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Abstract Multimodal interaction serves an important role in human-computer interaction. In this paper we

propose a multimodal interaction model based on the latest cognitive research findings. The proposed model

combines two proven neural computations, and helps to reveal the enhancement or depression influence of

multimodal presentation upon the corresponding interaction task performance. A set of experiments is designed

and conducted within the constraints of the model, which demonstrates the observed performance enhancement

and depression effects. Our exploration and the experimental results help to further solve the question about

how tactile feedback signal contribute the multimodal interaction efficiency which could provide guidelines for

designing the tactile feedback in multimodal interaction.
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1 Introduction

Multimodal interaction plays an important role in HCI (human-computer interaction) research [1,2]. This

paper aims to explore some unnoticed phenomena and rules of cross-modality information influence for

facilitating the interaction design on multimodal presentation. Existing work on multimodal interaction

mostly focus on improving the computer ability of recognizing human multimodal behavior [1]. However,

how to enhance the user understanding of the multimodal information from the computer system is still

a field to fill.

Existing work on facilitating people to understand the system-produced information usually lies on

the specific areas such as ergonomics [3], visualization [4], interface design [5, 6], etc. Such work mostly

focus on visual presentation, while how does the touch-included multimodal presentation influence the

corresponding multimodal interaction performance is barely concerned. Touch feedback techniques are
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going through a fast blooming era in resent years [7]. Touch experience is enriched and users learn a

variety of information from touch feelings [8]. Researchers use touch feedback to enhance the interaction

experience [9] or ease the overloading of visual and auditory modality [10]. The new trend of finger touch

screen as well as wearable technology promotes touch feedback as a more considerable feedback modality

which provide more convenient for HCI [11]. This brought touch modality into the scope of multimodal

interaction.

There exist some cross-modality influences which may change the quality of the information received

by human [12]. To find out similar influences cross the touch-included modalities may contribute to the

touch-included multimodal interaction researches and developments. Existing findings on multimodal

presentation influencing information transmission efficiency [13] only consider visual and auditory modal-

ity. The difference between touch modality and the visual or auditory modality makes the existing

bimodal findings hardly applied on this new multimodal condition.

Some cognitive architectures can help HCI researching and provide modelling tools for human-computer

interaction, even including multimodal or multiple-task conditions [14]. However, these architectures are

not proposed primarily for addressing HCI problems and the larger endeavor for cognitive studying

purposes bring in additional complexities as well as the difficulties of applying them.

Some new findings from neuroscience reveal computational cross-modality influences at the neural

response stage [15]. However, the gap from circuits to behavior is really far and the findings are hard to

contribute the behavioral-level HCI researches and developments. Intuition tells us the possibility of some

similar influence rules can be find in behavioral level and may help interaction design. Yet we are hard

to determine how exactly to achieve the potential findings because of the unclearness of experimental

constraints and concerned data.

A commentary in the influential journal Nature Neuroscience proposes an expected way to bridge the

circuits-behavior gap by taking the canonical brain computation rules as an intermediate level between

detailed mechanism and overall function [16]. This inspires our work of combining different level of

computation rules to model some kind of multimodal interaction tasks to help finding out desired cross-

modality influences.

In this paper, we explore the associativity of two proven computation rules to build a multimodal

interaction model for touch-included cross-modality influence research. The remainder of this paper

begins with a brief overview of the latest findings in neuroscience and cognitive science related with our

exploration. Then we propose the model and get the argue of possible influences from the mathematical

derivation in Section 3. Section 4 presents the experiments and data analysis guided by the model, and

the results reveal the argued phenomena. Finally we conclude the paper with a brief discussion on main

contributions and future work in Section 5.

2 Related findings in cognitive sciences

The multisensory nature of perception has drawn attention of much behavioral and neuroscience re-

searchers [17, 18] in recent years. Human brain perceives the physical environment by multiple sensory

information such as touch, audition, and vision. These different modalities of information require a robust

and coherent percept derived from an efficient merging [19]. This efficient merging of different senses is

called multisensory integration. The process will combine information from different sensory systems to

influence perception, decisions, and overt behavior [20]. Researchers find that multisensory integration

plays a part on enhancing and speeding the detection, localization, and reaction to biologically signifi-

cant events. New findings are emerged with the latest technologies and views of neuroscience and brain

coding [15, 20–22]. Related work shows that, the combination of multimodal information would either

enhance [23] or depress [24, 25] the brain performance of information processing. This enlightens our

research assumption that, we can find some way for observing similar enhancement or depression effects

in behavioral-level multimodal interaction tasks.
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2.1 Empirical principles

Researchers in cognitive science are curious about how human recognize the cross-modal stimulus from

external environment as well as how the processing mechanism goes. The observable phenomenon and

the underlying rules of multisensory integration is revealed as some empirical principles [15, 17] such

as assumption of unity [26], spatial/temporal principle of multisensory integration [27, 28], and inverse

effectiveness [22].

