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Abstract In this paper, the cubature predictive filter (CPF) is derived based on a third-degree spherical-radial

cubature rule. It provides a set of cubature-points scaling linearly with the state-vector dimension, which makes

it possible to numerically compute multivariate moment integrals encountered in the nonlinear predictive filter

(PF). In order to facilitate the new method, the algorithm CPF is given firstly. Then, the theoretical analyses

demonstrate that the estimated accuracy of the model error and system for the proposed CPF is higher than

that of the traditional PF. Moreover, the authors analyze the stochastic boundedness and the error behavior of

CPF for general nonlinear systems in a stochastic framework. In particular, the theoretical results present that

the estimation error remains bounded and the covariance keeps stable if the system’s initial estimation error,

disturbing noise terms as well as the model error are small enough, which is the core part of the CPF theory.

All of the results have been demonstrated by numerical simulations for a nonlinear example system.
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1 Introduction

The real-time predictive filter is a widely used method in many application areas, such as spacecraft atti-

tude determination [1–5], chaotic synchronization system [6], inertial alignment system, etc. It provides a

way of determining optimal state estimates in the presence of significant error in the assumed (nominal)

model, which is first introduced and developed by Lu [7,8], and Crassidis et al. [9,10]. Because the model

errors are not restricted only to Gaussian noise, it is manifest that the PF is more general than other

nonlinear estimated methods, such as the unscented Kalman filter [11]. In essential, the PF owns the

advantages of both the Kalman filter (i.e., a real-time estimator) and the minimum model error (MME)

estimator (i.e., determines actual model error trajectories), which includes: (1) the model error and pro-

cess noise are assumed unknown and are estimated as part of the solution; (2) the model error may take

any form (even nonlinear); (3) the algorithm can be implemented online to measure filter noisy as well

as to estimate state trajectories; (4) the algorithm is robust in the presence of high noise measurement.

Hence, it has attracted a lot of attentions from researchers.

However, the PF also has some serious disadvantages that remain to be improved. According to the

theoretical analyses of the PF, the estimated model error is only accurately to the 1st order of the posterior
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mean, which will introduce serious errors into the state estimate. Therefore, it will inevitably bring some

problems, such as the poor estimate precision, slow rate of convergence, etc. If the estimated model error

deviates largely from its actual value, the error will be propagated to amplify the error effect, resulting

in filter divergence. With a view to tackle these shortcomings, the CPF is derived through the use of

the deterministically chosen cubature-points based on third-degree spherical-radial cubature rule [12,13].

The estimated model error of the CPF is demonstrated to capture the posterior mean accurately to the

3rd order for nonlinear Gaussian system, with errors only introduced in the 4th and high orders. At

the same time, the estimated model error can capture the posterior mean accurately to the 2nd order

for any nonlinearity. This derivativeless, based on predictive filter consistently outperform the PF not

only in terms of estimated accuracy, but also in filter robustness and easy implementation. Without loss

of generality, a study of a more general nonlinear case in a stochastic framework would also be of some

interest, which is the core of the CPF theory.

In light of the above factors, we obtain the stability results for general nonlinear estimation problems

by analyzing the error behavior of the CPF. Particularly, it is proved that the estimated error of CPF

remains bounded and the covariance keeps stable if the system’s initial estimation error, the disturbing

noise terms as well as the model errors are small enough, which consist of the conditions about the

effectiveness of the proposed CPF. It is also the main contributions. The paper is organized as follows.

In Section 2, the classical PF and the general algorithm flow of the CPF are shown. Then, in Section 3,

the error analyses of the model error and system state are given, which shows that the estimated accuracy

of the model error and system state are both higher than that of PF. Moreover, we review some auxiliary

results from stochastic stability theory and obtain the stochastic boundedness of the CPF in Section 4.

In Section 5, the stochastic stability of CPF is analyzed. Then, the state estimation error and covariance

will remain bounded if certain conditions are satisfied. Section 6 contains numerical simulation results for

an example system to illustrate the theoretical results of Sections 3 and 5. In Section 7, the conclusion

is drawn.

2 The flow of CPF and analysis

In the nonlinear predictive filter, the state are obtained by propagating an equation of the plant dynamics,

which are assumed to be of the discrete-time form:

xk+1 = f (xk) + g
′ (xk)d

′

k, yk = h′ (xk) + νk, (1)

where k ∈ N0 is the discrete time, f (·) ∈ R
n and is sufficiently differentiable vector fields and R

n is

the real n-dimensional vector space, x (t) ∈ R
n denotes the system state vector, d′ (t) ∈ R

l denotes the

model error vector, and g′ (·) ∈ R
n×l denotes the model error distribution matrix, which determines how

the model error is introduced to the plant dynamics. yk ∈ R
n denotes the measurement, h′ (·) ∈ R

m

denotes sufficiently differentiable, vk ∈ R
m reprents the measurement noise vector, which is assumed to

be a zero-mean, Gaussian white-noise distributed process with

E (νk) = 0, E
{
νkν

T
l

}
= Rδkl, (2)

whereR ∈ R
m×m is a positive-definite measurement covariance matrix. For ease of the following research,

g′ (xk)d
′

k = dk is defined as the total model error. Hence, Eq. (1) can be rewritten as

xk+1 = f (xk) + g (xk)dk, yk = h′ (xk) + νk. (3)

For simplicity and clarity, we consider that g (xk) = I ∈ R
n×n is well defined; therefore, Eqs. (3) and

(1) are mathematical of consistency. It is also assumed that the state and output estimates are given by

a preliminary model and a to-be-determined model error vector, given by

x̂k+1 = f (x̂k) + g (x̂k)dk, ŷk = h′ (x̂k) . (4)
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According to the PF theoretical results, based on the estimate principle of MME, a cost function

consisting of the weighted sum square of the measurement-minus-estimate residuals plus the weighted

sum square of the model correction term is minimized, such that

J [dk] =
1

2
[yk+1 − ŷk+1]

T ·R−1 · [yk+1 − ŷk+1] +
1

2
dTkWdk, (5)

where W ∈ R
l×l is a positive semidefinite weighting matrix.

To satisfy the covariance constraint condition of the PF, the estimated model error is given by

d̂k = − (Z [x̂k,∆t] + h (x̂k, t)) ,

M (x̂k) =
{

[Λ (∆t)U (x̂k)]
T
R−1Λ (∆t)U (x̂k) +W

}−1

· [Λ (∆t)U (x̂k)]
T
R−1,

Z [x̂k,∆t] =M (x̂k)Z
′ [x̂k,∆t] , h (x̂k) =M (x̂k) (h

′ (x̂k)− yk+1) .

(6)

Similarly, the real model error is given by

dk = − (Z [xk,∆t] + h (xk)) ,

M (xk) =
{

[Λ (∆t)U (xk)]
T
R−1Λ (∆t)U (xk) +W

}−1

· [Λ (∆t)U (xk)]
T
R−1,

Z [xk,∆t] =M (xk)Z
′ [xk,∆t] , h (xk) =M (xk) (h

′ (xk) + νk − yk+1) .

(7)

The ith row of Z′ [x̂k,∆t] ∈ R
m is given by

Z ′
i [x̂k,∆t] =

pi∑

k=1

∆tk

k!
Lk
f (h

′
i) , i = 1, 2, . . . ,m, (8)

where is the lowest order of the derivative of h′
i (x (tk)) in which any component of the model error dk

first appears. Lk
f (h

′
i) is a kth order Lie dervative.

