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Abstract In this paper, a new Gaussian approximate (GA) filter for stochastic dynamic systems with both

one-step randomly delayed measurements and colored measurement noises is presented. For linear systems, a

Kalman filter can be obtained to include one-step randomly delayed measurements and colored measurement

noises. On the other hand, for nonlinear stochastic dynamic systems, different GA filters can be developed

which exploit numerical methods to compute Gaussian weighted integrals involved in the proposed Bayesian

solution. Existing GA filter with one-step randomly delayed measurements and existing GA filter with colored

measurement noises are special cases of the proposed GA filter. The efficiency and superiority of the proposed

method are illustrated in a numerical example concerning a target tracking problem.
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1 Introduction

Nonlinear filtering has been widely used in signal processing, target tracking, communications and control,

however the closed form solution of its posterior probability density function (PDF) is unavailable, thus

optimal solution normally doesn’t exist and approximate methods are necessary to obtain suboptimal

nonlinear filters [1]. Gaussian approximation to such PDFs is the most conveniently and widely used

by the fact that its correspondingly derived Gaussian approximate (GA) filter consistently provides a

computationally cost-effective estimation for nonlinear systems with acceptable accuracy as required in

many practical applications [2–9]. So far, several forms of GA filters have been developed based on

different rules, as listed in Table 1.

In some applications with limited bandwidth of the communication channel and high sampling fre-

quency, such as target tracking and control, their measurements may be randomly delayed and their

measurement noises may be colored. The randomly delayed measurements are induced by limited band-

width of the communication channel [3,27], and colored measurement noises are induced by high sampling
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Table 1 Existing nonlinear GA filtering algorithm

Reference Algorithm Rule

[10] Extended Kalman filter (EKF) Taylor series expansion

[11] Central difference Kalman filter (CDKF) Polynomial interpolation rule

[12] Divided difference filter (DDF) Stirling interpolation rule

[13, 14] Unscented Kalman filter (UKF) Unscented transform (UT)

[11] Gauss-Hermite quadrature filter (GHQF) Gauss-Hermite quadrature rule

[15] Cubature Kalman filter (CKF) Third-degree spherical-radial cubature rule

[16] Sparse-grid quadrature filter (SGQF) Sparse-grid theory

[17] Transformed UKF (TUKF) Transformed UT

[18] High-degree CKF (HCKF) High-degree spherical-radial cubature rule

[19] Stochastic integration filter (SIF) Stochastic integral rule

[20] Cubature quadrature Kalman filter (CQKF) Spherical radial cubature and Gauss quadrature rule

[21, 22] Embedded CKF Third-degree embedded cubature rule

[23] Quasi-stochastic integration filter (QSIF) Quasi-stochastic integration rule

[24, 25] Spherical simplex-radial CKF (SSRCKF) Spherical simplex-radial rule

[26] Interpolatory CKF Interpolatory cubature rule

frequency because the noise correlation between the successive samples of the noise can’t be ignored in

the case of high sampling frequency [7, 8, 28, 29]. On one hand, to solve the problem of state estimation

for nonlinear stochastic dynamic systems in which the measurements are randomly delayed by one or

two sampling time, an improved EKF and an improved UKF have been proposed [30, 31]. Wang et al.

proposed GA filter and smoother which give general and common frameworks for addressing the state

estimation problem when the measurements are randomly delayed by one sampling time [3, 4]. A GA

filter for nonlinear systems with one-step randomly delayed measurements and correlated noises is pro-

posed in [5]. Zhang et al. provided a general framework solution to state estimation of Gaussian filter

for nonlinear systems with multiple step randomly delayed measurements [32]. To assess the achievable

optimal performance of nonlinear state estimator with one-step randomly delayed measurements, a new

conditional posterior Cramér-Rao lower bound is proposed in [33]. On the other hand, to solve the prob-

lem of state estimation for nonlinear stochastic dynamic systems in which the measurement noises are

colored, Wang et al. proposed GA filter and smoother based on measurement differencing scheme [7,8,28].

However, these nonlinear GA filters mentioned above are all unsuitable for achieving the state estimation

of stochastic dynamic systems with randomly delayed measurements and colored measurement noises.

Moreover, the state estimation problem in this case also can not be solved by simply combining existing

methods designed only for nonlinear systems with randomly delayed measurements and methods designed

only for nonlinear systems with colored measurement noises, since measurement noises can’t be decorre-

lated based on measurement differencing scheme for the case of randomly delayed measurements, as will

be explained in Subsection 2.2.

To solve this problem, a new GA filter is developed under Bayesian estimation framework in this paper.

For linear systems, a Kalman filter can be obtained to include one-step randomly delayed measurements

and colored measurement noises. On the other hand, for nonlinear systems, different GA filters can be

developed which exploit numerical methods to compute the Gaussian weighted integrals involved in the

proposed Bayesian solution. The efficiency and superiority of the proposed method is illustrated in a

numerical example concerning a target tracking problem.

The remainder of the paper is organized as follows. The problem formulation is given in Section 2. A

new GA filter for nonlinear systems with randomly delayed measurements and colored measurement noises

is derived in Section 3. Also comparisons with existing methods are provided in Section 3. Simulations
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are given in Section 4. Concluding remarks are drawn in Section 5.

2 Problem formulation

2.1 State-space model with one-step randomly delayed measurements and colored mea-

surement noises

Consider the following discrete-time stochastic dynamic systems as shown by the state-space model:

xk = fk−1(xk−1) +wk−1, (process equation), (1)

zk = hk(xk) + vk, (ideal measurement equation), (2)

where k is the discrete time index, xk ∈ R
n is the state vector, zk ∈ R

m is the undelayed measure-

ment vector, wk ∈ R
n is the process noise, vk ∈ R

nz is the colored measurement noise with a first-order

autoregressive (AR) model, which can be formulated as [8]

vk = Ψk−1vk−1 + ξk−1, (3)

where Ψk−1 is known correlation parameter, and Ψ0 = 0 which is reasonable in practical application

because undelayed measurement z0 at k = 0 doesn’t exist, and wk ∈ R
n and ξk ∈ R

m are zero-mean

Gaussian white noise vectors satisfying E[wkw
T
l ] = Qkδkl and E[ξkξ

T
l ] = Rkδkl respectively, where δkl is

the Kronecker delta function, and the initial state x0 is a Gaussian random vector with mean x̂0|0 and

covariance matrix P0|0, which is independent of wk and vk.

Remark 1. First-order AR model formulated in (3) has been widely accepted and used to represent

the colored noise in many practical applications, such as target tracking [29], multipath parameters

estimation of weak GPS signal [34], inertial navigation [35], channel and spectral estimation [36,37], and

speech processing [38].

Assuming that the first measurement, z1 arrives on time, but for k > 2, the ideal measurement zk

may be randomly delayed by one sample time and, in that case, a previous measurement zk−1 is used.

Thus the available (real) measurements yk at time k can be mathematically described as [3, 30]

yk = (1 − γk)zk + γkzk−1, (k > 2), (4)

where γ1 = 0 and γk (k > 2) is a Bernoulli random variable taking the value of zero or one with latency

probability p(γk = 1) = pk (k > 2) and pk ∈ [0, 1]. Moreover, we assume that {γk, k > 2}, x0, {wk, k > 0}
and {ξk, k > 0} are mutually independent.