The assumption of unity proposes that, the observers will be more likely to treat the inputs from

two or more sensory modalities as they are originated from a common object or source if the inputs are

highly consistent. Therefore, if the information from different modalities share more modal-independent

properties, the brain will be more likely to treat them as from a same event [17, 26].

Multisensory integration in cognitive science and neuroscience describes a brain process by which

information from different sensory modalities are merged to influence perception, decisions, and observable

behavior [20]. As a neural process, the most common assessment of multisensory integration is the

consideration of the significant difference between the effectiveness of a cross-modal stimuli combination

and its component stimuli for evoking some type of response from the organism [22, 29]. The mentioned

response is measured by spikes per second which describes the impulses of neurons. A higher value

of spikes per second means a more effective neural response. Therefore operational definitions can be

described as follows. When the number of impulses evoked by a cross-modal combination of stimuli is

greater than the number evoked by the most effective of these stimuli individually, it shows a phenomenon

of multisensory enhancement. Whereas multisensory depression means the less effectiveness of a cross-

modal stimuli combination in relate to the most effective individual component stimulus [18, 30, 31].

Multisensory enhancement/depression can represent an increased/decreased likelihood of detecting or

initiating a response to the source event of the multimodal signal [18, 22, 30, 31].

The spatial principle of multisensory integration states that the response evoked by a highly effective

stimulus from one sensory modality can be suppressed by a less effective stimulus from another modal-

ity [15, 27]. The temporal principle of multisensory integration states that multisensory enhancement

declines with the asynchrony of the inputs from different modalities and the strongest multisensory in-

tegration appears when the inputs are synchronous [15, 28]. The principle of inverse effectiveness states

that greater multisensory enhancement is produced by the combination of weak inputs compared to the

strong inputs [15, 22].

The research findings from cognitive science and neuroscience reveal the rules of how brain merge the

stimuli from different modality, and how the stimuli features alteration influences the merging result.

These findings help us understand the characteristics and rules of multisensory integration, which enable

us to find some meaningful phenomena for better designing the presentation of multimodal information.

2.2 Computational models

To reduce the uncertainty of the desired potential findings on behavioral-level multimodal interaction,

we select two computational models describing the rules of human brain activities under the viewpoint

of bridging circuits-behavior gap by canonical computations [16]. The mentioned canonical computa-

tions seek to build the mathematical descriptions of the rules revealed by empirical researches. As an

intermediate level, these computations guide the research of the underlying circuits and provide formal

descriptions for theories of behavior [21]. In this section, the two selected models both have clear math-

ematical expressions and derivations, and the corresponding case descriptions help to understand the

physical meaning of the parameters. We notice the parameter-transference relationship between the two

computations, and try to build our new model based on them.

2.2.1 A normalization model of multisensory integration

Divisive normalization is a newly proposed canonical neural computation to operate in various neural

systems [21]. Since Heeger [32] uses normalization to explain non-linear properties of primary visual
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cortex neurons in early 1990s, evidences accumulated to suggest that normalization can explain a wide

variety of phenomenon across modalities, brain regions and species such as light adaptation in the retina

and mask odorant suppression in the invertebrate olfactory system [21]. Ohshiro et al. [15] propose

a divisive normalization model of multisensory integration, which explains the empirical principles of

multisensory integration introduced in Subsection 2.1. The model is proposed to provide a simple unified

computational tool for understanding and predicting the important neuronal features of multisensory

integration.

The divisive normalization model of multisensory integration consists of three layers of neurons (see Fig-

ure 1(a) in [15]). Two layers of primary neurons correspond to two different sensory modalities respec-

tively. Each layer is sensitive to one modality inputs. The third layer is composed of multisensory neurons

with the assumption that, one single multisensory neuron receives input from a pair of different modal-

ity primary neurons with overlapping receptive fields. This assumption is consistent with the research

findings in neuroscience [27].

Figure 1(b) in [15] describes the information processing of computing external multimodal stimulus to

the multisensory neuron output, and the mathematical representation is given by (1) [15] and (2) [15].

Each unisensory stimulus evokes impulses as the corresponding modality input. The unimodal stimulus

is nonlinearly processed to become the third layer inputs, I1 and I2, for multisensory integration. After

the input nonlinearity, a weighted linear sum is performed by each multisensory neuron as in (2). The

unisensory inputs are weighted by modality dominance weights d1 and d2. The following expansive power-

law nonlinearity expressed by the exponent n represents the transformation from membrane potential to

firing rate. At last, the response E is normalized by the normalization pool of all multisensory neurons’

response Ej ,

R =
En

αn + ( 1
N
)
∑N

j=1 E
n
j

, (1)

where

E = d1 · I1 + d2 · I2. (2)

The normalization model of multisensory integration describes the merging process from the external

multimodal signal inputs to the integrated output of multisensory integration. The proposed layers

and calculations successfully run the model and simulate the neural response of multimodal integration

consistent with experimental observations [15]. Meanwhile, the multimodal studies in HCI concern the

overt behavior derived from the information recognition result rather than the neural level activity. So

we select another computation at a higher level in Subsubsection 2.2.2 to describe a specific behavioral

task.