Λ (∆t) ∈ R
m×m is a diagonal matrix with elements given by

λii = ∆tpi/pi!, i = 1, 2, . . . ,m. (9)

U [x̂k] ∈ R
m×l is a matrix with each ith row given by

ui =
{

Lg1

[

L
pi−1
f (h′

i)
]

, . . . , Lgl

[

L
pi−1
f (h′

i)
]}

, i = 1, 2, . . . ,m, (10)

where the Lie derivative with respect to Lgl in Eq. (10) is defined by

Lgj

[

L
pi−1
f (h′

i)
]

=
∂L

pi−1
f

∂x̂
gj , j = 1, 2, . . . , l. (11)

Eq. (11) is in essence a generalized sensitivity matrix for nonlinear systems. Now, we expand Eq. (7)

using a multi-dimensional Taylor series expansion around, and yields

dk = −
(

Z [x̂k,∆t] +D∆xZ +
D2

∆xZ

2
+ · · ·+ h (x̂k) +D∆xh+

D2
∆xh

2
+ · · ·

)

, (12)

where ∆x = xk − x̂k, and ∆x is a zero-mean random variable with the same covariance Pk as xk

apparently. D∆x is an vector operator that evaluates the total differential of h (·) when perturbed

around a nominal value x̂k by ∆x, i.e.,

D∆xh = Gh∆x, (13)

where Gk is the Jacobian matrix. In addition, the operator D∆x can be rewritten and interpreted as the

scalar operator

D∆x =
[(
∆xT∇

)
(h (x))

T
]T
∣
∣
∣
∣
x=x̂k

=

n∑

j=1

∆xj

∂

∂xj

, (14)
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which acts on h (·) on a component-by-component basis. Using this definition, the ith term in the Taylor

series for h (xk) is thus given by

Di
∆xh

i!
=
D∆x

(
Di−1

∆x h
)

i!
=

(

(∆x)T∇
)i

h (x)

∣
∣
∣
∣
x=x̂k

i!
=

1

i!





n∑

j=1

∆xj

∂

∂xj





i

h (x)| x=x̂k
, (15)

where ∆xj is the jth component of ∆x, ∂
∂xj

is the normal partial derivative operator with respect to xj

(the jth component of xk), and n is the dimension of xk).

In the same way,
Di

∆xZ

i! has the same expansion. Comparing Eq. (7) with Eq. (12), the estimated model

error d̂k is only accurately to the first-order accuracy of the real model error dk. The first order Taylor

approximation provides an insufficiently accurate representation in many cases, and significant bias, or

even convergence problems, are commonly encountered due to the overly crude approximation. Hence,

the estimated accuracy of the model error plays a significant role in enhancing the PF’s performance.

On the basis of the above mentioned, the CPF is presented, which employs the third-degree spherical-

radial cubature rule to outperform the PF not only in terms of estimated accuracy of model error, but also

in the estimated accuracy of system state. This is completed by using a set of deterministically chosen

cubature-points. These cubature-points completely have the same mean and covariance to the system

state distribution. When these points are propagated through the nonlinear model error functions, the

cubature-points can capture the higher estimated accuracy of the model error. Finally, the CPF becomes

the recursive filter to enhance the estimated accuracy of the system state so that the general algorithm

flow is proposed.

To calculate the statistics of Mk (·)|xk=x̂k−1
Zk (·)|xk=x̂k−1

and hk (·)|xk=x̂k−1
Pk using the cubature

rule based on the nonlinear system of Eq. (3), the filtering recursion formulas of the CPF can be obtained.

(1) Denote the statistical property of the initial state:







x̂0 = E (x0) ,

P0 = Var (x0) = E
[

(x0 − x̂0) (x0 − x̂0)
T
]

.
(16)

(2) Make out the cubature-point by using the cubature rule.

(3) Update the model error. According to the cubature-point selection scheme in Step (2), the

cubature-point ξi,k−1 (i = 1, . . . , 2n) can be calculated through the use of x̂k−1 and Pk−1. Each cubature-

point is propagated through the nonlinear functions of hk−1 (·), Zk−1 (·), Mk−1 (·) to generate γi,k−1,

αi,k−1, βi,k−1, which yields the model error d̂i,k−1 corresponding to each cubature point and the total

model error d̂k−1 in response to the CPF algorithm,

βi,k−1 =Mk−1 (ξi,k−1) , (i = 1, . . . , 2n) ,

γi,k−1 = βi,k−1 (h
′

k−1 (ξi,k−1)− y (t+∆t)) , (i = 1, . . . , 2n) ,

αi,k−1 = βi,k−1Z
′

k−1 (ξi,k−1) , (i = 1, . . . , 2n) ,

(17)

h̄k−1 =
1

2n

2n∑

i=1

γi,k−1, Z̄k =
1

2n

2n∑

i=1

αi,k, (18)

d̂i,k−1 = − (αi,k−1 + γi,k−1) , d̂k−1 = −
(
Z̄k−1 + h̄k−1

)
, (19)

(4) Estimate the state and update the covariance. Given the set of cubature-points, each point is

instantiated through the nonlinear function fk−1 (·) to generate δi, k|k−1. The update of state estimation

x̂k and covariance Pk are calculated from the set {δi, k|k−1, d̂i,k−1}.
To update the state estimation:

δi, k|k−1 = fk−1 (ξi,k−1) , (i = 1, . . . , 2n) ,
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x̂k|k−1 =
1

2n

2n∑

i=1

δi, k|k−1, x̂k = x̂k|k−1 + gk−1d̂k−1, d̂
′

k−1 = g′(x̂k)
−1
d̂k−1. (20)

To update the covariance:

χi,k = δi, k|k−1 + gkd̂i,k−1, Pk =
1

2n
χi,kχ

T
i,k − x̂kx̂

T
k . (21)

Note that the estimate model error is obtained in the Step (3) of the CPF algorithm; therefore, d̂k−1

is the constant and there gk−1 = I exists in Eq. (21).

3 The analysis of model error and state error for CPF

3.1 Error analysis of model error by cubature rule appoximation

In this subsection, the cubature rule is used to approximate the posterior distribution of the model error,

which will yield higher estimated accuracy of the model error. We provide a detailed analysis about

the posterior distribution of the model error. The numerically efficient Cholesky factorization method is

typically used to calculate the matrix square root of Pk, such that

Pk = SkS
T
k =

n∑

i=1

σki
σT
ki
, (22)

where, σki
is the ith column of the matrix Sk.

First, the set of cubature-points are deterministically chosen so that they completely capture the true

mean and covariance of the prior random variable xk. The set of 2n cubature-points are given by [12]

{

ξi = x̂k +
√
nσki

= x̂+ σ̂ki
,

ξi+n = x̂k −
√
nσki

= x̂− σ̂ki
,

i = 1, 2, . . . , n. (23)

The cubature rule approximates an n-dimensional Gaussian weighted integral as follows:

∫

Rnx

f (x) · (x; x̂k,Pk) dx ≈ 1

2n

2n∑

i=1

f (ξi). (24)

Each cubature-point ξi (i = 1, . . . , 2n) is now propagated through the nonlinear function to generate

γi,






γi = h (ξi) = h (x̂k) +Dσ̂ki
h+

D2

σ̂ki
h

2! +
D3

σ̂ki
h

3! + · · · ,

γi+n = h (ξi+n) = h (x̂k) +D−σ̂ki
h+

D2

−σ̂ki
h

2! +
D3

−σ̂ki
h

3! + · · · ,
i = 1, 2, . . . , n,







αi = Z (ξi) = Z (x̂k) +Dσ̂ki
Z +

D2

σ̂ki
Z

2! +
D3

σ̂ki
Z

3! + · · · ,

αi+n = Z (ξi+n) = Z (x̂k) +D−σ̂ki
Z +

D2

−σ̂ki
Z

2! +
D3

−σ̂ki
Z

3! + · · · ,
i = 1, 2, . . . , n.

(25)

Due to the vector differential operator Eq. (15), we get







Dm
−σ̂ki

h =
(

(−σ̂ki
)T∇

)m

h (x)|x=x̂k
= −

(

(σ̂ki
)T∇

)m

h (x)|x=x̂k
= −Dm

σ̂ki
h,

D
p
−σ̂ki

h =
(

(−σ̂ki
)
T∇
)p

h (x)|x=x̂k
=
(

(σ̂ki
)
T∇
)p

h (x)|x=x̂k
=Dp

σ̂ki

h,






Dm
−σ̂ki

Z =
(

(−σ̂ki
)
T∇
)m

Z (x)|x=x̂k
= −Dm

σ̂ki
Z,

D
p
−σ̂xi

Z =
(

(−σ̂xi
)
T∇
)p

Z (x)|x=x̂ = Dp
σ̂xi
Z,

(26)

where m is odd number; p is even number.
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Meanwhile, we can notice the following relationship exist:

1

2n

2n∑

i=1

[
D2

σ̂ki
h

2!

]

=
1

2n
E




Dσ̂ki

(

Dσ̂ki
h
)

2!





=
1

2n

2n∑

i=1





(

∇Tσ̂ki
(σ̂ki

)
T∇
)

h (x)|x=x̂k

2!