Remark 2. In many network-based engineering applications, such as vehicle management system of

future generation aircraft [39], signal receiving process of a mobile phone based on network [40], inter-

connected network security assessment of power system [41], and GPS/INS integrated system for relative

navigation in formation flight [3], their measurements may be subject to ineluctable random sensor delays.

These random delays may be induced by multiplexed data communication networks in distributed con-

trol systems [39–41] or multiple sensor systems [3]. The one-step randomly delayed measurement model

has been widely accepted and used to model these induced delays in many application based on the

reasonable supposition that these induced delays are usually restricted so as not to exceed the sampling

period [3, 39–41].

2.2 Difficulties of state estimation for stochastic dynamic systems formulated in (1)–(4)

Firstly, for the case of randomly delayed measurements and colored measurement noises, the real mea-

surement noise is more intricate as compared with the case of randomly delayed measurements or colored

measurement noises. Using (2) and (3) in (4), randomly delayed measurement equation can be rewritten

as

yk = [(1 − γk)hk(xk) + γkhk−1(xk−1)] + [(1 − γk)vk + γkvk−1] = h′
k(xk,xk−1) + v′

k, (5)
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where v′
k is the real measurement noise. It can be seen from (5) that v′

k consists of Bernoulli random

variable γk and colored measurement noises vk and vk−1. Consequently, the real measurement noise v′
k

is non-Gaussian and colored, which increases the difficulty of state estimation under Bayesian estimation

framework.

Secondly, the non-Gaussianity of systems formulated in (1)–(4) is increased due to the non-Gaussianity

of real measurement noise v′
k. Thirdly, the cross-correlation between colored measurement noise vk and

available measurements yk becomes more intricate, for example, P vz
k,k−1|k−1 is incurred by randomly

delayed measurements and colored measurement noises, however, it is inexistent in the case of randomly

delayed measurements or colored measurement noises. Fourthly, existing standard GA filter [15], GA

filter with randomly delayed measurements [3], GA filter with colored measurement noises [7] are all

not suitable for achieving the sate estimation of stochastic dynamic systems with randomly delayed

measurements and colored measurement noises because they use incorrect measurement model.

Finally, available measurements yk can not be decorrelated based on existing measurement differencing

scheme [8]. A new measurement is constructed based on measurement difference scheme as follows:

y∗
k = yk − Ψk−1yk−1. (6)

Substituting (4) into (6), we can obtain

y∗
k = [(1− γk)zk − (1 − γk−1)Ψk−1zk−1] + [γkzk−1 − γk−1Ψk−1zk−2]. (7)

Using (2) and (3) in (7), Eq. (7) can be formulated as

y∗
k = [(1− γk)hk(xk)− (1− γk−1)Ψk−1hk−1(xk−1) + γkhk−1(xk−1)− γk−1Ψk−1hk−2(xk−2)]

+ [(γk−1 − γk)Ψk−1vk−1 + (1− γk)ξk−1 + γkvk−1 − γk−1Ψk−1vk−2]

= h∗
k(xk,xk−1,xk−2) + v∗

k. (8)

It is seen from (8) that y∗
k is still colored measurement. However, if all measurements can arrive on time,

i.e. γk = 0(k > 1), then (8) can be rewritten as

y∗
k = hk(xk)− Ψk−1hk−1(xk−1) + ξk−1. (9)

It can be seen from (9) that y∗
k is uncolored measurement when all measurements arrive on time. Thus,

measurement difference method is not suitable for systems formulated in (1)–(4) due to the random

measurement delay, and the state estimation problem can not be solved by simply combining existing

methods designed only for systems with randomly delayed measurements and methods designed only

for systems with colored measurement noises. These difficulties represent the main motivation and

significance of this paper.

2.3 Preliminary of the proposed GA filter

In order to design a GA filter for the system formulated in (1)–(4), we require to obtain Gaussian

approximation to the posterior PDF p(xk|Yk), where Yl = {yi}li=1 denotes the delayed measurements as

formulated in (4). Then, the state estimation and corresponding estimation error covariance matrix are

obtained by computing the first two moments of p(xk|Yk), i.e.

p(xk|Yk) = N(xk; x̂k|k,Pk|k), (10)

where x̂k|k and Pk|k are computed as follows:

x̂k|k = E[xk|Yk], Pk|k = E[x̃k|kx̃
T
k|k|Yk], (11)

where the expectation E[·|Yk] is with respect to PDF p(xk|Yk), x̃ denotes the state estimation error

vector and (·)T denotes vector transpose.

Similar to that in [3], we present two assumptions to deal with colored measurement noises and one-step

randomly delayed measurements.
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Assumption 1. The one-step predictive PDF of the state vector xk conditioned on Yk−1 is Gaussian,

i.e.

p(xk|Yk−1) = N(xk; x̂k|k−1,Pk|k−1), (12)

where in the minimum mean square error (MMSE) sense, the state prediction vector x̂k|k−1 and corre-

sponding prediction error covariance matrix Pk|k−1 denote the first two moments of p(xk|Yk−1) respec-

tively i.e.

x̂k|k−1 = E[xk|Yk−1], (13)

Pk|k−1 = E[x̃k|k−1x̃
T
k|k−1|Yk−1], (14)

the expectation E[·|Yk−1] is with respect to PDF p(xk−1|Yk−1) andN(·) denotes the normal distribution.

Assumption 2. The one-step predictive PDF of delayed measurement vector yk conditioned on Yk−1

is Gaussian, i.e.

p(yk|Yk−1) = N(yk; ŷk|k−1,P
yy

k|k−1), (15)

where in the MMSE sense, the delayed measurement prediction vector ŷk|k−1 and corresponding predic-

tion error covariance matrix P
yy

k|k−1 denote the first two moments of p(yk|Yk−1) respectively i.e.

ŷk|k−1 = E[yk|Yk−1], (16)

P
yy

k|k−1 = E[ỹk|k−1ỹ
T
k|k−1|Yk−1], (17)

Remark 3. Assumptions 1 and 2 are reasonable in many applications with mild nonlinearity because

Gaussian random vector has the largest entropy among all random vectors of equal mean vector and

covariance matrix, i.e. Gaussian distribution is the most random or the least structured of all distributions

[42]. Moreover, these two assumptions have been widely accepted and used to design GA filters.

Before proposing a new GA filter, we define



































v̂k|k−1 = E[vk|Yk−1], P vv
k|k−1 = E[ṽk|k−1ṽ

T
k|k−1|Yk−1], P xv

k|k−1 = E[x̃k|k−1ṽ
T
k|k−1|Yk−1],

P
xy

k|k−1 = E[x̃k|k−1ỹ
T
k|k−1|Yk−1], P

vy

k|k−1 = E[ṽk|k−1ỹ
T
k|k−1|Yk−1],

P xz
k|k−1 = E[x̃k|k−1z̃

T
k|k−1|Yk−1], P vz

k|k−1 = E[ṽk|k−1z̃
T
k|k−1|Yk−1],

P zz
k−d|k−1 = E[z̃k−d|k−1z̃

T
k−d|k−1|Yk−1], P xz

k,k−1|k−1 = E[x̃k|k−1z̃
T
k−1|k−1|Yk−1],

P vz
k,k−1|k−1 = E[ṽk|k−1z̃

T
k−1|k−1|Yk−1], P xv

k|k = E[x̃k|kṽ
T
k|k|Yk−1], ẑk−d|k−1 = E[zk−d|Yk−1],

(18)

where d = 1, 2.