2.2.2 Bayesian integration in sensorimotor task

Körding et al. [33] propose a Bayesian integration computation in sensorimotor task. A sensorimotor

task means the subject should run some motor control behavior to achieve the task goal, usually with

some external and internal multimodal information to support the behavior decision. The computation

shows that subjects combine the internal sensory and the external information to get an optimized

decision for sensorimotor task performance. It is consistent with the experimental result and can help

us to understand and compute the human performance in the sensorimotor tasks. When we perform a

sensorimotor task, such as to hit a moving tennis ball, both our sensors and the task have variability. We

can only estimate the ball velocity from inadequate information provided by our sensors. The estimation

will lead to a hit behavior on specific position. A more accurate estimation leads to a better performance

which means a more accurate hit. Multiple modalities of information can be combined to improve the

estimation accuracy [34]. This inspires us attending this kind of tasks to study multimodal interaction.

Bayesian integration algorithm has been proved suitable for sensorimotor tasks with motion-adjustment

scenarios, which means, users should take adjustment on their motion behavior to achieve some goal [33].

When a task asks for a judgment of object position, people may process the stimulus they received, and
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get some estimation. Before the estimation, they should perceive the stimulus to obtain some sensed

information with uncertainty. Taking a fat finger pointing as an example, people need to estimate finger

point position from the perceived or sensed position which usually is not exactly matching the system-

registered position.

Körding et al. [33] describe the relationship between the true information and the sensed ones in a

Bayesian formula (see (3)), and assume that human estimate the true information under this Bayes’

rule. The variable xtrue in (3) expresses the true status of the object in the real world, while xsensed

expresses the sensed or directly perceived status of the object. In their experimental setup, the xtrue

represents a manipulated shift of the system-produced visual feedback position from the invisible real

fingertip position. Subjects need to estimate the shift to adjust their fingertip position for achieving

the target position. The optimal estimation xestimated combines the sensed information and the prior

experiences, and this can be represented in (4) when p(xsensed|xtrue) ∼ N(µsensed, σ
2
sensed), and p(xtrue) ∼

N(µprior, σ
2
prior).

p(xtrue|xsensed) =
p(xsensed|xtrue)p(xtrue)

p(xsensed)
, (3)

xestimated =
σ2
sensed

σ2
sensed + σ2

prior

µprior +
σ2
prior

σ2
sensed + σ2

prior

µsensed. (4)

The Bayesian integration process is to combine the external conditions and internal experiences to get

estimation on the real object status, so that the person can make the right decision on body movement

for the object operation. The research manipulate the reliability of the multimodal feedback signals in

their experiment to avoid the influence by uncontrollable variables in the process of human information

perception. This setting improves the accessibility and controllability of the sensed information xsensed,

which contributes the human estimation as an input variable.

3 Multimodal interaction model based on neural computation

We can build a new computable relationship based on the two computations introduced in Subsection 2.2

since they are both considering the perceived information from external presented sensory stimulus. The

normalization model [15] computes the multisensory integration without considering the cognitive level

information processing, and the Bayesian integration [33] presents the human-brain combine manner of

sensed information and the other task-related conditions, with the manipulation of the sensed infroma-

tion. To be specific, as shown in Figure 1 in [33], sensed information can be represented as some kind

of information distribution related to the stimulus presentation. And when this distribution follows the

Gaussian distribution, it will match the (4). Multimodal stimulus can also produce such sensed informa-

tion about the object state, and the resulted information can be processed as one of the parameters of the

Bayesian integration [33] as the p(xsensed|xtrue) in (3). In the normalization model [15], although the out-

put of the multisensory integration represents the neural response, it can be corresponded to such human

concerned information by the third layer neuron setup. This relationship of parameter transfer makes

it feasible of building a combined model to represent how different multimodal information presentation

would influence the sensorimotor task performance.

3.1 Modeling analysis: human processing on multimodal information

There shows a black box in Figure 1(a). We argue that, some kinds of cross-modal influences contribute

to the final task performance, and the phenomena can be observed to show some influencing rules which

may help multimodal interface design. The relationship of parameter transfer between the two models

mentioned in Subsection 2.2 helps us to disambiguate the black box into a grey box as in Figure 1(b).

From the view of cognitive psychology [35], we can see the procedure as in three stages of perception-

cognition-behavior procedure shown in Figure 1(c).
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Figure 1 Modeling analysis: human processing on multimodal information. (a) Black box; (b) grey box; (c) three stages;

(d) five mappings.