 =

(
∇TPk∇

)
h (x)|x=x̂k

2!
. (27)

Using Eq. (15) we get

1

2n

2n∑

i=1

[
D2

σ̂ki
Z

2!

]

= E

[
D2

∆xZ

2!

]

. (28)

After the apporximation, the posterior distributions of different nonlinear functions are represented by

h̄CPF =
1

2n

n∑

i=1

(γi + γi+n) = h (x̂k) +
1

n

n∑

i=1

[
D2

σ̂ki
h

2!
+
D4

σ̂ki
h

4!
+
D6

σ̂ki
h

6!
+ · · ·

]

= h (x̂k) + E

[
D2

∆xh

2!

]

+
1

n

n∑

i=1

[
D4

σ̂ki
h

4!
+
D6

σ̂ki
h

6!
+ · · ·

]

,

Z̄CPF =
1

2n

n∑

i=1

(αi + αi+n) = Z (x̂k) +
1

n

n∑

i=1

[
D2

σ̂ki
Z

2!
+
D4

σ̂ki
Z

4!
+
D6

σ̂ki
Z

6!
+ · · ·

]

= Z (x̂k) + E

[
D2

∆xZ

2!

]

+
1

n

n∑

i=1

[
D4

σ̂ki
Z

4!
+
D6

σ̂ki
Z

6!
+ · · ·

]

. (29)

With Eq. (7) we can obtain the minimal estimated model error after the cubature rule as follows:

d̂CPF = −
(

h (x̂k) + E

[
D2

∆xh

2!

]

+
1

n

n∑

i=1

[
D4

σ̂ki
h

4!
+
D6

σ̂ki
h

6!
+ · · ·

]

+Z (x̂k) + E

[
D2

∆xZ

2!

]

+
1

n

n∑

i=1

[
D4

σ̂ki
Z

4!
+
D6

σ̂ki
Z

6!
+ · · ·

])

. (30)

Comparing (30) with (12), the CPF can capture the posterior mean of the model error accurately

to 3rd order for nonlinear Gaussian system through the use of the symmetrically cubature points, with

errors only introduced in the 4th and higher order moments. Moreover, the CPF completely capture the

posterior mean of the model error accurately to 2nd order for any nonlinear function. In comparison, the

classical PF only calculates the posterior mean and covariance accurately to the 1st order with all higher

order moments truncated. It is evident that the CPF will have higher estimated accuracy than classical

PF in state estimation.

3.2 Error analysis of state and covariance for CPF

In this subsection, the research emphasis is the analysis of the state and covariance of CPF. From Eqs.

(3), (4), (6) and (7), it is assumed that −g (xk)d (xk) = η (xk)−g (xk)M (xk) νk and −g (x̂k)d (x̂k) =

η (x̂k) exist and yield

xk+1 = xk +∆tf (xk) + ∆tη (xk)−∆tg (xk)M (xk) νk + µ (xk,dk) ,

x̂k+1 = x̂k +∆tf (x̂k) + ∆tη(x̂k) + µ(x̂k, d̂k),
(31)

where µ (xk,dk) and µ(x̂k, d̂k) are the higher-order linearization and discretization errors. Hence, with

Eq. (31) we can get the state estimated error x̃k+1 = xk+1 − x̂k+1 is given by

x̃k+1 = x̃k +∆t (f (xk)− f (x̂k)) + ∆t (η (xk)− η (x̂k))−∆tB̄ (x̂k) νk + γ(xk,dk, x̂k, d̂k), (32)
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where B̄ (x̂k) = g (x̂k)M (x̂k), ε
(
B̄ (x̂k)

)
is the high-order discretization error, and γ(xk,dk, x̂k, d̂k) =

(µ(xk,dk)− µ(x̂k, d̂k)− ε(B̄(x̂k))νk).

Substituting Eq. (32) into the covariance Pk+1 = E
[
x̃k+1x̃

T
k+1

]
yields

Pk+1 = Pk +∆tE{x̃k[f (xk)− f (x̂k)]
T + x̃k[η (xk)− η (x̂k)]

T + [f (xk)− f (x̂k)] x̃
T
k

+ [η (xk)− η (x̂k)] x̃
T
k

}
+ (∆t)

2
B̄ (x̂k)RB̄(x̂k)

T
+ψ (νk)

+ (∆t)2E { [f (xk)− f (x̂k)] [f (xk)− f (x̂k)]
T + [η (xk)− η (x̂k)] [η (xk)− η (x̂k)]

T

+ [f (xk)− f (x̂k)] [η (xk)− η (x̂k)]
T
+ [η (xk)− η (x̂k)] [f (xk)− f (x̂k)]

T }

+ o
(

xk,dk, x̂k, d̂k

)

, (33)

where o(xk,dk, x̂k, d̂k) is the polynomial sum of γ(xk,dk, x̂k, d̂k) as well as ψ (νk) is the polynomial sum

of νk.

Rearranging the terms of Eq. (33) yields

Pk+1 = AkPkA
T
k + (∆t)

2
B̄kRB̄

T
k + Q̃k, (34)

where

Ak = (I +∆tGf +∆tGη) , Q̃k = ∆tΣ̄1 + (∆t)
2
Σ̄2 +ψ (νk) + ok,

Σ̄1 =
∞∑

i=1

1

(2i+ 1)!
E
{

x̃k

[
D2i+1

x̃k
(f + η)

]T
+
[
D2i+1

x̃k
(f + η)

]
x̃T
k

}

, (35)

Σ̄2 = E







∞∑

i=1

∞∑

j=1

1

i!j!

(
[
Di

x̃k
(f + η)

] [

D
j
x̃k

(f + η)
]T
)

︸ ︷︷ ︸

condition 1







,

which is the covariance of traditional PF and condition 1: i · j > 1, i+ j is odd number.

In this subsection, we will provide the detailed analysis about the estimated state and covariance.

From Eqs. (22) and (23), the covariance Pk of the state variable (xk)CPF is adopted cubature-points to

calculate for any time. Meanwhile, the set of cubature-points ξk,i (i = 1, . . . , 2n) is represented by

{

ξk,i = (x̂k)CPF +
√
nσxki

= (x̂k)CPF + σ̂xki
,

ξk,i+n = (x̂k)CPF −√
nσxki

= (x̂k)CPF − σ̂xki
,

i = 1, 2, . . . , n. (36)

Substituting these points into Eq. (31) to propagate through the nonlinear transformation and yields







δk,i = f (ξi) = f(x̂k)CPF +Dσ̂xki
f +

D2

σ̂xki
f

2! +
D3

σ̂xki
f

3! + · · · ,

δk,i+n = f (ξi+n) = f(x̂k)CPF +D−σ̂xki
f +

D2

−σ̂xki
f

2! +
D3

−σ̂xki
f

3! + · · · ,
i = 1, 2, . . . , n,







ρk,i = η (ξi) = η(x̂k)CPF +Dσ̂xki
η +

D2

σ̂xki
η

2! +
D3

σ̂xki
η

3! + · · · ,

ρk,i+n = η (ξi+n) = η(x̂k)CPF +D−σ̂xki
η +

D2

−σ̂xki
η

2! +
D3

−σ̂xki
η

3! + · · · ,
i = 1, 2, . . . , n,

(37)

inserting into Eq. (31) and rearranging the terms, the error analysis of cubature-points is given by

ξk+1,i = ξk,i +∆tδk,i +∆tρk,i + µk,i,

(x̂k+1)CPF =
1

2n

2n∑

i=1

ξk+1,i =
1

2n

2n∑

i=1

(ξk,i +∆tδk,i +∆tρk,i + µk,i)

= (x̂k)CPF +∆tf(x̂k)CPF +∆tη(x̂k)CPF +
1

2n

2n∑

i=1

µk,i



Cao L, et al. Sci China Inf Sci September 2016 Vol. 59 092203:8

+
∆t

n

{
n∑

i=1

[
D2

σ̂xki
f

2!
+
D4

σ̂xki
f

4!
+ · · ·

]

+

n∑

i=1

[
D2

σ̂xki
η

2!
+
D4

σ̂xki
η

4!
+ · · ·

]}

. (38)