With Assumptions 1 and 2 and definitions in (18), a new GA filter for nonlinear systems with one-step

randomly delayed measurements and colored measurement noises as formulated in (1)–(4) can be derived.

3 GA filter for nonlinear systems with randomly delayed measurements and

colored measurement noises

In this section, the derivation of the proposed GA filter for the system formulated in (1)–(4) will

be separated into three steps including one-step predictions of state and measurement noise given in

Theorem 1, one-step prediction of delayed measurement given in Theorem 2, and the filtering updates

of state and measurement noise given in Theorem 3. Before proposing Theorems 1–3, a standard result

about Gaussian functions is first reviewed.

Lemma 1. If F , d, Γ , m and P have appropriate dimensions and Γ and P are positive definition, it

can be obtained that [4]

∫

N(x;Fλ+ d,Γ )N(λ;m,P )dλ = N(x;Fm+ d,FPFT + Γ ). (19)
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3.1 One-step predictions of state and measurement noise

Theorem 1. With Assumption 1 and Gaussian approximation of p(xk−1,vk−1|Yk−1), the Gaussian

approximation of p(xk,vk|Yk−1) has one-step prediction estimations x̂k|k−1 and v̂k|k−1, and prediction

error covariance matrixes Pk|k−1 and P vv
k|k−1, and cross-covariance matrix P xv

k|k−1 as the unified form:

x̂k|k−1 =

∫

Rn

fk−1(xk−1)N(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1, (20)

v̂k|k−1 = Ψk−1v̂k−1|k−1, (21)

Pk|k−1 =

∫

Rn

fk−1(xk−1)f
T
k−1(xk−1)N(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1 − x̂k|k−1x̂

T
k|k−1 +Qk−1, (22)

P vv
k|k−1 = Ψk−1P

vv
k−1|k−1Ψ

T
k−1 +Rk−1, (23)

P xv
k|k−1 =

[
∫

Rn

fk−1(xk−1)v̂
T
x,k−1|k−1N(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1

]

ΨT
k−1 − x̂k|k−1v̂

T
k|k−1, (24)

v̂x,k−1|k−1 = v̂k−1|k−1 + (P xv
k−1|k−1)

TP−1
k−1|k−1(xk−1 − x̂k−1|k−1), (25)

Proof. Considering that wk−1 ∼ N(wk−1;0,Qk−1) is independent of Yk−1 and according to the defini-

tion of x̂k|k−1 and Pk|k−1 in (13)–(14), we have

x̂k|k−1 = E[fk−1(xk−1)|Yk−1], (26)

Pk|k−1 = E[fk−1(xk−1)f
T
k−1(xk−1)|Yk−1]− x̂k|k−1x̂

T
k|k−1 +Qk−1. (27)

Substituting (10) into (26) and (27) obtains (20) and (22).

According to the Bayesian theorem and Markov properties of the colored measurement noise, we have

p(vk|Yk−1) =

∫

Rnz

p(vk,vk−1|Yk−1)dvk−1 =

∫

Rnz

p(vk|vk−1)p(vk−1|Yk−1)dvk−1

=

∫

Rnz

N(vk;Ψk−1vk−1,Rk−1)p(vk−1|Yk−1)dvk−1. (28)

Using Gaussian approximation of p(vk−1|Yk−1) and according to Lemma 1, p(vk|Yk−1) can be com-

puted as Gaussian, i.e.

p(vk|Yk−1) =

∫

Rm

N(vk;Ψk−1vk−1,Rk−1)N(vk−1; v̂k−1|k−1,P
vv
k−1|k−1)dvk−1

= N(vk; v̂k|k−1,P
vv
k|k−1), (29)

where v̂k|k−1 and P vv
k|k−1 are given in (21) and (23).

According to the definition of P xv
k|k−1 in (18) and using (1) and (3), we can obtain

P xv
k|k−1 = E[xkv

T
k |Yk−1]− x̂k|k−1v̂

T
k|k−1

= E[(fk−1(xk−1) +wk−1)(Ψk−1vk−1 + ξk−1)
T|Yk−1]− x̂k|k−1v̂

T
k|k−1. (30)

By the fact that wk−1 is uncorrelated with vk−1 and ξk−1, and ξk−1 ∼ N(ξk−1;0,Rk−1) is uncorrelated

with Yk−1, Eq. (30) can be rewritten as

P xv
k|k−1 = E[fk−1(xk−1)v

T
k−1|Yk−1]Ψ

T
k−1 − x̂k|k−1v̂

T
k|k−1. (31)

Using Gaussian approximations of p(xk−1,vk−1|Yk−1) and according to marginal integral formula in

Appendix A, P xv
k|k−1 can be computed as (24), where v̂x,k−1|k−1 is given in (25).

With Gaussian approximations of p(xk|Yk−1) and p(vk|Yk−1) in (12) and (29), the joint PDF of xk

and vk conditioned on Yk−1 is also Gaussian, i.e

p(xk,vk|Yk−1) = N

([

xk

vk

]

;

[

x̂k|k−1

v̂k|k−1

]

,

[

Pk|k−1 P xv
k|k−1

(P xv
k|k−1)

T
P vv

k|k−1

])

. (32)
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3.2 One-step prediction of delayed measurement

Theorem 2. With Assumptions 1, 2 and Gaussian approximations of p(xk−1,vk−1|Yk−1) and p(xk,vk|
Yk−1), the Gaussian approximation of p(yk|Yk−1) has the one-step prediction estimation ŷk|k−1, predic-

tion error covariance matrix P
yy

k,k|k−1, and cross-covariance matrixes P xy

k,k|k−1 and P
vy

k,k|k−1 as the unified

form:

ŷk|k−1 = (1− pk)ẑk|k−1 + pkẑk−1|k−1, (33)

P
yy

k|k−1 = (1 − pk)P
zz
k|k−1 + pkP

zz
k−1|k−1 + (1− pk)pk(ẑk|k−1 − ẑk−1|k−1)(ẑk|k−1 − ẑk−1|k−1)

T, (34)

P
xy

k|k−1 = (1− pk)P
xz
k|k−1 + pkP

xz
k,k−1|k−1, (35)

P
vy

k|k−1 = (1− pk)P
vz
k|k−1 + pkP

vz
k,k−1|k−1, (36)

ẑk|k−1 =

∫

Rn

hk(xk)N(xk; x̂k|k−1,Pk|k−1)dxk + v̂k|k−1, (37)

P xz
k|k−1 =

∫

Rn

xkh
T
k (xk)N(xk; x̂k|k−1,Pk|k−1)dxk + P xv

k|k−1 − x̂k|k−1(ẑk|k−1 − v̂k|k−1)
T, (38)

