint and the virtual endpoint.

6.3 Velocity estimation experiments

We employed smoothing splines to fit the curves of poses versus time. Then, we estimated the velocity

based on the obtained curves. An instance is shown in Figure 12, in which the smoothing parameter

is set as ρ = 0.999. Virtually all of the discrete pose points are lying on the curves. Thus, it appears

that the smoothness effect is not obvious for the curves of poses versus time. However, the derivative

operation can amplify noise and make it visible, which is demonstrated by the case where ρ = 1 in

Figure 12. Specifically, the condition ρ = 1 indicates that no roughness penalization is inflicted on the

fitting process, and therefore no smoothness is exerted on the noise. By contrast, the estimated velocity

is much smoother in the case where ρ = 0.999 in Figure 12. It is revealed that even a slight change in the

smoothing parameter will result in different smoothness effects on the estimation of velocity. However,

no criteria exist that can be applied to evaluate the accuracy of the estimated velocity owing to lack of

standard data. The model of the noise is indeterminate. As a result, deriving a criterion to determine

the optimal smoothing parameter is difficult. The tradeoff between the goodness and smoothness of fit

needs to be accomplished via trial and error.

7 Conclusion and future work

In this paper, we proposed a method for planar motion measurement of a swimming multi-link robotic

fish. The method is a global-vision based approach and mainly focuses on three motion measurement
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Figure 12 Smoothing curves of pose (left side) and estimated velocity (right side).

aspects. First, a systematic tracking scheme was developed to continuously detect and track the robotic

fish in captured image sequences. Second, a synchronization algorithm that synchronizes the time of the

motion measurement system and the on-board control system was proposed. Third, for the purpose of

noise reduction, smoothing splines were applied to fit curves of poses versus time. Experimental results

demonstrate that the tracking scheme achieves an average position error of 6.7 mm and an average angular

error of 1.9◦, with an average time cost per frame of 30.3 ms. Further, the proposed time synchronization

approach realizes sub-millisecond precision for the frame period.

Future work will focus on improving the performance of the planar motion measurement by increasing

the number of cameras and synthesizing shape features of the markers and their relative positions.
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