Taking Eqs. (32) and (38) into account, the estimated error is defined by

(x̃k+1)CPF = xk+1 − (x̂k+1)CPF

= (x̃k)CPF +∆t (Gf(x̃k)CPF +Gη(x̃k)CPF) + µ̄k

(

xk,dk, (x̂k)CPF,
(

d̂k

)

CPF

)

+ sk

= (I +∆tGf +∆tGη) (x̃k)CPF + µ̄k

(

xk,dk, (x̂k)CPF,
(

d̂k

)

CPF

)

+ sk

= Ak(x̃k)CPF + µ̄k

(

xk,dk, (x̂k)CPF,
(

d̂k

)

CPF

)

+ sk, (39)

where

Ak = (I +∆tGf +∆tGη) , sk = −∆tB̄(x̂k)CPFνk = −Bkνk,

µ̄k

(

xk,dk, (x̂k)CPF,
(

d̂k

)

CPF

)

=

(

µ (xk,dk) νk −
1

2n

2n∑

i=1

µk,i − ε
(
B̄(x̂k)CPF

)
νk

)

+∆t
(

∆f (xk, (x̂k)CPF) + ∆η
(

xk,dk, (x̂k)CPF,
(

d̂k

)

CPF

))

,

∆f (xk, (x̂k)CPF) =

∞∑

i=2

1

i!
Di

x̂k
f − ∆t

n

n∑

j=1

[
D2

σ̂xkj
f

2!
+
D4

σ̂xkj
f

4!
+ · · ·

]

,

∆η
(

xk,dk, (x̂k)CPF,
(

d̂k

)

CPF

)

=

∞∑

i=2

1

i!
Di

x̂k
η − ∆t

n

n∑

j=1

[
D2

σ̂xkj

η

2!
+
D4

σ̂xkj

η

4!
+ · · ·

]

. (40)

The error transition Eq. (39) is now in a recursive form. According to the definition of the covariance,

the covariance can be estimated as follows:

(Pk+1)CPF =
1

2n

2n∑

i=1

(ξk+1,i − (x̂k+1)CPF) (ξk+1,i − (x̂k+1)CPF)
T
= (Pk)CPF

+∆t

{

1

2n

2n∑

i=1

(ξk,i − (x̂k)CPF) (δk,i − f(x̂k)CPF)
T
+

1

2n

2n∑

i=1

(ξk,i − (x̂k)CPF) (ρk,i − η(x̂k)CPF)
T

+
1

2n

2n∑

i=1

(δk,i − f(x̂k)CPF) (ξk,i − (x̂k)CPF)
T
+

1

2n

2n∑

i=1

(ρk,i − η(x̂k)CPF) (ξk,i − (x̂k)CPF)
T

}

+ ψ̄ (νk)

+ ∆t2
{

1

2n

2n∑

i=1

(δk,i − f(x̂k)CPF) (δk,i − f(x̂k)CPF)
T
+

1

2n

2n∑

i=1

(ρk,i − η(x̂k)CPF) (ρk,i − η(x̂k)CPF)
T

+
1

2n

2n∑

i=1

(δk,i − f(x̂k)CPF) (ρk,i − η(x̂k)CPF)
T

+
1

2n

2n∑

i=1

(ρk,i − η(x̂k)CPF) (δk,i − f(x̂k)CPF)
T

}

+ ō (δk,i, µk,i) , (41)

where ō (δk,i, µk,i) is the sum of the polynomial of (µk,i − 1
2n

∑2n
i=i µk,i) and other polynomials, and ψ̄ (νk)

is the sum of the polynomial of νk.

The set of cubature points are used to expand the terms of Eq. (41), yield

1

2n

2n∑

i=1

(ξk,i − (x̂k)CPF) (δk,i − f(x̂k)CPF)
T =

1

2n

n∑

i=1

[
(ξk,i − (x̂k)CPF) δ

T
i + (ξk,i+n − (x̂k)CPF) δ

T
i+n

]

=
1

n

n∑

i=1






σ̂xki

[

Dσ̂xki
f +

D3
σ̂xki

f

3!
+
D5

σ̂xki

f

5!
+ · · ·

]T





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= PkG
T
f +

n∑

i=1

∞∑

j=1

1

n (2j + 1)!
σ̂xki

D
2j+1
σ̂xki

f ,

1

2n

2n∑

i=1

(δk,i − f(x̂k)CPF) · (δk,i − f(x̂k)CPF)
T
=

1

2n

2n∑

i=1

δk,iδ
T
k,i − f(x̂k)CPF(f(x̂k)CPF)

T

=
1

n

n∑

i=1







[

Dσ̂xki
f +

D3
σ̂xki

f

3!
+ · · ·

][

Dσ̂xki
f +

D3
σ̂xki

f

3!
+ · · ·

]T

+

[
D2

σ̂xki
f

2!
+
D4

σ̂xki
f

4!
+ · · ·

][
D2

σ̂xki
f

2!
+
D4

σ̂xki
f

4!
+ · · ·

]T






− 1

n2

{
n∑

i=1

[
D2

σ̂xki

f

2!
+
D4

σ̂xki

f

4!
+ · · ·

]}

·
{

n∑

i=1

[
D2

σ̂xki

f

2!
+
D4

σ̂xki

f

4!
+ · · ·

]}T

= GfPkG
T
f − E

[
D2

∆xf

2!

]

E

[
D2

∆xf

2!

]T

+
1

n

n∑

l=1









∞∑

i=1

∞∑

j=1

1

i!j!
Di

σ̂xkl
f
(

D
j
σ̂xkl

f
)T

︸ ︷︷ ︸

condition 1









−









∞∑

i=1

∞∑

j=1

1

(2i)! (2j)!n2

n∑

p=1

n∑

m=1

D2i
σ̂xkp

f
(

D
2j
σ̂xkm

f
)T

︸ ︷︷ ︸

condition 2









, (42)

where condition 1: i · j > 1, i+ j is odd number; condition 2: i · j > 1.

Similarly,

1

2n

2n∑

i=1

(ξk,i − (x̂k)CPF) · (ρk,i − η(x̂k)CPF)
T = PkG

T
η +

n∑

i=1

∞∑

j=1

1

n (2j + 1)!
σ̂xki

D
2j+1
σ̂xki

η,

1

2n

2n∑

i=1

(δk,i − f(x̂k)CPF) · (ξk,i − (x̂k)CPF)
T
= GfPk +

n∑

i=1

∞∑

j=1

1

n (2j + 1)!
D

2j+1
σ̂xki

f σ̂xki
,

1

2n

2n∑

i=1

(ρk,i − η(x̂k)CPF) · (ξk,i − (x̂k)CPF)
T
= GηPk +

n∑

i=1

∞∑

j=1

1

n (2j + 1)!
D

2j+1
σ̂xki

ησ̂xki
, (43)

1

2n

2n∑

i=1

(ρk,i − η(x̂k)CPF) · (ρk,i − η(x̂k)CPF)
T = GηPkG

T
η +

1

n

n∑

l=1









∞∑

i=1

∞∑

j=1

1

i!j!
Di

σ̂xkl
η
(

D
j
σ̂xkl

η
)T

︸ ︷︷ ︸

condition 1









− E

[
D2

∆xη

2!

]

E

[
D2

∆xη

2!

]T

−









∞∑

i=1

∞∑

j=1

1

(2i)! (2j)!n2

n∑

p=1

n∑

m=1

D2i
σ̂xkp

η
(

D
2j
σ̂xkm

η
)T

︸ ︷︷ ︸

condition 2









,

1

2n

2n∑

i=1

(δk,i − f(x̂k)CPF) · (ρk,i − η(x̂k)CPF)
T = GfPkG

T
η +

1

n

n∑

l=1









∞∑

i=1

∞∑

j=1

1

i!j!
Di

σ̂xkl
f
(

D
j
σ̂xkl

η
)T

︸ ︷︷ ︸

condition 1








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− E

[
D2

∆xf

2!

]

E

[
D2

∆xη

2!

]T

−









∞∑

i=1

∞∑

j=1

1

(2i)! (2j)!n2

n∑

p=1

n∑

m=1

D2i
σ̂xkp

f
(

D
2j
σ̂xkm

η
)T

︸ ︷︷ ︸

condition 2









,

1

2n

2n∑

i=1

(ρk,i − η(x̂k)CPF) · (δk,i − f(x̂k)CPF)
T = GηPkG

T
f +

1

n

n∑

l=1









∞∑

i=1

∞∑

j=1

1

i!j!
Di

σ̂xkl
η
(

D
j
σ̂xkl

f
)T

︸ ︷︷ ︸

condition 1









− E

[
D2

∆xη

2!