P zz
k|k−1 =

∫

Rn

[hk(xk) + v̂x,k|k−1][hk(xk) + v̂x,k|k−1]
TN(xk; x̂k|k−1,Pk|k−1)dxk

+Ωk|k−1 − ẑk|k−1ẑ
T
k|k−1, (39)

P vz
k|k−1 =

∫

Rn

v̂x,k|k−1h
T
k (xk)N(xk; x̂k|k−1,Pk|k−1)dxk + P vv

k|k−1 − v̂k|k−1(ẑk|k−1 − v̂k|k−1)
T, (40)

v̂x,k|k−1 = v̂k|k−1 + (P xv
k|k−1)

TP−1
k|k−1(xk − x̂k|k−1), (41)

Ωk|k−1 = P vv
k|k−1 − (P xv

k|k−1)
TP−1

k|k−1P
xv
k|k−1, (42)

ẑk−1|k−1 =

∫

Rn

hk−1(xk−1)N(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1 + v̂k−1|k−1, (43)

P zz
k−1|k−1 =

∫

Rn

[hk−1(xk−1) + v̂x,k−1|k−1][hk−1(xk−1) + v̂x,k−1|k−1]
T

×N(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1 +Ωk−1|k−1 − ẑk−1|k−1ẑ
T
k−1|k−1, (44)

Ωk−1|k−1 = P vv
k−1|k−1 − (P xv

k−1|k−1)
TP−1

k−1|k−1P
xv
k−1|k−1, (45)

P xz
k,k−1|k−1 =

∫

Rn

fk−1(xk−1)[hk−1(xk−1) + v̂x,k−1|k−1]
TN(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1

− x̂k|k−1ẑ
T
k−1|k−1, (46)

P vz
k,k−1|k−1 = Ψk−1

∫

Rn

v̂x,k−1|k−1h
T
k−1(xk−1)N(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1

+Ψk−1P
vv
k−1|k−1 − v̂k|k−1(ẑk−1|k−1 − v̂k−1|k−1)

T. (47)

Proof. Considering the independence assumptions in Section 2 and substituting the delayed measure-

ment function in (4) into the definition of ŷk|k−1 in (16), we obtain (33).

Using (4) and (33), the prediction error of delayed measruement ỹk|k−1 can be written as follows:

ỹk|k−1 = (1− γk)z̃k|k−1 + γkz̃k−1|k−1 + (pk − γk)(ẑk|k−1 − ẑk−1|k−1)
T. (48)
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Considering that γk is independent of the measurements and substituting (48) into the definitions of

P
yy

k|k−1 in (17) and P
xy

k|k−1 and P
vy

k|k−1 in (18), we can obtain (34)–(36).

According to the definitions of ẑk|k−1 and P xz
k|k−1 in (18), we can obtain (37) and (38). With Gaussian

approximation of p(xk,vk|Yk−1) and marginal integral formula in Appendix A, and according to the

definitions of P zz
k|k−1 and P vz

k|k−1 in (18), we have (39) and (40), where v̂x,k|k−1 and Ωk|k−1 are given by

(41) and (42).

Similarly, according to the definition of ẑk−1|k−1 in (18), we have (43). With Gaussian approximation

of p(xk−1,vk−1|Yk−1) and marginal integral formula in Appendix A, and according to the definition of

P zz
k−1|k−1 in (18), we have (44), where v̂x,k−1|k−1 is given by (25) and Ωk−1|k−1 is given by (45).

According to the definitions of P xz
k,k−1|k−1 and P vz

k,k−1|k−1 in (18) and considering that both wk−1 and

ξk−1 are independent of Yk−1, we have

P xz
k,k−1|k−1 = E[xkz

T
k−1|Yk−1]− x̂k|k−1ẑ

T
k−1|k−1

= E[(fk−1(xk−1) +wk−1)z
T
k−1|Yk−1]− x̂k|k−1ẑ

T
k−1|k−1

= E[fk−1(xk−1)z
T
k−1|Yk−1]− x̂k|k−1ẑ

T
k−1|k−1, (49)

P vz
k,k−1|k−1 = E[vkz

T
k−1|Yk−1]− v̂k|k−1ẑ

T
k−1|k−1

= E[(Ψk−1vk−1 + ξk−1)z
T
k−1|Yk−1]− v̂k|k−1ẑ

T
k−1|k−1

= Ψk−1E[vk−1z
T
k−1|Yk−1]− v̂k|k−1ẑ

T
k−1|k−1. (50)

With Gaussian approximation of p(xk−1,vk−1|Yk−1) and using marginal integral formula in Appendix

A, we can obtain (46) and (47), where v̂x,k−1|k−1 is given by (25).

3.3 Filtering updates of state and measurement noise

Theorem 3. With Assumptions 1, 2 and Gaussian approximations of p(xk,vk|Yk−1), the Gaussian

approximation of p(xk,vk|Yk) has the filtering estimations x̂k|k and v̂k|k, and estimation error covariance

matrixes Pk|k and P vv
k|k, and cross-covariance matrix P xv

k|k as the unified form:

x̂k|k = x̂k|k−1 +Kx
k (yk − ŷk|k−1), (51)

Kx
k = P

xy

k|k−1(P
yy

k|k−1)
−1, (52)

Pk|k = Pk|k−1 −Kx
kP

yy

k|k−1(K
x
k )

T, (53)

v̂k|k = v̂k|k−1 +Kv
k(yk − ŷk|k−1), (54)

Kv
k = P

vy

k|k−1(P
yy

k|k−1)
−1, (55)

P vv
k|k = P vv

k|k−1 −Kv
kP

yy

k|k−1(K
v
k )

T, (56)

P xv
k|k = P xv

k|k−1 −Kx
kP

yy

k|k−1(K
v
k )

T. (57)

Proof. With the Gaussian approximations of p(xk|Yk−1) in (12), p(yk|Yk−1) in (15) and p(vk|Yk−1) in

(29), both joint PDFs p(xk,yk|Yk−1) and p(vk,yk|Yk−1) are Gaussian, i.e.

p(xk,yk|Yk−1) = N

([

xk

yk

]

;

[

x̂k|k−1

ŷk|k−1

]

,

[

Pk|k−1 P
xy

k|k−1

(P xy

k|k−1)
T

P
yy

k|k−1

])

, (58)

p(vk,yk|Yk−1) = N

([

vk

yk

]

;

[

v̂k|k−1

ŷk|k−1

]

,

[

P vv
k|k−1 P

vy

k|k−1

(P vy

k|k−1)
T

P
yy

k|k−1

])

. (59)
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According to Gaussian update rule in Appendix B, both p(xk|Yk) and p(vk|Yk) are computed as

Gaussian in (60) and (61):

p(xk|Yk) = N(xk; x̂k|k,Pk|k), (60)

p(vk|Yk) = N(vk; v̂k|k,P
vv
k|k), (61)

where x̂k|k, Pk|k, v̂k|k and P vv
k|k are given by (51)–(56).