From the intermediate level computation, which is the Bayesian integration [33], we notice that the

feedback of user fingertip position can influence the position adjustment. Their experiment [33] manip-

ulates the feedback to eliminate the ambiguity of the sensed information. The manipulated feedback

can be considered as some kind of amplified uncertainty of the sensed information. In our study scope,

we replace this manipulated uncertainty by the result of human multisensory integration, i.e., different

multisensory feedback situation leads to different level of sensed information uncertainty. Take the touch-

screen interaction for example, user estimation of the fingertip position has some uncertainty because the

fingertip covers a bigger region than the system-registered position. Presenting some kind of feedback

signal for the fingertip position may reduce this uncertainty. Refer to the multisensory integration rules

mentioned in Section 2, different multimodal feedback presentation may conclude different level of sensed

information uncertainty which corresponds to different level of neuronal response. To further elucidate

the procedure, we analyze it as several mappings (see Figure 1(d)) reflect the discussion before:

Mapping 1. Multimodal feedback signals provided by the system → Multisensory integration result

of multimodal signals;

Mapping 2. Multisensory integration result of multimodal signals → Sensed task object state;

Mapping 3. Sensed task object state → Estimated result of the real-world task object state;

Mapping 4. Estimated result of the real-world task object state → Motion behavior decision for the

task;

Mapping 5. Motion behavior decision for the task → Task performance.

Mappings 1 and 2 reflect the perceiving procedure described in the normalization model [15], Mappings

3 and 4 reflect the cognitive procedure of the sensorimotor task described in the Bayesian integration [33],

and Mapping 5 refers to the behavior procedure that user actions lead to the task execution result.

Mapping 1 can be described as a simple normalization calculation in (5) which corresponds to the nor-

malization model introduced in Subsubsection 2.2.1. Notice that, the layered neuronal model described

in [33] can be modified to represent different physical meanings by modifying the neuron setup. So in our
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setup, Rj in (5) corresponds to the output of Mapping 1, where j ∈ {1, 2, . . . , k} corresponds to a specific

recognition result conclusionj within all possible alternative conclusions concluded from the multimodal

stimuli I = {I1, I2, . . . , Im} as the input condition set, where Im represents the unisensory input from

modality m. Tj presents the tendency of the input condition set supporting conclusionj , and the value

is calculated by (6) as a weighted linear sum of each unisensory inputs. Note that different alternative

conclusionj will have different support tendency from the same input condition set. Accordingly, Tk is

the tendency of the input condition set supporting conclusionk, and all possible alternative conclusion

constitutes the normalization pool represented by the sum
∑

k T
n
k (see Figure 1(b) in [15]). This nor-

malization pool shows that, the support tendency of the other alternative conclusion will weaken the

supportiveness of conclusionj which matches the real world observation [15, 21]. The calculation result

of this equation shows the support level of the condition set to a particular conclusionj . The output of

Mapping 1 should include the support level of every alternative conclusion, that is, R = {R1, R2, . . . , Rk}.

For each different scenario setup, the corresponding parameters γ, α and n are constants [21] in (5), and

the parameter γ makes sure that
∑

k Rk = 1,

Rj = γ
T n
j

αn +
∑

k T
n
k

, (5)

where

Tj =
∑

m

djmIm. (6)

Mapping 2 needs to transform the Mapping 1 output into the Mapping 3 input. This transforming can

be represented as p(xsensed|xtrue) = f2(R). The transformation can be analogically explained as in [33],

where the different kind of manipulated feedbacks lead to different probability distribution of possible

sensed information. For example, if the sensed task object status can be correspondingly approximated by

Gaussian distribution, then it can be represented as p(xsensed|xtrue) ∼ N(µsensed, σ
2
sensed), where µsensed

and σsensed correspond to the conclusion distribution of Mapping 1 output R. Under such conditions, we

define the mean of R represented distribution as the conclusionj , where j meets the max value of Rj ∈ R.

Specifically, if there exists more than one fitted j, choose the median value of the conclusionj set, i.e.,

µR = Mid{conclusionj |Max{Rj∈R}}. Since
∑

k Rk = 1, according to the properties of discrete random

variables, we define the variance from σ2
R =

∑k

j=1(|conclusionj − µR|
2
· Rj) where |conclusionj − µR|

represents the difference between conclusionj and µR. Then we can get µsensed = g1(µR) and σ2
sensed =

g2(σ
2
R).

Mapping 3 corresponds to the procedure described in (3). The users get the estimation from the

sensed information combined with their existing prior experiences. If the sensed information follows

Gaussian distribution, then the procedure can be represented by (4). The subscript prior corresponds

to the known measurement of information uncertainty, and corresponding parameters can be analyzed

from the specific case settings. Take the experimental setup in [33] as an example. The subjects learn

the prior distribution by repeatedly doing the task with final position feedback, and the learned prior

distribution readjust the sensed information to get an optimized estimated information. Therefor the

different level of sensed information uncertainty will lead to different estimated information (see Figure 1

in [33]). This Mapping 3 represents the high level cognitive correction on the primary recognized result,

which procedure integrates the external and internal factors related to the task performence.