]

E

[
D2

∆xf

2!

]T

−









∞∑

i=1

∞∑

j=1

1

(2i)! (2j)!n2

n∑

p=1

n∑

m=1

D2i
σ̂xkp

η
(

D
2j
σ̂xkm

f
)T

︸ ︷︷ ︸

condition 2









, (44)

Substituting Eqs. (42)–(44) into Eq. (41) yields

(Pk+1)CPF = Ak(Pk)CPFA
T
k − (∆t)

2

{

E

[
D2

∆xf

2!

]

+ E

[
D2

∆xη

2!

]}2

+ Σ̃1 + Σ̃2 + ōk + ψ̄k,

Σ̃1 =







n∑

i=1

∞∑

j=1

∆t

n (2j + 1)!

(

σ̂xki
D

2j+1
σ̂xki

(f + η) +D2j+1
σ̂xki

(f + η) σ̂xki

)






,

Σ̃2 =
(∆t)

2

n

n∑

l=1









∞∑

i=1

∞∑

j=1

1

i!j!

[

Di
σ̂xkl

(f + η)
] [

D
j
σ̂xkl

(f + η)
]T

︸ ︷︷ ︸

condition 1









−
∞∑

i=1

∞∑

j=1

(∆t)
2

(2i)! (2j)!n2

n∑

p=1

n∑

m=1

[

D2i
σ̂xkp

(f + η)
] [

D
2j
σ̂xkm

(f + η)
]T

︸ ︷︷ ︸

condition 2

. (45)

Rearranging the terms of Eq. (45) yields

(Pk+1)CPF = Ak(Pk)CPFA
T
k −KkK

T
k +Qk,

Ak = (I +∆tGf +∆tGη) , Qk = Σ̃1 + Σ̃2 + ōk + ψ̄k,

Kk = (∆t)

{[(
∇TPk∇

)
f (x)|x=x̂k

2!

]

+

[(
∇TPk∇

)
η (x)|x=x̂k

2!

]}

= (∆t)

{

E

[
D2

∆xf

2!

]

+ E

[
D2

∆xη

2!

]}

. (46)

As discussed above, Qk is a matrix specially introduced in this paper. If the value of Qk approximates

the sum of the latter four terms of Eq. (45) and the initial value satisfies (P0)CPF = E
(
x̃0x̃

T
0

)
, then

(Pk)CPF calculated from Eq. (45) will approximate the actual value, that is, (Pk)CPF ≈ E
(
x̃kx̃

T
k

)
.

Therefore, Eq. (46) can be used to estimate the covariance of the state estimation error. In comparison

of Eqs. (34) and (46), if the initial value satisfies (P0)CPF = P0, and Qk, Q̃k are both the high-order

small quantities. The inequality (Pk)CPF 6 Pk exists for every k > 0. Hence, the covariance of the CPF

has faster convergent speed than the classical PF, which will bring some better filtering performances.
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4 State estimation and stochastic boundedness analysis of covariance

For the analyses of the error boundedness and stability, we make use of the following two concepts for

the boundedness of stochastic processes [14].

Definition 1. The stochastic process ζk is said to be exponentially bounded in mean square, if there

are real numbers η, υ > 0 and 0 < ϑ < 1 such that

E
{

‖ζk‖2
}

6 η‖ζ0‖2ϑk + υ (47)

holds for every k > 0

Definition 2. The stochastic process is said to be bounded with probability one, if

sup
k>0

‖ζk‖ < ∞ (48)

holds with probability one.

For later use we recall some standard results about the boundedness of stochastic processes [15].

Lemma 1 Assume there is a stochastic process υ, υ, Vk (ζk) as well as real numbers µ > 0 and 0 < α < 1

such that

υ‖ζk‖2 6 Vk (ζk) 6 ῡ‖ζk‖2 (49)

and

E {Vk+1 (ζk+1)| ζk} − Vk (ζk) 6 µ− αVk (ζk) (50)

are fulfilled for every stochastic process. Then the stochastic process is exponentially bounded in mean

square, i.e., we have

E
{

‖ζk‖2
}

6
ῡ

υ
E
{

‖ζ0‖2
}

(1− α)k +
µ

υ

k−1∑

i=1

(1− α)i, (51)

for every k > 0 . Moreover, the stochastic process is bounded with probability one.

Proof. This lemma contains a combination of Refs. [14] and [16].

Remark 1. Using the following relation:

k−1∑

i=1

(1− α)
i
6

∞∑

i=1

(1− α)
i
<

1

α
, (52)

inequality (51) can be rewritten in the form [14]:

E
{

‖ζk‖2
}

6
ῡ

υ
E
{

‖ζ0‖2
}

(1− α)
k
+

µ

υα
. (53)

In this subsection, the positive definiteness and boundedness of (Pk)CPF are established next.

Theorem 1. For the nonlinear stochastic system given by Eq.(3), if there exist positive real numbers

0 < z 6 1, k̄ > 0, r̄ > r > 0 and q̄ > q > 0, such that the following bounds are satisfied for every k > 0.

0 6 AkA
T
k 6 (1− z) I, rI 6 R 6 r̄I, qI 6 Qk 6 q̄I,

0 6
1

4
(∆t)

2 [(∇T∇
)
f (x)|x=x̂k

+
(
∇T∇

)
η (x)|x=x̂k

]

·
[(
∇T∇

)
f (x)|x=x̂k

+
(
∇T∇

)
η (x)|x=x̂k

]T
6 k̄I, (54)

and the initial condition (P0)CPF satisfies pI 6 (P0)CPF 6 p̄I for real numbers p̄ > p > 0, then the

recursion (46) is bounded as

pI 6 (Pk)CPF 6 p̄I, (55)

for every k > 0.

Proof. Let

q = p, q̄ = p̄z + p̄2k̄. (56)
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Then the following two inequalities can be derived from conditions Eq. (54), as follows:

pAkA
T
k −

{
1

4
(∆t)2p2

[(
∇T∇

)
f (x)|x=x̂k

+
(
∇T∇

)
η (x)|x=x̂k

]

·
[(
∇T∇

)
f (x)|x=x̂k

+
(
∇T∇

)
η (x)|x=x̂k

]T
}

+Qk > I,

p̄AkA
T
k −

{
1

4
(∆t)2p̄2

[(
∇T∇

)
f (x)|x=x̂k

+
(
∇T∇

)
η (x)|x=x̂k

]

·
[(
∇T∇

)
f (x)|x=x̂k

+
(
∇T∇

)
η (x)|x=x̂k

]T
}

+Qk 6 p̄I. (57)

If the initial condition satisfies pI 6 (P0)CPF 6 p̄I, it is readily obtained from the above inequalities

that

pI 6 (P1)CPF = A0(P0)CPFA
T
0 −K0K

T
0 +Q0 6 p̄I (58)

yielding pI 6 (P1)CPF 6 p̄I. Repeating the process, it can readily establish that pI 6 (Pk)CPF 6 p̄I for

k > 0.

After the recursion Eq. (58) for the state estimation error and the corresponding covariance matrix

are derived, the stochastic boundedness analysis of the CPF is discussed in the following section.

5 Stochastic stability analysis of CPF

With the discussions above, we are able to state the main results of the error boundedness and steady

for the CPF in this paper.

Theorem 2. Consider a nonlinear stochastic system given by Eq. (3) and the CPF given in Section 2.

Let the following assumptions hold:

(1) There are positive real numbers ā, a, p̄, p, q̄, q, r, r̄, λ, λ̄, s, s̄, k̄ > 0, such that the following bounds

on various matrices are fulfilled for every k > 0:

a 6 ‖Ak‖ 6 ā,

∥
∥
∥
∥

1

2
(∆t)

[(
∇T∇

)
f (x)|x=x̂k

+
(
∇T∇

)
η (x)|x=x̂k

]
∥
∥
∥
∥
6

√

k̄,

qI 6 Qk 6 q̄I, rI 6 R 6 r̄I, 0 6W 6 w̄I,

Λ 6 ‖Λ (∆t)‖ 6 λ̄, s 6 ‖(S (x̂k))CPF‖ 6 s̄, pI 6 (Pk)CPF 6 p̄I. (59)

(2) Ak is invertible for every k > 0.