Using (51) and (54) yields

x̃k|k = x̃k|k−1 −Kx
k ỹk|k−1, (62)

ṽk|k = ṽk|k−1 −Kv
k ỹk|k−1. (63)

With (52) and (55), we have

Kx
k (P

vy

k|k−1)
T = P

xy

k|k−1(K
v
k )

T = Kx
kP

yy

k|k−1(K
v
k )

T. (64)

Substituting (62) and (63) into the definition of P xv
k|k in (18) and using (64), we can obtain (57).

With Gaussian approximations of p(xk|Yk) and p(vk|Yk) in (60) and (61), the joint PDF of xk and

vk conditioned on Yk is also Gaussian, i.e

p(xk,vk|Yk) = N

([

xk

vk

]

;

[

x̂k|k

v̂k|k

]

,

[

Pk|k P xv
k|k

(P xv
k|k)

T
P vv

k|k

])

. (65)

The proposed GA filter for nonlinear systems with randomly delayed measurements and colored mea-

surement noises operates by combining the analytical computations in (21), (23), (25), (33)–(36), (41),

(42), (45) and (51)–(57) with the Gaussian weighted integrals in (20), (22), (24), (37)–(40), (43), (44),

(46) and (47). On one hand, in the derivation of the proposed GA filter, if both the functions fk−1(·) and
hk(·) in (1) and (2) are linear, the proposed filter can automatically reduce to the linear Kalman filter

with one-step randomly delayed measurements and colored measurement noises. On the other hand, for

nonlinear systems, different GA filters can be obtained by utilizing different numerical methods to com-

pute these Gaussian weighted integrals, such as EKF with randomly delayed measurements and colored

measurement noises based on the first-order Taylor series expansion and UKF with randomly delayed

measurements and colored measurement noises based on UT. Appendices C and D show how these two

filters are developed from the proposed GA filter framework formulated in Theorems 1–3.

The proposed GA filter is designed for stochastic dynamic systems with randomly delayed measure-

ments and colored measurement noises. If Assumptions 1 and 2 hold, the posterior PDF p(xk|Yk) is

updated as Gaussian by Theorem 3, as shown in (60). In the MMSE sense, the state estimation of the

proposed GA filter is optimal when Assumptions 1 and 2 hold. Thus, for stochastic dynamic systems

with randomly delayed measurements and colored measurement noises, under Assumptions 1 and 2, the

proposed GA filter outperforms existing methods. Existing GA filter with one-step randomly delayed

measurements is designed for stochastic dynamic systems with randomly delayed measurements, and its

state estimation is optimal in the MMSE sense under Assumptions that one-step predictive PDFs of state

and white delayed measurement are Gaussian [3]. Existing GA filter with colored measurement noises

is designed for stochastic dynamic systems with colored measurement noises, and its state estimation is

optimal in the MMSE sense under Assumptions that one-step predictive PDFs of state and colored mea-

surement are Gaussian [7]. It is interesting that the proposed GA filter is identical to existing GA filter

with one-step randomly delayed measurements for stochastic dynamic systems with randomly delayed

measurements and existing GA filter with colored measurement noises for stochastic dynamic systems

with colored measurement noises. In other words, both existing GA filter with one-step randomly delayed

measurements and existing GA filter with colored measurement noises are special cases of the proposed

GA filter, which will be proved in the following Theorems 4 and 5.

Theorem 4. If correlation parameter Ψk−1 = 0, the proposed GA filter will degrade to existing GA

filter with one-step randomly delayed measurements.
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Proof. Substituting Ψk−1 = 0 in (21), (23) and (24), we can obtain

v̂k|k−1 = 0, P vv
k|k−1 = Rk−1, P xv

k|k−1 = 0. (66)

Substituting (66) in (37), (38), (41) and (42), we can obtain

ẑk|k−1 =

∫

Rn

hk(xk)N(xk; x̂k|k−1,Pk|k−1)dxk, (67)

P xz
k|k−1 =

∫

Rn

xkh
T
k (xk)N(xk; x̂k|k−1,Pk|k−1)dxk − x̂k|k−1ẑ

T
k|k−1, (68)

v̂x,k|k−1 = 0, Ωk|k−1 = Rk−1. (69)

Using (66) and (69) in (39) and (40), we have

P zz
k|k−1 =

∫

Rn

hk(xk)h
T
k (xk)N(xk; x̂k|k−1,Pk|k−1)dxk +Rk−1 − ẑk|k−1ẑ

T
k|k−1, (70)

P vz
k|k−1 = Rk−1. (71)

Using (66) and Ψk−1 = 0 in (47), we can obtain

P vz
k,k−1|k−1 = 0. (72)

With (66) in (54), (56) and (57), we can obtain

v̂k|k = Kv
k (yk − ŷk|k−1), (73)

P vv
k|k = Rk−1 −Kv

kP
yy

k|k−1(K
v
k )

T, (74)

P xv
k|k = −Kx

kP
yy

k|k−1(K
v
k )

T. (75)

Eqs. (20), (22), (25), (33)–(36), (43)–(46), (51)–(53), (55), (67), (68) and (70)–(75) constitute existing

GA filter with one-step randomly delayed measurements. Thus, existing GA filter with one-step randomly

delayed measurements is a special case of the proposed GA filter when correlation parameter Ψk−1 = 0.

Theorem 5. If latency probability pk = 0, the proposed GA filter will degrade to existing GA filter

with colored measurement noises.

Proof. If pk = 0, we have

γk = 0, yk = zk. (76)

Substituting pk = 0 in (33)–(36), we can obtain

ŷk|k−1 = ẑk|k−1 P
yy

k|k−1 = P zz
k|k−1 P

xy

k|k−1 = P xz
k|k−1 P

vy

k|k−1 = P vz
k|k−1. (77)

Substituting (76), (77) in (51)–(57), we can obtain

x̂k|k = x̂k|k−1 +Kx
k (zk − ẑk|k−1), (78)

Kx
k = P xz

k|k−1(P
zz
k|k−1)

−1, (79)

Pk|k = Pk|k−1 −Kx
kP

zz
k|k−1(K

x
k )

T, (80)

v̂k|k = v̂k|k−1 +Kv
k(zk − ẑk|k−1), (81)

Kv
k = P vz

k|k−1(P
zz
k|k−1)

−1, (82)

P vv
k|k = P vv

k|k−1 −Kv
kP

zz
k|k−1(K

v
k )

T, (83)

P xv
k|k = P xv

k|k−1 −Kx
kP

zz
k|k−1(K

v
k )

T. (84)

Eqs. (20)–(25), (37)–(42) and (78)–(84) constitute existing GA filter with colored measurement noises.