Mapping 4 can be represented as decision = f4(goal, xestimated). Take a drag task as an example, the

task goal is to drag the target to a specified position, thus the drag direction as the motion behavior

decision in Mapping 4 can be derived from the estimated target position in Mapping 3 outputs.

Mapping 5 represents the causality from the motion behavior decision to the task performance. This

can be represented as performance = f5(decision). Some simple task may demand only one decision,

the corresponding behavior to achieve the task goal will lead to the task performance. However, in most

tasks like racing games or parkour games, users may repeat the decision-making cycle and adjust their

motion behavior to move the target to avoid new risks of damage, thus the task performance is the

result of a series of decision-making and corresponding behavior cycles, which correspond to the whole
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procedure from Mapping 1 to Mapping 4 as one of the cycles. This implies some specialty of Mapping 5,

so we propose some constraints to avoid excessive complexity. We assume that every cycle is dealing with

the same configuration of information and the outputs of each cycle contribute the task performance

equivalently. In this way, a positive correlation is established between the quality of human motion

behavior decision and the task performance, the more accurate the decisions, the higher performance the

task.

3.2 A multimodal interaction model based on neural computation

We propose a combined model based on the analysis above. The proposed model uses the normalization

model to describe the multimodal integration procedure, and the Bayesian integration method to describe

the interaction task decision-making procedure. The task performance is derived from the quality of the

decision-making results. This whole process completes the derivation from the multimodal presentation

to the derived task performance, and can get meaningful arguements through the derivation.

Applicable scenario constraints. The multimodal interaction model based on neural computation

proposed in this paper is for the scenario of sensorimotor tasks where healthy users should make the

behavior decision to change the task object state. Specifically, when the task goal needs more than one

decision cycle to achieve, the decision cycles should have the same input and output set with different

values, and the outputs should contribute the task performance equally.

Modeling target. The proposed model mainly describes the procedure from the multimodal signals

to the corresponding task performance, which includes recognizing information from external signals,

estimating the target state from the recognized information, making behavior decisions from the estimated

state, doing the behavior to achieve the task goal, and finally getting the task performance from the task

completion result. The modelling aims to reveal the influence of different multimodal presentation on the

corresponding task performance.

Composition and description of the model. The composition of the model and the corresponding

information processing is shown in Figure 2. The user processes all external and internal information to

get the decision for task operation. Our concerned information is the multimodal feedback signals, this

can be processed by the multisensory integration procedure [15] to get the sensed task object state. Then

the sensorimotor process represented by the Bayesian integration model [33] considers the sensed state

and other external and internal information to make the behavioral decisions. The behavioral operations

on the task object lead to the final task performance. The mathematical description can be given follow

the analysis in Subsection 3.1:

Mapping 1. R = f1(I), where R = {R1, R2, . . . , Rk}, I = {I1, I2, . . . , Im}, and each Rj is calculated

from I by Eqs. (5) and (6);
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Mapping 2. p(xsensed|xtrue) = f2(R), the Gaussian distribution of the sensed information can be

represented as p(xsensed|xtrue) ∼ N(µsensed, σ
2
sensed), where µsensed = g1(Mid{conclusionj |Max{Rj∈R}}),

σ2
sensed = g2(

∑k

j=1(|conclusionj − µR|
2
· Rj));

Mapping 3. xestimated = f3(p(xsensed|xtrue), p(xtrue)), for Gaussian distribution,

xestimated =
σ2
sensed

σ2
sensed + σ2

prior

µprior +
σ2
prior

σ2
sensed + σ2

prior

µsensed;

Mapping 4. decision = f4(goal, xestimated);

Mapping 5. performance = f5(decision).

3.3 The influence between multimodal presentation and the interaction task performance

In the model we proposed, the multimodal presentation determines the perceived information quality

and then leads to corresponding decisions for task performance. According to the empirical principles

of multimodal integration correspond to Mapping 1, a better presentation will lead to multisensory

enhancement while an inferior presentation will lead to multisensory depression.

The principles about multisensory enhancement are introduced in Section 2, they describe the rules

of how to get multisensory enhancement/depression through different multimodal presentations. As

discussed in this section, optimizing the presentation will enhance the stimulus perceiving so that more

reliable information can be perceived for estimating the target state, thus the task performance can be

improved without any other condition change. On the contrary, a less efficacy presentation will reduce

the task performance because of the increased information uncertainty.

The calculation in Mapping 1 can simulate the spatial/temporal principle and the inverse effectiveness.