(3) There exist positive real numbers κµ̄, ε
′ > 0, such that the nonlinear function given by Eq. (39) is

bounded,

∥
∥
∥µ̄k

(

xk,dk, (x̃k)CPF,
(

d̂k

)

CPF

)∥
∥
∥ 6 κµ̄‖xk − (x̂k)CPF‖

2
, ‖xk − (x̂k)CPF‖ 6 ε′. (60)

Then the state estimation error given by Eq. (39) is exponentially bounded in mean square and bounded

with probability one, provided that the initial estimation error satisfies

‖(x̃0)CPF‖ 6 ε, (61)

for some ε > 0, where ‖·‖ is the Euclidian norm of real vectors or the spectral norm of real matrices.

The proof of this theorem is divided into several lemmas.

Lemma 2. Under the conditions of Theorem 2, there is a real number 0 < α < 1 such that Πk =
(
P−1

k

)

CPF
satisfies the inequality

(Ak −KkCk)
T
Πk+1 (Ak −KkCk) 6 (1− α)Πk, (62)
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where

Ck =
((
P−1

k

)

CPF
A−1

k Kk

)T
, α = 1− 1

/(

1 +
q

p̄
(
ā+ p̄2k̄

/
ap
)2

)

, (63)

for every k > 0.

Proof. From Eqs. (46) and (63) we have

(Pk+1)CPF = Ak(Pk)CPFA
T
k +Qk −Ak(Pk)CPFC

T
kK

T
k , (64)

and rearranging the terms yields

(Pk+1)CPF = (Ak −KkCk) (Pk)CPF(Ak −KkCk)
T
+Qk +KkCk(Pk)CPF(Ak −KkCk)

T
. (65)

The next step we consider the term KkCk(Pk)CPF(Ak −KkCk)
T
on the right-hand side of Eq. (65).

With Eq. (63) it can be verified that

A−1
k (Ak −KkCk) (Pk)CPF = (Pk)CPF − (Pk)CPFC

T
k Ck(Pk)CPF (66)

is a symmetric matrix. From Eqs. (39), (40) and (46), the linear term and the first order term of the

Taylor series expansion of (xk+1)CPF are Ak · (x̃k)CPF, as well as the expectation of the 2nd order term

is Kk. It is obvious that the zeroth and first order terms of any nonlinear function account for the major

than that of the residual terms. In other words, the following inequality exists:

|Kk| < |Ak · (x̃k)CPF| . (67)

So, Eq. (67) can be rewritten in the following form:

|Kk|
|Ak · (x̃k)CPF|

|(x̃k)CPF| < |(x̃k)CPF| . (68)

Using Eq. (68), we establish that

((
A−1

k

)
Kk

) ((
A−1

k

)
Kk

)T
< (Pk)CPF,

(
P−1

k

)

CPF

((
A−1

k

)
Kk

) ((
A−1

k

)
Kk

)T(
P−1

k

)

CPF
<
(
P−1

k

)

CPF
,

(69)

because equality
(
P−1

k

)

CPF
=
((
P−1

k

)

CPF

)T
exists, and inserting into Eq. (63) leads to

CkC
T
k <

(
P−1

k

)

CPF
. (70)

Substituting Eq. (70) into Eq. (66), and we have form Eq. (66) using
(
P−1

k

)

CPF
> 0 and (Pk)CPF > 0,

A−1
k (Ak −KkCk) (Pk)CPF=(Pk)CPF − (Pk)CPFC

T
k Ck(Pk)CPF > 0. (71)

Moreover, we have the other form that

(
A−1

k

)
KkCk=

(
A−1

k Kk

) (
A−1

k Kk

)T((
P−1

k

)

CPF

)T
> 0. (72)

Combining Eqs. (71) and (72), we establish that

KkCk(Pk)CPF(Ak −KkCk)
T = Ak

[
A−1

k KkCk

] [
A−1

k (Ak −KkCk) (Pk)CPF

]T
AT

k > 0 (73)

holds, and inserting into Eq. (65) leads to

(Pk+1)CPF > (Ak −KkCk) (Pk)CPF(Ak −KkCk)
T +Qk. (74)

Inequality Eq. (71) implies that (Ak −KkCk)
−1

exists and therefore we may write

(Pk+1)CPF > (Ak −KkCk)
[

(Pk)CPF + (Ak −KkCk)
−1

·Qk · (Ak −KkCk)
−T
]

(Ak −KkCk)
T
.

(75)



Cao L, et al. Sci China Inf Sci September 2016 Vol. 59 092203:14

From Eq. (59) we have

‖Kk‖ 6 p̄
√

k̄, ‖Ck‖ 6 p̄
√

k̄
/

ap, (76)

and Eq. (75) can be rewritten in the form:

(Pk+1)CPF > (Ak −KkCk)

[

(Pk)CPF +
q

(
ā+ p̄2k̄

/
ap
)2

]

(Ak −KkCk)
T
. (77)

Since (Pk)CPF > pI and Ak −KkCk are nonsingular. Applying the matrix inversion lemma [17] and

taking the inverse of both sides, multiplying from left and right with (Ak −KkCk)
T
and (Ak −KkCk),

and using Eq. (59) we obtain finally with Πk =
(
P−1

k

)

CPF
,

(Ak −KkCk)
T
Πk+1 (Ak −KkCk) 6

[

1 +
q

p̄
(
ā+ p̄2k̄

/
ap
)2

]−1

Πk, (78)

i.e., inequality Eq. (62) with

1− α = 1

/(

1 +
q

p̄
(
ā+ p̄2k̄

/
ap
)2

)

. (79)

Lemma 3. Let the conditions of Theorem 2 be fulfilled, let Πk =
(
P−1

k

)

CPF
and Kk, µ̄k be given by

Eqs. (46) and (40). Then there are positive real numbers κ1, ε
′ > 0 such that

(KkCk (xk − (x̂k)CPF))
T
Πk [2 (Ak −KkCk) (xk − (x̂k)CPF) +KkCk (xk − (x̂k)CPF) + µ̄k]

6 κ1‖xk − (x̂k)CPF‖
2

(80)

holds for ‖xk − (x̂k)CPF‖ 6 ε′.

Proof. From Eq. (76) we have

‖KkCk (xk − (x̂k)CPF)‖ 6
p̄2k̄

ap
‖xk − (x̂k)CPF‖ = k1 ‖xk − (x̂k)CPF‖ , (81)

where k1 = p̄2k̄
/
ap.

From Eqs. (60) and (76), the conditions of Πk =
(
P−1

k

)

CPF
and ‖xk − (x̂k)CPF‖ 6 ε′ are satisfied,

and we obtain

(KkCk (xk − (x̂k)CPF))
TΠk [2 (Ak −KkCk) (xk − (x̂k)CPF) +KkCk (xk − (x̂k)CPF) + µ̄k]

6 k1 ‖xk − (x̂k)CPF‖
1

p
((2ā+ k1) ‖xk − (x̂k)CPF‖+ κµ̄ε

′ ‖xk − (x̂k)CPF‖)

6

(
k1

p
((2ā+ k1) + κµ̄ε

′)

)

‖xk − (x̂k)CPF‖
2
, (82)

i.e., Eq. (80) with

κ1 =

(
k1

p
((2ā+ k1) + κµ̄ε

′)

)

. (83)

Lemma 4. Under the conditions of Theorem 2, let Πk =
(
P−1

k

)

CPF
and Kk, µ̄k be given by Eqs. (46)

and (40). Then there are positive real numbers κ2, ε
′ > 0 such that

µ̄T
kΠk [2 (Ak −KkCk) (xk − (x̂k)CPF) +KkCk (xk − (x̂k)CPF) + µ̄k] 6 κ2‖xk − (x̂k)CPF‖

3
(84)

holds ‖xk − (x̂k)CPF‖ 6 ε′.