Thus, existing GA filter with colored measurement noises is a special case of the proposed GA filter when

latency probability pk = 0.
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4 Simulation

In this section, the superior performance of the proposed method as compared with existing methods

for a nonlinear system with one-step randomly delayed measurements and colored measurement noises is

shown by a target tracking application. Target tracking has been widely used as a benchmark problem

to validate the performances of nonlinear filters because of its practical application values. Its nonlinear

process equation is formulated as follows [8, 15, 18]:

xk =



















1 sinΩT0

Ω
0 cosΩT0−1

Ω
0

0 cosΩT0 0 −sinΩT0 0

0 1−cosΩT0

Ω
1 sinΩT0

Ω
0

0 sinΩT0 0 cosΩT0 0

0 0 0 0 1



















xk−1 +wk−1, (85)

where the state vector x = [ς ς̇ η η̇ Ω]T, ς and η denote positions, ς̇ and η̇ denote velocities in the x

and y directions respectively, Ω denotes constant but unknown turn rate. The time-interval between

two consecutive measurements is T0 = 1 s; the process noise vector wk ∼ N(0,Qk) with a nonsingular

covariance matrix Qk = µ · diag[q1M q1M q2T0], q1 = 0.1 m2 · s−3, q2 = 1.75× 10−4 s−3, where µ is a

parameter to control the uncertainty level of the system, and

M =

[

T 3
0 /3 T 2

0 /2

T 2
0 /2 T0

]

. (86)

The measurement equation is given by

zk =

[

rk

θk

]

=

[

√

ς2k + η2k

tan−1(ηk

ςk
)

]

+ vk, (87)

where zk is the undelayed measurement vector at time k, the measurement noise vector vk is colored as

formulated in (3), the white noise vector ξk ∼ N(0,Rk) with Rk = τ · diag[σ2
r σ2

θ ] and σr = 10 m and

σθ =
√
10 mrad, where τ is a parameter to control the accuracy level of the measurement. The actual

measurement vector yk is related to ideal measurement vector zk by (4). The true initial state vector is

given by

x0 =
[

1000 m 300 m · s−1 1000 m 0 m · s−1 Ω0

]T

, (88)

where Ω0 is the initial turn rate, and the associated covariance matrix is given by

P0|0 = µ · diag
[

100 m2 10 m2 · s−2 100 m2 10 m2 · s−2 100 mrad2 · s−2
]

. (89)

In each run, the initial state estimation vector x̂0|0 is chosen randomly from N(x0,P0|0) and all filters

are initialized with the same condition and the simulation time is 150 s. For a fair comparison, we make

500 independent Monte Carlo runs. To compare the performances of these filters, we use the root-mean

square error (RMSE) of the position, velocity and turn rate. We define the RMSE in position at time k

as

RMSEpos(k) =

√

√

√

√

1

N

N
∑

s=1

(

(ςsk − ς̂sk)
2
+ (ηsk − η̂sk)

)2

, (90)

where (ςsk , η
s
k) and (ς̂sk , η̂

s
k) are the true and estimated positions at the n-th Monte Carlo run. Similar to

the RMSE in position, we may also write formulas of the RMSE in velocity and turn rate. To assess the

performance of the proposed method, we consider following two explanatory cases.

Case 1. In this case, we aim to show that the proposed GA filter outperforms existing methods

for nonlinear systems with randomly delayed measurements and colored measurement noises, where
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Figure 1 RMSEs of the position of the proposed method

and existing methods.

Figure 2 RMSEs of the velocity of the proposed method

and existing methods.
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Figure 3 RMSEs of the turn rate of the proposed method and existing methods.

correlation parameter Ψk−1 = diag[0.8 0.8](k > 2), latency probability pk = 0.5, µ = τ = 1 and

Ω0 = −3 deg · s−1. We choose the third-degree spherical-radial cubature rule [15] to implement the

proposed GA filter, existing GA filter with one-step randomly delayed measurements [3], and existing

GA filter with colored measurement noises [7], which leads to CKF with one-step randomly delayed

measurements and colored measurement noises, CKF with one-step randomly delayed measurements

and CKF with colored measurement noises respectively. The RMSE results are shown in Figures 1–3.

CKF with colored measurement noises was often found to halt its operation in this case because it used

incorrect measurement model, thus its simulation results are not shown in Figures 1–3. (Note that the

proposed CKF is identical to the proposed UKF with κ = 0, as developed in Appendix D.)

It is clear to see from Figures 1–3 that the proposed CKF has higher estimation accuracy than CKF

with one-step randomly delayed measurements when measurement noises are colored and measurements

are randomly delayed one sampling time. Thus, the proposed method is more suitable for achieving the

state estimation of nonlinear systems with randomly delayed measurements and colored measurement

noises than existing methods.

Case 2. In this case, we aim to compare the performance of existing standard EKF [10], UKF

with the recommended free parameter κ = −2 [13], CKF [15], the proposed EKF, the proposed UKF

with the recommended free parameter κ = −2, and the proposed CKF, where correlation parameter

Ψk−1 = diag[0.8 0.8](k > 2), latency probability pk = 0.5, µ = 0.15, τ = 0.05 and Ω0 = −1 deg · s−1.

The RMSE results are shown in Figures 4–6. The proposed UKF with the recommended free parameter

κ = −2 was often found to halt its operation in this case due to its numerical instability, thus its

simulation results are not shown in Figures 4–6. Moreover, existing standards EKF, UKF, CKF were
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Figure 5 RMSEs of the velocity of the proposed methods. Figure 6 RMSEs of the turn rate of the proposed meth-

ods.

all often found to halt their operation in this case because they used incorrect measurement model, thus

their simulation results are also not shown in Figures 4–6.

It can be seen from Figures 4–6 that the proposed CKF has higher estimation accuracy than the

proposed EKF. Thus, the third-degree spherical-radial cubature rule is more suitable for implementing

the proposed GA filter as compared with the first Taylor series expansion and UT with the recommended

free parameter, which is consistent with the fact that the third-degree spherical-radial cubature rule has

higher numerical accuracy than the first Taylor series expansion and better numerical stability than UT

with the recommended free parameter. Besides, the proposed method is more suitable for achieving the

state estimation of nonlinear systems with randomly delayed measurements and colored measurement

noises as compared with existing standard GA filtering methods.

5 Conclusion

A new GA filter is derived for both linear and nonlinear stochastic dynamic systems with one-step

randomly delayed measurements and colored measurement noises. For nonlinear systems, the solution

is recursively calculated by analytical computations and Gaussian weighted integrals, and different GA

filters can be obtained by utilizing different numerical methods to compute such Gaussian weighted

integrals. Existing GA filter with one-step randomly delayed measurements and existing GA filter with

colored measurement noises are special cases of the proposed GA filter. Simulation results show the

effectiveness and superior performance of the proposed method as compared with existing methods. The
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approach can be potentially used in many applications where one-step randomly delayed measurements

and colored measurement noises both exist.
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Appendix A Marginal integral formula

If the joint PDF of random vectors a and b is Gaussian, i.e.

p(a, b) = N

([

a

b

]

;

[

µa

ub

]

,

[

Paa Pab

(Pab)
T Pbb

])

= N(ζ;µζ ,Pζζ), (A1)

then we have

E[bfT(a)] =

∫

b̂af
T(a)N(a;ua,Paa)da, (A2)

where ζ, µζ and Pζζ are defined in (A1), µa and Paa denote the mean vector and covariance matrix of a, µb and Pbb

denote the mean vector and covariance matrix of b, and Pab denotes the cross-covariance of a and b, and b̂a is given as

follows:

b̂a = µb + (Pab)
T(Paa)