The spatial principle describes two single modality stimuli presented together at the same time, and states

out the relationship between the signal presentation and the multisensory enhancement/depression. We

have already stated that multisensory enhancement may cause a better task performance while multi-

sensory depression may lead to a reduced task performance. Therefore we can deduce some likely effects

of multimodal interaction task performance due to multisensory integration and design experiments for

observable evidences. The temporal principle suggests that synchronous signals from different modalities

can lead to the strongest multisensory integration. Coincidentally, without explicitly using this principal,

existing design work always present the multimodal signals at the same time if they consider the same

object. The inverse effectiveness discusses the stimulus intensity difference at the neural level. Although

this difference may become hard to identify at the observable behavioral level, it can suggest our exper-

imental design to try to focus on the subtle information so that a more observable enhancement effect

can be looking forward to.

According to the spatial principle, a lower effective stimulus from one modality will depress the response

evoked by a highly effective stimulus from another modality. That is, if two unimodal stimuli from

different modality have a large difference of intensity, it is more likely to have a multisensory depression

when combine them together at the same time. On the other hand, if the two share a similar intensity,

it is more likely to observe a multisensory enhancement [15]. This can lead to the argument that, when

the user receives two unimodal stimuli from different modality at the same time, there may exist below

effects:

Argued performance depression effect. If an individual unimodal signal can support a much

better task performance than the other modality, the two may get a reduced task performance than the

better individual one due to the reduced information quality because of the multisensory depression.

Argued performance enhancement effect. If an individual unimodal signal can support a similar

task performance as the other modality, the two may get a much better task performance benefited from

the more valid information thanks to the multisensory enhancement.
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4 Experiment

We preliminarily designed a set of experiments in order to find observable evidences of the argued effects.

The experiment follows the applicable scenario constraints of our model mentioned in Subsection 3.2. The

constraints ensure a higher possibility of observing desired phenomena because of the variable influences

within the model. Our experiment requires a fingertip line tracing task where the subjects need to adjust

their fingertip position within many sub cycles described in Mappings 1–4. The sub cycles contribute a

number of data to each one short task. This makes the experiment to be simple and reliable.

4.1 Participants and apparatus

Twelve subjects participated in the experiment, 8 males and 4 females, age from 24 to 33. All of the

participants are right-handed, and use their right index finger to operate the experiment task.

The experiment app is implemented in MI3 mobile phone, and the tactile feedback technology is

provided by the TouchSense tactile feedback technology from Immersion Corporation.

4.2 Task and procedure

As shown in Figure 3(a), we designed a fingertip line tracing task. The participants are required to slide

their fingertip through the middle of the line shown on the screen, from the top-left white dot center

to the bottom-right white dot center. If the fingertip deviates 1 mm from the middle of the gray line

(i.e., the fingertip lies beyond the scope of the central light gray line), the evaluation of task performance

will reduce. When the fingertip deviates 2 mm from the gray line (that is, the fingertip lies beyond the

outside boundary of the peripheral dark gray line), the task will be evaluated as a failure. Under this

setup, it is nearly impossible for participants to track the line precisely since the estimation of the exact

fingertip position is hard while the allowed deviation is quite small and the performance is influenced

by some factors like the fingertip covering, the operational instability, etc. This task contains several

decision-making cycles of fingertip movement adjustment, that is, the user should keep adjusting their

fingertip position to ensure it sliding right through the line center. The whole task performance depends

on the performance of every sub cycle.

Based on this setup, our experiment is designed to test several different single modal and multimodal

signals for improving the corresponding task performance. The design goal of each signal is to help users

catch the exact position of their fingertip in real time, to help the decision-making of the adjustment

of their fingertip movement and to improve the task performance. The experiment includes signals of

a single visual feedback, a single tactile feedback, and a combined feedback of both visual and tactile

modality. Visual modality signals play an important role in HCI, making it the first choice in the study

of multimodal interaction. Despite that tactile interaction is rising to become a new concerned study

topic and spreading through various applied devices, the contribution to the interaction efficiency by

tactile signals is still being questioned. Therefore, we chose the visual modality and the tactile modality

as the research targets. Current tactile design researches provide evaluation on subjective experience like

realism and satisfaction, while the contribution of tactile signals to observable multimodal interaction

performance is usually neglected. We expect this experiment to help finding the influence rules of how

the three different feedback treatments, which are respectively corresponded to different multimodal

presentations, influence the task performance, meanwhile the role of tactile feedback in interaction design

can be revealed clearer. Thus, the experiment includes four different feedback treatments: treatment A

refers to no additive feedback and only deploys the basic setup, treatment B refers to visual feedback

upon the basic setup, treatment C refers to tactile feedback upon the basic setup, and treatment D refers

to a combined feedback of both visual and tactile modality upon the basic setup.