Proof. From Eqs. (60) and (82) we have

µ̄T
kΠk [2 (Ak −KkCk) (xk − (x̂k)CPF) +KkCk (xk − (x̂k)CPF) + µ̄k]
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6 κµ̄‖xk − (x̂k)CPF‖
2 1

p
((2ā+ k1) ‖xk − (x̂k)CPF‖+ κµ̄ε

′ ‖xk − (x̂k)CPF‖)

6

(
κµ̄

p
((2ā+ k1) + κµ̄ε

′)

)

‖xk − (x̂k)CPF‖
3
, (85)

i.e., Eq. (84) with

κ2 =

(
κµ̄

p
((2ā+ k1) + κµ̄ε

′)

)

. (86)

Lemma 5. Let the conditions of Theorem 2 hold, let Πk =
(
P−1

k

)

CPF
and Kk, µ̄k be given by Eqs.

(46) and (40). Then there is a positive real number κ3 > 0 independent of δ, such that

E
{
sTkΠksk

}
6 κ3δ (87)

holds.

Proof. From Eq. (40) we focus on the following terms:

sTkΠksk = (Bkνk)
T
Πk (Bkνk) 6

1

p
νTkB

T
kBkνk =

1

p
tr
(
νTk B

T
kBkνk

)
. (88)

Using the well-known matrix identity

tr (Γ∆) = tr (∆Γ) , (89)

where Γ, ∆ are such matrices that the above matrix multiplication. From the reference [18], Eq. (88)

can be rewritten in the form, such that

sTkΠksk 6
1

p
tr
(
Bkνkν

T
k B

T
k

)
, (90)

and taking the mean value yields

E
{
sTkΠksk

}
6

1

p
tr
(
BkE

(
νkν

T
k

)
BT

k

)
. (91)

Because νk is standard vector-valued white noise processes, the conditions

E
(
νkν

T
k

)
= R. (92)

From Eqs. (91), (92) and (59), we get

E
{
sTkΠksk

}
6

r̄

p
tr
(
BkB

T
k

)
. (93)

Using Eqs. (7) and (59), we obtain

tr
(
BkB

T
k

)
6

r̄2λ̄2s̄2

r2λ4s4
tr (I) 6

r̄2λ̄2s̄2

r2λ4s4
n, (94)

where n is the number of the row for matrix Bk. Therefore, it yields the desired inequality Eq. (87),

E
{
sTkΠksk

}
6

r̄

p

r̄2λ̄2s̄2

r2λ4s4
n = κ3δ, (95)

where κ3 = r̄3λ̄2s̄2

pr2λ4s4
n, r̄ = δ.

Proof of Theorem 2. We choose

Vk ((x̃k)CPF) =
(
x̃T
k

)

CPF
Πk(x̃k)CPF (96)
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with Πk =
(
P−1

k

)

CPF
, which exists since (Pk)CPF is positive definite. From Eq. (59) we have

1

p̄
‖(x̃k)CPF‖

2
6 Vk ((x̃k)CPF) 6

1

p
‖(x̃k)CPF‖

2
. (97)

To satisfy the requirements for an application of Lemma 1, we need an upper bound on E{Vk+1

((x̃k+1)CPF)| (x̃k+1)CPF}. From Eq. (39) we have

Vk+1 ((x̃k+1)CPF) =
[(
x̃T
k

)

CPF
·AT

k + µ̄T
k + sTk

]
Πk+1 [Ak · (x̃k)CPF + µ̄k + sk]

=
[(
x̃T
k

)

CPF
· (Ak −KkCk)

T
+
(
x̃T
k

)

CPF
· (KkCk)

T
+ µ̄T

k + sTk

]

Πk+1

· [(Ak −KkCk) · (x̃k)CPF +KkCk · (x̃k)CPF + µ̄k + sk] , (98)

and applying Lemma 2 we obtain with (96)

Vk+1 ((x̃k+1)CPF) 6 (1− α)Vk ((x̃k)CPF) + (KkCk · (x̃k)CPF)
T
Πk · [2 (Ak −KkCk) · (x̃k)CPF +KkCk

· (x̃k)CPF + µ̄k] + µ̄
T
kΠk[2 (Ak −KkCk) · (x̃k)CPF +KkCk · (x̃k)CPF + µ̄k]

+ sTkΠksk + sTkΠk [2 (Ak −KkCk) · (x̃k)CPF + 2KkCk · (x̃k)CPF + 2µ̄k] . (99)

Taking the conditional expectation E {Vk+1 ((x̃k+1)CPF)| (x̃k+1)CPF} and considering the white noise

property, it can be seen that the last term in Eq. (99) vanishes since it depend on νk. The remaining

terms are estimated via Lemmas 2.2–2.4 yielding

E {Vk+1 ((x̃k+1)CPF)| (x̃k+1)CPF} − Vk ((x̃k)CPF)

6 −αVk ((x̃k)CPF) + κ1‖(x̃k)CPF‖
2 + κ2‖(x̃k)CPF‖

3 + κ3r̄, (100)

for ‖(x̃k)CPF‖ 6 ε′. Defining

ε = min

(

ε′,
α

2p̄κ2

)

. (101)

We obtain with Eqs. (96) and (97) for ‖(x̃k)CPF‖ 6 ε,

κ2 ‖(x̃k)CPF‖ ‖(x̃k)CPF‖
2
6

α

2p̄
‖(x̃k)CPF‖

2
6

α

2
Vk ((x̃k)CPF) . (102)

Inserting into Eq. (100) yields

E {Vk+1 ((x̃k+1)CPF)| (x̃k+1)CPF} − Vk ((x̃k)CPF) 6 −α
2Vk ((x̃k)CPF) + κ̃3δ,

κ̃3 = κ3 + κ1‖(x̃k)CPF‖
2
/

δ,
(103)

for ‖(x̃k)CPF‖ 6 ε. Therefore we are able to apply Lemma 1 with ‖(x̃0)CPF‖ 6 ε, υ = 1/p̄, ῡ = 1/p and

µ̃ = κ̃3δ. However, we have to take care that for ε̃ 6 ‖(x̃k)CPF‖ 6 ε with some ε̃ < ε the supermartingale

inequality

E {Vk+1 ((x̃k+1)CPF)| (x̃k+1)CPF} − Vk ((x̃k)CPF) 6 −α

2
Vk ((x̃k)CPF) + κ̃3δ 6 0 (104)

is fulfilled to guarantee the boundedness of the estimation error [19]. Choosing

δ =
αε̃2

2p̄κ̃3
(105)

with some ε̃ < ε, we have ‖(x̃k)CPF‖ > ε̃,

κ̃3δ =
αε̃2

2p̄
6

α

2p̄
‖(x̃k)CPF‖

2
6

α

2
Vk ((x̃k)CPF) , (106)

i.e., Eq. (104) holds. Therefore, we conclude that the estimation error remains bounded if the initial

error and the noise terms are bounded.
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Table 1 Different working conditions for the numerical simulations

Initial error Noise Model error
Weighting

Figure
matrix

Normal case
Θ = 5◦

ω
T = [0, 0, 0] (◦/s)

20′′
∆Nc = 0.001× [4,−5,−3]T (Nm)

∆Ne = 0.001 cos (10ω◦t)× [−3, 2, 3]T (Nm)
105 1

Serious case
Θ = 5◦

ωT = [0, 0, 0] (◦/s)
100′′

∆Nc = 0.005× [4,−5,−3]T (Nm)

∆Ne = 0.005 cos (10ω◦t)× [−3, 2, 3]T (Nm)
105 2

Large initial error
Θ = 85◦

ωT = [1.7, 1.7, 1.7] (◦/s)
20′′

∆Nc = 0.001× [4,−5,−3]T (Nm)

∆Ne = 0.001 cos (10ω◦t)× [−3, 2, 3]T (Nm)
105 3

Large measurement noise
Θ = 5◦

ω
T = [0, 0, 0] (◦/s)

1800′′
∆Nc = 0.001× [4,−5,−3]T (Nm)

∆Ne = 0.001 cos (10ω◦t)× [−3, 2, 3]T (Nm)
105 4

Large model error
Θ = 5◦

ω
T = [0, 0, 0] (◦/s)

20′′
∆Nc = 0.023× [4,−5,−3]T (Nm)

∆Ne = 0.023 cos (10ω◦t)× [−3, 2, 3]T (Nm)
105 5

Based on the preceding results, we can make further analysis. On the analogy of Eq. (59),

‖Ak‖ , (Pk)CPF and

∥
∥
∥
∥

1

2
(∆t)

[(
∇T∇

)
f (x)|x=x̂k

+
(
∇T∇

)
η (x)|x=x̂k

]
∥
∥
∥
∥

remain bounded; therefore, the elements of these formulas also have bounded. In response to Eq. (46),

‖Gη‖ ,
∥
∥
∥
∥
∥

(
∇T(Pk)CPF∇

)
η (x)|x=x̂k

2!