−1(a − µa). (A3)

Proof. By using (A1), we can obtain the square root matrix of Pζζ as follows:

Sζζ =

[

Σ 0

ϕ ∆

]

, (A4)

where

ΣΣT = Paa, ϕ = (Pab)
T(Paa)

−1Σ, ∆∆T = Pbb − (Pab)
T(Paa)

−1Pab. (A5)

By using (A1), E[bfT(a)] can be computed as

E[bfT(a)] =

∫

bfT(a)N(ζ;µζ ,Pζζ )dζ =

∫

g(ζ)N(ζ;µζ ,Pζζ)dζ =

∫

g(Sζζζ + µζ)N(ζ; 0, I)dζ, (A6)

where I denotes a identity matrix with the same dimension as ζ and

g(ζ) = bfT(a). (A7)

Substituting (A4) and (A7) into (A6), E[bfT(a)] can be reformulated as

E[bfT(a)] =

∫

(ϕa+∆b+ µb)f
T(µa +Σa)N(ζ; 0, I)dζ =

∫

(ϕa+ µb)f
T(µa +Σa)N(ζ; 0, I)da. (A8)

By using (A5), we can obtain

E[bfT(a)] =

∫

(ϕΣ−1(a− µa) + µb)f
T(a)N(a;ua,Paa)da =

∫

b̂af
T(a)N(a;ua,Paa)da. (A9)
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Appendix B Gaussian update rule

If the joint PDF of ξj and yl conditioned on Yl−1 i.e. p(ξj ,yl|Yl−1) is Gaussian, p(ξj |Yl) can be computed as Gaussian

with mean ξ̂j|l and corresponding covariance matrix P
ξξ

j,j|l
as the unified form:

ξ̂j|l = ξ̂j|l−1 +K
ξ
j (yl − ŷl|l−1), (B1)

P
ξξ

j,j|l
= P

ξξ

j,j|l−1
−K

ξ
jP

yy

l,l|l−1
(Kξ

j )
T, (B2)

K
ξ
j = P

ξy

j,l|l−1
(P yy

l,l|l−1
)−1. (B3)

Proof. Since the joint PDF of ξj and yl conditioned on Yl−1 is Gaussian, thus the PDF of yl conditioned on Yl−1 is also

Gaussian. Then p(ξj ,yl|Yl−1) and p(yl|Yl−1) can be formulated as

p(ξj ,yl|Yl−1) = N





[

ξj

yl

]

;

[

ξ̂j|l−1

ŷl|l−1

]

,





P
ξξ

j,j|l−1
P

ξy

j,l|l−1

(P ξy

j,l|l−1
)T P

yy

l,l|l−1







 , (B4)

p(yl|Yl−1) = N(yl; ŷl|l−1,P
yy

l,l|l−1
). (B5)

According to the Bayesian rule, we have

p(ξj |Yl) =
p(ξj ,yl|Yl−1)

p(yl|Yl−1)
. (B6)

Let

Σ =





P
ξξ

j,j|l−1
P

ξy

j,l|l−1

(P ξy

j,l|l−1
)T P

yy

l,l|l−1



 . (B7)

Rearranging (B4) yields

p(ξj ,yl|Yl−1) =
1

√

|2πΣ|
exp

(

−1

2

[

ξ̃Tj|l−1 ỹT
l|l−1

]

Σ−1

[

ξ̃j|l−1

ỹl|l−1

])

. (B8)

Firstly, according to (B7), we rewrite Σ as follows:

Σ =

[

IL K
ξ
j

0m×L Im

]





P
ξξ

j,j|l
0L×m

0m×L P
yy

l,l|l−1





[

IL 0L×m

(Kξ
j )

T Im

]

, (B9)

and

|Σ| =
∣

∣

∣P
ξξ

j,j|l

∣

∣

∣

∣

∣

∣P
yy

l,l|l−1

∣

∣

∣ , (B10)

where | · | denotes matrix determinant, and L and m are the dimensions of vectors ξj and yl respectively, and K
ξ
j and P

ξξ

j,j|l

are given by (B1)–(B3). Then Σ−1 can be obtained as follows:

Σ−1 =

[

IL 0L×m

−(Kξ
j )

T Im

]





(P ξξ

j,j|l
)−1 0L×m

0m×L (P yy

l,l|l−1
)−1





[

IL −K
ξ
j

0m×L Im

]

. (B11)

Further, by substituting (B10) and (B11) into (B8), and with the predicted measurement PDF p(yl|Yl−1) formulated in

(B5), we obtain

p(ξj ,yl|Yl−1) =
1

√

∣

∣

∣
2πP ξξ

j,j|l

∣

∣

∣

∣

∣

∣
2πP yy

l,l|l−1

∣

∣

∣

× exp

{

−1

2
(ξ̃j|l−1 −K

ξ
j ỹl|l−1)

T(P ξξ

j,j|l
)−1(ξ̃j|l−1 −K

ξ
j ỹl|l−1)−

1

2
(ỹl|l−1)

T(P yy

l,l|l−1
)−1ỹl|l−1

}

= N(ξj ; ξ̂j|l,P
ξξ

j,j|l
)p(yl|Yl−1), (B12)

where ξ̂j|l is given by (B1). By substituting (B12) into (B6), we finally obtain

p(ξj |Yl) = N(ξj ; ξ̂j|l,P
ξξ

j,j|l
), (B13)

and mean ξ̂j|l and covariance matrix P
ξξ

j,j|l
are formulated in (B1)–(B3).

Appendix C The proposed EKF with randomly delayed measurements and colored mea-

surement noises

Given x̂k−1|k−1, the first-order linearizations of fk−1(xk−1) and hk−1(xk−1) about xk−1 = x̂k−1|k−1 can be formulated

as

fk−1(xk−1) = fk−1(x̂k−1|k−1) +Φk−1|k−1(xk−1 − x̂k−1|k−1), (C1)

hk−1(xk−1) = hk−1(x̂k−1|k−1) +Hk−1|k−1(xk−1 − x̂k−1|k−1), (C2)
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where Φk−1|k−1 =
∂fk−1(xk−1)

∂xk−1

|xk−1=x̂k−1|k−1
and Hk−1|k−1 =

∂hk−1(xk−1)

∂xk−1

|xk−1=x̂k−1|k−1
. Substituting (C1) in (20),

(22) and (24) and using (21), we can obtain

x̂k|k−1 = fk−1(x̂k−1|k−1), (C3)

Pk|k−1 = Φk−1|k−1Pk−1|k−1Φ
T
k−1|k−1 +Qk−1, (C4)

P xv
k|k−1 =

∫

Rn

[fk−1(x̂k−1|k−1) +Φk−1|k−1(xk−1 − x̂k−1|k−1)][v̂k−1|k−1

+(P xv
k−1|k−1)

TP−1
k−1|k−1

(xk−1 − x̂k−1|k−1)]
TN(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1Ψ

T
k−1 − x̂k|k−1v̂

T
k|k−1

= fk−1(x̂k−1|k−1)(Ψk−1v̂k−1|k−1)
T +Φk−1|k−1P

xv
k−1|k−1Ψ

T
k−1 − x̂k|k−1v̂

T
k|k−1

= Φk−1|k−1P
xv
k−1|k−1Ψ

T
k−1. (C5)