Treatment A follows the basic setup described in Figure 3(a). The goal of the experiment is to compare

task performance under the four different feedback treatments, and to find the observable evidences for

the argued influencing effects. So we set treatment A as a reference, to measure the influence of different

treatments to the task performance. The other treatments respectively add different feedback signal to
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Figure 3 Interface of the experiment app. (a) Basic setup; (b) visual feedback setup.

this baseline treatment A. This setup excludes the other influence factors, and only considers the feedback

signal design.

Treatment B is shown as Figure 3(b). A visual stroke will be shown with the movement of fingertip

sliding over the touch screen, so that the user can see their fingertip track. The fingertip position and

its deviation from the gray line center can be estimated by comparing the stroke with the gray area

as reference. This estimation will help the user adjusting the finger position and movement direction

to achieve a better performance, which is, to get closer to the middle of the gray line. Whereas this

estimation is not accurate for two reasons. The first reason lies in the limitation of human physical

ability. Human eyesight can hardly detect small differences on millimeter level, especially the slightly

difference of whether the fingertip stroke out of bounds. The second reason is because of the fingertip

covering. The fingertip range will cover the corresponding part of the screen. This brings difficulties for

estimating the fingertip position in real time and makes the movement adjustment harder.

Treatment C provides tactile feedback. Two kinds of tactile signals are provided by the hand phone

vibrator. Since the fingertip moved out of light gray area, tactile signal 1 will be provided. When the

fingertip moved beyond the dark gray periphery, tactile signal 2 will be actuated. In this way, users can

feel whether their fingertip is out of bounds. However, due to the human eyesight limitation and the

fingertip covering, it is still difficult to get accurate estimation of fingertip position and to achieve perfect

decision of movement direction.

Treatment D provides both visual and tactile feedbacks as a combination. Similar to the other treat-

ments, the problem of human physical limitation and fingertip covering still exists. Users cannot get the

precise fingertip position and perfect movement direction.

4.3 Design

A within-subject factorial design was adopted. The order of different treatments was counterbalanced

across participants. To increase the reliability of the data, each participant was asked to complete the task

6 times for each treatment. In total, we collected data from 288 trials by 12 participants (4 treatments ×
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Figure 4 Average fingertip deviations in each treatment.

6 repetitions × 12 participants). For each trial, we collected data about fingertip deviation (the distance

between every fingertip tracing point and the task line center) and time cost. Before the experiment

began, each participant had 10 min to practice until they feel familiar with the setup. The experiment

lasted approximately 5 min for each participant. Participants could have 10 s to break between different

treatments.

4.4 Results and discussion

4.4.1 General result

We firstly compared the task performance under the four different feedback treatments in common ways.

Figure 4 demonstrates the distribution of the average fingertip deviation from the middle line under

different treatments for all participants. The average fingertip deviation is the mean of every sub cycle

fingertip deviation in one task completion. A lower deviation value means a better adjustment decision

making. And a lower average fingertip deviation value refers to a better task performance.

Significant differences in the general comparison show that, treatments B and D are significantly better

than treatments A and C. The lower average fingertip deviation means a better performance under which

the fingertip is closer to the middle line while the task operation.

This result confirms the existing research view that, under certain setup, visual signals will be more

dominant than tactile signals for improving the interactive task performance, and the tactile signals

usually contribute little for this.

4.4.2 Difference between modalities

Since our research focus is to find the influence of cross modal differences upon the bimodal feedback

task performance, we further analyzed the experiment data.

Besides taking the average fingertip deviation as the measurement, we calculate the mean average fin-

gertip deviation of each user under each treatment respectively. Furthermore, we calculate the difference

of the mean average fingertip deviation between treatments B and C for every participant. This difference

represents the cross modal difference we attend to. That is, the different influences on task performance

by different unimodal feedbacks.

Based on this measurement of cross-modal difference, we reclassify the data from treatments B and C.

By experimental setup, treatment B represents visual modality feedback while treatment C represents

tactile modality feedback. Nevertheless, we notice that, the influence effects argued in Subsection 3.3 have

no concern about specific sensory modality. Instead, they concern about advantaged or disadvantaged

modality which would contribute the task performance better or worse. For some users, individual visual

feedback will get better task performance than individual tactile feedback dose, and for the other users,
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Figure 5 The influence of different feedback treatment consider the advantaged or disadvantaged modality. (a) Individual

view; (b) grouped view.

touch will get the advantage. So we compare the cross-modal difference described before and reclassify

the data of treatments B and C into advantaged modality and disadvantaged modality.

We order the individual cross-modal differences between advantaged modality and disadvantaged

modality in Figure 5(a), and present the cross-modal difference as well as the performance improve-

ment compared with treatment A of the advantaged-modal , the disadvantaged-modal and the bimodal

situation for each individual. The performance improvement compared with treatment A demonstrates

the different promotion of task performance due to different feedback treatments. This comparison limits

the value range and allows negative values. In Figure 5(a), the value of cross-modal difference is repre-

sented as the white bar, and arranged from large to small within the sequence of subject 1 to subject

12. The light grey bar beside the white bar represents the advantaged-modal performance promotion.

And the black bar represents the bimodal performance promotion. If the black bar is higher than the

light grey bar, we call it a performance enhancement for the individual, noted e in Figure 5(a) for each

subject. And if it is lower, we call it a performance depression, noted d in the figure. We notice that

subject 10 to subject 12 all match the argued performance enhancement effect. And from subject 7 to

subject 12, there shows only one depression case. While the argued performance depression effect is not

obviously shown in this Figure 5(a).