∥
∥
∥
∥
∥

remain bounded apparently. Considering the assumption g (x) = I exists in Eq. (3), we can obtain

−d (x̂k) = η (x̂k); therefore, the formulas Gη = −Gd and

(
∇T(Pk)CPF∇

)
η (x)|x=x̂k

2!
= −

(
∇T(Pk)CPF∇

)
d (x)|x=x̂k

2!

both exist. We can obtain the expression as follows:

d̄k = E [dk] = d̂ (xk)−Gdx̃k −
(
∇T(Pk)CPF∇

)
d (x)|x=x̂k

2!
− ε̃ (x̂k) , (107)

where, ε̃ (x̂k) is the high-order discretization error. In the process of proving convergence for the co-

variance (Pk)CPF, the high-order error ε̃ (x̂k) is included into the term of Qk in Eq. (46). Because the

covariance (Pk)CPF is verified convergent and bounded; therefore, Qk also remains bounded. It is obvious

that the high-order error ε̃ (x̂k) must be bounded. d̃ (xk) is the estimation of the model error in the CPF.

If the CPF is convergent, the estimation must remain bounded. We can obtain the conclusion that if the

CPF is convergent, the expectation of the actual model error must be bounded, so that the actual model

error also requires bounded.

In this section, we have proved that the estimation error of the CPF remains bounded as long as

the initial error, the disturbing noise terms and the model error terms have boundedness. This is an

important result, since the stability and convergence of the CPF have been analyzed.

6 Numerical simulations

The results discussed above show that the CPF algorithm based on the cubature-points remains bounded

if certain conditions are satisfied. These conditions include the requirements of a small enough initial

error and small enough noise as well as small enough model error. To demonstrate the performance of

the CPF and the significance of these conditions, in this section we apply the CPF to an example and

verify the estimate performance and the error behavior by numerical simulations. We consider a nonlinear
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Figure 1 (Color online) Numerical simulations for the nominal case: (a) the estimation error of the attitude; (b) the

estimation error of the angular velocity.

system of the spacecraft attitude determination given by

Ẋ =

[

q̇

ω̇

]

=

[
1
2Ω (ω)q

J−1 [ω × (Jω) +N ] + J−1d

]

,

y = h (X) =

[

Cb
i (q) ν1

Cb
i (q) ν2

]

+

[

∆ν1

∆ν2

]

,

(108)
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Figure 2 (Color online) Numerical simulations for the serious case: (a) the estimation error of the attitude; (b) the

estimation error of the angular velocity.

where,

Ω (ω) =

[

0 −ωT

ω − [ω×]

]

, [ω×] =







0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0






, (109)

where, q and ω are the attitude quaternion and the angular velocity of the body-fixed reference relative

to the inertial frame; N denotes the total torque vector; J denotes the moment of inertia tensor of the

spacecraft; d represents the model error; Cb
i is the transition matrix from the inertial frame to the body-
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Figure 3 (Color online) Numerical simulations for large initial error: (a) the estimation error of the attitude; (b) the

estimation error of the angular velocity.

fixed reference; ν1, ν2 are the star sensor vectors in the inertial frame; ∆ν1,∆ν2 are the measurement

noises of the star sensor.

The numerical simulation parameters of the nominal case are the following.

The initial value of the attitude quaternion is q = [ 1 0 0 0 ]T; the initial value of the angular velocity

is ωT = [ 0.1 0.1 0.1 ] (◦/s); the initial estimated value of the attitude quaternion is

q̂ =

[

cos
Θ

2

√
3

3
sin

Θ

2

√
3

3
sin

Θ

2

√
3

3
sin

Θ

2

]T

and Θ = 5◦; the initial estimated value of the angular velocity is ωT = [ 0 0 0 ] (◦/s); the mean square

of the star sensor measurement noise is 20′′; the actual model error of this system is consist of d =

∆Nc +∆Ne, the constant component is ∆Nc = 0.001× [4,−5,−3]
T
(Nm), and the periodic component
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Figure 4 (Color online) Numerical simulations for large noise: (a) the estimation error of the attitude; (b) the estimation

error of the angular velocity.

is ∆Ne = 0.001 cos (10ω◦t)× [−3, 2, 3]T (Nm); and ω◦ = 0.066◦/s; the weighting matrix of the CPF and

the PF isW = 105I3×3; the parameters of the symmetrically-distributed set of points are n = 6, κ = 0.8;

the moment of inertia matrix of the spacecraft is J = diag
{
[49.96; 55.40; 63]

(
kg ·m2

)}
.

To demonstrate the theoretical results in Sections 3 and 5, the comparison of the estimates produced

by the CPF and the PF are shown firstly. In addition, the UKF (unscented Kalman filter) is employed

to compare with CPF to shown the effectiveness of the proposed CPF. Then the bounded analyses of

the estimate error for the CPF are given to verify the theoretical results in Section 5. Due to the fact

of the theoretical results discussed above, we consider the following cases: (1) the nominal case; (2) the

serious case; (3) large initial error; (4) large measurement noise; (5) large model error. To illustrate the

significance of these conditions, in this subsection we adopt the CPF to assess the error behavior by

numerical simulations. For all the previously mentioned cases, the simulation figures of the attitude and
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Figure 5 (Color online) Numerical simulations for large model error: (a) the estimation error of the attitude; (b) the

estimation error of the angular velocity.

the angular velocity are all the graphs of the estimation error. The relevant parameters are given in the

following Table 1.

The simulation results of the nominal case are depicted in Figure 1, which shows the comparison of

the CPF, UKF and the PF in the aspects of the attitude estimate error, the angular velocity estimate

error as well as the model error estimate error. As can be seen from Figure 1(a) and (b), the convergence

speed of the UKF and the CPF is faster than that of the PF and the fluctuations in the convergent

process are also smaller and shorter. Particularly, the convergence precision is much higher than that of

the PF. It is obvious that the CPF and UKF have nearly the same estimate accuracy of the attitude.

However, due to the existence of the model error, the CPF and PF have the better performance than

UKF in the angular velocity in Figure 1(b). As evident in Figure 1(a) and (b), the CPF algorithm shows

the excellent property in the convergence speed than PF and has better estimate accuracy than UKF.
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With the large measurement noise and model errors, the filtering performances of UKF and PF have

degraded seriously in Figure 2. However, the CPF still maintains good performance, which illustrates the

superiority of the proposed filter. For small initial error and small measurement noise as well as small

model error, the estimation error of the CPF remains bounded, as can be verified in Figure 1. However,

in the case of large initial error, large measurement noise or large model error, the estimation error is no

longer bounded and diverges, as shown in Figures 3–5. This is because of the high nonlinearities of the

example system. Furthermore, it is worth pointing out that the parameters in the cases of large initial

error, large measurement noise or large model error are much bigger than that of the nominal case in

Table 1. The main reason for this phenomenon is that the CPF has a good ability to estimate and deal

with the model errors and the large initial error and large noise also can be treated as the special model

error to compensate. Obviously, all of the simulation results in this subsection are coincide with the

theoretical results in Section 5.

7 Conclusion

In this paper, in a stochastic framework, we have analyzed the error behavior of the CPF when it is

applied to general estimation problems for nonlinear system. In Sections 3 and 4, the error analyses

of the model error and system state are discussed and the stochastic boundedness has been proved. In

Section 5, the proofs show that the estimation error of the CPF is bounded in mean square and bounded

with probability one under certain conditions. These conditions include the requirements that the initial

estimation error, the measurement noise as well as the model error are small enough. The numerical

simulation results in Section 6 verify that the CPF has better estimate performance and the estimate

error has proved bounded as long as the initial estimation error, the measurement noise as well as the

model error are small enough, which meets the theoretical analysis of Section 5. Moreover, the simulation

results indicate that the estimation error is divergent if the initial error, the noise or the model error is

large enough. These results presented in this paper will support the theory development and application

of the CPF.
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