Given x̂k|k−1, the first-order linearization of hk(xk) about xk = x̂k|k−1 can be written as

hk(xk) = hk(x̂k|k−1) +Hk|k−1(xk − x̂k|k−1), (C6)

where Hk|k−1 = ∂hk(xk)
∂xk

|xk=x̂k|k−1
. Substituting (C6) in (37)–(40), we can obtain

ẑk|k−1 = hk(x̂k|k−1) + v̂k|k−1, (C7)

P xz
k|k−1 = Pk|k−1H

T
k|k−1 + P xv

k|k−1, (C8)

P zz
k|k−1 = Hk|k−1Pk|k−1H

T
k|k−1 +Hk|k−1P

xv
k|k−1 + (Hk|k−1P

xv
k|k−1)

T + P vv
k|k−1, (C9)

P vz
k|k−1 = (Hk|k−1P

xv
k|k−1)

T + P vv
k|k−1. (C10)

Using (C1) and (C2) in (43), (44), (46) and (47), we can obtain

ẑk−1|k−1 = hk−1(x̂k−1|k−1) + v̂k−1|k−1, (C11)

P zz
k−1|k−1 = Hk−1|k−1Pk−1|k−1H

T
k−1|k−1 +Hk−1|k−1P

xv
k−1|k−1 + (Hk−1|k−1P

xv
k−1|k−1)

T + P vv
k−1|k−1, (C12)

P xz
k,k−1|k−1 = Φk−1|k−1Pk−1|k−1H

T
k−1|k−1 +Φk−1|k−1P

xv
k−1|k−1, (C13)

P vz
k,k−1|k−1 = Ψk−1(Hk−1|k−1P

xv
k−1|k−1)

T + Ψk−1P
vv
k−1|k−1. (C14)

The proposed EKF with randomly delayed measurements and colored measurement noises includes one-step predictions

of state and measurement noise in (C3)–(C5), (21) and (23), one-step prediction of delayed measurement in (33)–(36) and

(C7)–(C14), and filtering updates of state and measurement noise in (51)–(57).

Appendix D The proposed UKF with randomly delayed measurements and colored mea-

surement noises

Given x̂k−1|k−1 and Pk−1|k−1, we construct the sigma points xi,k−1|k−1 according to UT [13]:















x0,k−1|k−1 = x̂k−1|k−1, ω0 = κ/(n+ κ),

xi,k−1|k−1 = x̂k−1|k−1 +
√
n+ κSk−1|k−1ei, ωi = 0.5/(n+ κ),

xi+n,k−1|k−1 = x̂k−1|k−1 −
√
n+ κSk−1|k−1ei, ωi+n = 0.5/(n+ κ),

(D1)

where i = 1, 2, . . . , n, wi are the weights of xi,k−1|k−1, ei denotes the i-th column of a unit matrix, and Sk−1|k−1 is the

square-root matrix of Pk−1|k−1, i.e. Pk−1|k−1 = Sk−1|k−1S
T
k−1|k−1

. Compute the propagated sigma points

Xi,k|k−1 = fk−1(xi,k−1|k−1), ηi,k−1|k−1 = hk−1(xi,k−1|k−1), (D2)

v̂i,x,k−1|k−1 = v̂k−1|k−1 + (P xv
k−1|k−1)

TP−1
k−1|k−1

(xi,k−1|k−1 − x̂k−1|k−1), (D3)

where i = 0, 1, . . . , 2n. Then, (20), (22), (24), (43), (44), (46) and (47) are approximated as follows:

x̂k|k−1 =
2n
∑

i=0

wiXi,k|k−1, (D4)

Pk|k−1 =
2n
∑

i=0

wiXi,k|k−1X
T
i,k|k−1 − x̂k|k−1x̂

T
k|k−1 +Qk−1, (D5)

P xv
k|k−1 =

[

2n
∑

i=0

wiXi,k|k−1v̂
T
i,x,k−1|k−1

]

ΨT
k−1 − x̂k|k−1v̂

T
k|k−1, (D6)
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ẑk−1|k−1 =
2n
∑

i=0

wiηi,k−1|k−1 + v̂k−1|k−1, (D7)

P zz
k−1|k−1 =

2n
∑

i=0

wi(ηi,k−1|k−1 + v̂i,x,k−1|k−1)(ηi,k−1|k−1 + v̂i,x,k−1|k−1)
T +Ωk−1|k−1 − ẑk−1|k−1ẑ

T
k−1|k−1, (D8)

P xz
k,k−1|k−1 =

2n
∑

i=0

wiXi,k|k−1(ηi,k−1|k−1 + v̂i,x,k−1|k−1)
T − x̂k|k−1ẑ

T
k−1|k−1, (D9)

P vz
k,k−1|k−1 = Ψk−1

2n
∑

i=0

wiv̂i,x,k−1|k−1η
T
i,k−1|k−1 +Ψk−1P

vv
k−1|k−1 − v̂k|k−1(ẑk−1|k−1 − v̂k−1|k−1)

T. (D10)

Given x̂k|k−1 and Pk|k−1 by (D4) and (D5), we construct the sigma points xi,k|k−1 according to UT.















x0,k|k−1 = x̂k−1|k−1,

xi,k|k−1 = x̂k−1|k−1 +
√
n+ κSk−1|k−1ei,

xi+n,k|k−1 = x̂k−1|k−1 −
√
n+ κSk−1|k−1ei,

(D11)

where i = 1, 2, . . . , n. Compute the propagated sigma points:

Zi,k|k−1 = hk(xi,k|k−1), v̂i,x,k|k−1 = v̂k|k−1 + (P xv
k|k−1)

TP−1
k|k−1

(xi,k|k−1 − x̂k|k−1), (D12)

where i = 0, 1, . . . , 2n. With (D12), (37)–(40) are approximated as follows:

ẑk|k−1 =
2n
∑

i=0

wiZi,k|k−1 + v̂k|k−1, (D13)

P xz
k|k−1 =

2n
∑

i=0

wixi,k|k−1Z
T
i,k|k−1 + P xv

k|k−1 − x̂k|k−1(ẑk|k−1 − v̂k|k−1)
T, (D14)

P zz
k|k−1 =

2n
∑

i=0

wi(Zi,k|k−1 + v̂i,x,k|k−1)(Zi,k|k−1 + v̂i,x,k|k−1)
T +Ωk|k−1 − ẑk|k−1ẑ

T
k|k−1, (D15)

P vz
k|k−1 =

2n
∑

i=0

wiv̂i,x,k|k−1Z
T
i,k|k−1 + P vv

k|k−1 − v̂k|k−1(ẑk|k−1 − v̂k|k−1)
T. (D16)

The proposed UKF with randomly delayed measurements and colored measurement noises includes one-step predictions

of state and measurement noise in (D4)–(D6), (21) and (23), one-step prediction of delayed measurement in (33)–(36), (42),

(45), (D7)–(D10) and (D13)–(D16), and filtering updates of state and measurement noise in (51)–(57).
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