Based on this observation, we further explore the correlation between the performance enhancement

value and the cross-modal difference. we calculated the difference between the bimodal task performance

improvement and the advantaged unimodal task performance improvement as a new value, performance

enhancement, for each individual subject. This new value allows negative situation. Two-step cluster
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analysis is used to reveal naturally occurring subgroups of this new value as well as the cross-modal

difference value. The performance enhancement values are clustered into two groups of performance en-

hancement group and performance depression group, respectively correspond to the positive and negative

values (silhouette = 0.8). And the cross-modal difference values are clustered into two groups of higher

difference group and lower difference group, each has six members (silhouette = 0.8). Based on these

naturally clustered enhancement evaluation and the difference level, we run a one-tailed Spearman’s rank

correlation test, and conclude a significant negative correlation at the statistical significance level of 0.05

(ρ = −0.507, p = 0.046).

In order to get a more intuitive view, we compare the grouped mean values of the higher or lower

difference groups, and draw Figure 5(b). The mean values of each group show that, higher difference group

gets a weaker task performance in bimodal condition than in the advantaged-modal condition, whereas

lower difference group gets a better task performance in bimodal condition than in the advantaged-modal

condition. The overall mean values of the all 12 subjects are demonstrated between the group mean

values as the higher difference group values demonstrate on the left and the lower difference group values

demonstrate on the right of the graph in Figure 5(b). The overall mean values show a similar pattern as in

Figure 4, even though the unimodal signals here is reclassified as advantaged or disadvantaged modality.

The pattern of the three groups changes with the hight of the white bar. This shows the cross-modal

difference as a key influencing factor on the bimodal task performance.

4.4.3 Discussion

The analysis above shows that, within the constraints of our model, the experiment design is effective to

reveal similar phenomena as the argued effects. Corresponding discussions can be outlined as follows:

(1) We break the traditional criteria of visual or tactile modality corresponded to the specific human

senses, and reclassify the modalities into advantaged or disadvantaged modality without concerning spe-

cific sensory modalities. This new criteria reflect the individual difference of human senses and it is in

accordance with the view of multisensory integration.

(2) The cross-modal difference is concerned an important influencing factor on the bimodal task perfor-

mance, and the bimodal task performance here is compared to the advantaged unimodal task performance

to be evaluated.

(3) The naturally clustered lower difference group shows a more observable performance enhancement

effect than the higher difference group or the general average performance.

(4) From the grouped view, the average performance shows the phenomena described below:

Observed performance depression effect. For a group of subjects, if an individual unimodal signal

can support much better task performance than the other modality, reduced bimodal task performance

than the advanced-unimodal situation can be observed when synchronously presenting both modality

signals to the group.

Observed performance enhancement effect. For a group of subjects, If an individual unimodal

signal can support a similar task performance as the other modality, improved bimodal task performance

than the advanced-unimodal situation can be observed when syschronously presenting both modality

signals to the group.

5 Conclusion and future work

This paper introduces the newest view and related findings in cognitive science with the perspective of the

multimodal human-computer interaction. Through combining the normalization model of multisensory

integration and the Bayesian integration computation of sensorimotor task, we establish a multimodal

interaction model based on neural computation. The model can describe user processing of multimodal

signals in sensorimotor tasks and guide our exploration on the influence rules of multimodal presentation

upon the task performance. The experimental result show the observed effects similar as the argued
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effects. This shows a meaningful exploration of applied research study based on new basic scientific

research findings.

The experimental result and discussion reveal new criteria of modality classification and the bimodal

task performance evaluation. And the data analysis reflects the contribution of tactile feedback signal to

the multimodal interactive task performance under this new criteria and evaluation. This demonstrates

the value of this study for guiding the touch-included multimodal interaction design.

The future work mainly includes the following aspects:

(1) Further experiment: Considering the newest and mainstream technologies of touch feedback in

further experiment, we want to find the cross modal influences between touch, vision and audition to

improve multimodal interaction performance.

(2) Consider more cognitive findings: More discoveries will be derived by considering more cognitive

findings related to multimodal interaction. Several existing laws, phenomena, derivations, and models,

with the scope of cross-modal influence, may contribute to different research purposes.

(3) Build modeling framework: The methodology of modeling multimodal interaction needs to be

investigated. A refined operable modeling architecture will be built such that different levels of canonical

neural computations can be properly integrated to improve multimodal interaction design.
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