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Abstract Consider a random k-conjunctive normal form Fk(n, rn) with n variables and rn clauses. We prove

that if the probability that the formula Fk(n, rn) is satisfiable tends to 0 as n → ∞, then r > 2.83, 8.09, 18.91,

40.81, and 84.87, for k = 3, 4, 5, 6, and 7, respectively.
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1 Introduction

Let V be a set of n Boolean variables and their negations. A k-clause c on V is a disjunction of k literals

selected from V . Let Ck(V ) =
{

c = ℓ1 ∨ · · · ∨ ℓk : ℓi ∈ V, i = 1, . . . , k
}

be the set of all (2n)k k-clauses on

V . A random k-conjunctive normal form (k-CNF) Fk(n, rn) on V is a conjunction of rn clauses selected

uniformly, independently and with replacement from Ck(V ) [1–3].

If k is growing with n, Frieze and Wormald [2] proved that random k-SAT has a sharp threshold around

−n ln 2/ ln(1−2−k) = n(2k+O(1)) ln 2, provided that k− log2 n → +∞. A few years later, the condition

was relaxed from k − log2 n → +∞ to k > (1/2 + ǫ) log2 n for any fixed ǫ > 0 [3].

For each fixed k > 2, let

rk = sup
{

r : lim
n→∞

P
[

Fk(n, rn) is satisfiable
]

= 1
}

,

r∗k = inf
{

r : lim
n→∞

P
[

Fk(n, rn) is satisfiable
]

= 0
}

.

The Satisfiability Threshold Conjecture asserts that rk = r∗k for all k > 3.

Over the past few decades, a lot of attention has been paid to this conjecture, crossing theoretical

computer science, artificial intelligence, combinatorics, and statistical physics. Most of the work has

focused on proving lower bounds for rk, or upper bounds for r∗k, and obtaining tight bounds for rk, or

r∗k, is a benchmark problem for wider applicability of those analytic and combinatorial techniques [4–9].
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For every truth assignment σ ∈ {0, 1}n and every clause c = ℓ1 ∨ · · ·∨ ℓk, let d = d(σ, c) be the number

of satisfied literal occurrences among the k literals ℓ1, . . . , ℓk under σ. For fixed λ > 0, let

ω(σ, c) ∝

{

0, d = 0,

λd, otherwise.
(1)

Applying the above weighting scheme (1), Achlioptas and Peres [1] proved the following significant

result.

Theorem 1.1 (Achlioptas and Peres [1]). There exists a positive sequence δk → 0 such that rk >

2k ln 2− (k + 1) ln 2
2 − 1− δk, k = 3, 4, . . ..

Specifically, by using the weighting scheme (1), for all k > 4, Achlioptas and Peres [1] improved

previously known lower bounds for rk.

Later in 2014, Ding, Sly and Sun [10] proved that there exists an absolute constant k0 such that for

all k > k0, the satisfiability threshold for random k-SAT exists, and gave explicit value of the threshold.

But for small k, it is still very difficult to estimate rk, or r
∗
k. Our main result establishes lower bounds

for rk, 3 6 k 6 7.

In this paper, we propose a novel weighting scheme, which is a revised version of (1),

ω(σ, c) ∝















0, d = 0,

λ(1 + β), d = 1,

λd, otherwise,

(2)

where β > −1 and λ > 0 are fixed.

By choosing β and λ properly, we will prove that r3 > 2.83 (the best result remains the algorithmic

lower bound r3 > 3.52 of Kaporis, Kirousis and Lalas [11]), r4 > 8.09 (this result is consistent with the

second moment method lower bound of Vorobyev [12]), r5 > 18.91, r6 > 40.81 and r7 > 84.87, sharpening

the lower bounds r3 > 2.68, r4 > 7.91, r7 > 84.82 obtained in [1], and r5 > 18.79, r6 > 40.74 obtained

by using the same method in [1].

2 The second moment method

For any non-negative random variable X , making use of the second moment E[X2] is called the second

moment method. In this paper, we use the second moment method in the following form.

Lemma 2.1. For any random variable X > 0, we have

P [X > 0] > E[X ]2/E[X2].

Note that for any non-negative random variable Y , if Y > 0 implies that X > 0, then

P [X > 0] > P [Y > 0] > E[Y ]2/E[Y 2].

Friedgut [8] established the existence of a non-uniform threshold for random k-SAT.

Theorem 2.2 (Friedgut [8]). For any fixed k > 2, there exists a sequence rk(n) such that for any fixed

ǫ > 0,

lim
n→∞

P [Fk(n, rn) is satisfiable] =

{

1, r = (1− ǫ)rk(n),

0, r = (1 + ǫ)rk(n).

Given a random k-CNF formula F on V , let S(F ) = {σ : σ satisfies F} ⊆ {0, 1}n be the set of all

satisfying truth assignments of F and let X = X(F ) > 0 be a random variable such that X > 0 implies

that S(F ) 6= ∅. The following class of random variables X =
∑

σ ω(σ, F ) clearly has this property if

ω(σ, F ) > 0 and ω(σ, F ) > 0 implies that σ ∈ S(F ).

An immediate corollary of Theorem 2.2 is as follows.
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Corollary 2.3. For any fixed k > 2, if lim infn→∞ P
[

Fk(n, rn) is satisfiable
]

> 0, then rk > r.

Thus, for any r > 0, if E[X2] = O(E[X ]2), then rk > r.

Since F is formed by some independent clauses, it is natural to require that ω(σ, F ) has product struc-

ture over these clauses, i.e., ω(σ, F ) =
∏

c ω(σ, c), and because these clauses are chosen independently,

we have E[ω(σ, F )] =
∏

cE[ω(σ, c)]. With this in mind, let us consider the following class of random

variables:

X =
∑

σ

∏

c

ω(σ, c), (3)

where ω(σ, c) > 0 and ω(σ, c) = 0 if σ falsifies c.

For every truth assignment σ and every clause c = ℓ1 ∨ · · · ∨ ℓk, we require that ω(σ, c) = ω(v), where

v = (v1, . . . , vk), vi = +1 if ℓi is satisfied under σ and −1 otherwise. Since every ℓi in c has equal chance,

it is natural to require that ω(v) = ω(|v|), where |v| denotes the number of +1s in v.

Let A = {−1,+1}k and let α = z/n. From [1], we have

E[X ] = 2n

(

∑

v∈A

ω(v)2−k

)rn

, E[X2] = 2n
n
∑

z=0

(

n

z

)

fω(α)
rn,

where

fω(α) =
∑

u,v∈A

ω(u)ω(v)2−k

k
∏

i=1

(

α1ui=vi (1− α)1ui 6=vi

)

.

By using the Laplace method of asymptotic analysis [13], we deduce the following lemma.

Lemma 2.4. Let φ be any positive function on [0, 1] and let Sn =
∑n

z=0

(

n
z

)

φ(α)n. Letting 00 = 1,

define g on [0, 1] as g(α) = φ(α)/(αα(1−α)1−α). If there exists αmax ∈ (0, 1) such that g(αmax) ≡ gmax >

g(α) for all α 6= αmax and g, i.e., φ is twice differentiable at αmax and g′′(αmax) = −gmaxρ
−2/(αmax(1−

αmax)), where ρ > 0, then limn→∞ Sn/g
n
max = ρ.

With Lemma 2.4 in mind, let us define Λω(α) = 2fω(α)
r/(αα(1− α)1−α). Observe that

Λω(1/2)
n = (4fω(1/2)

r)
n
= E[X ]2.

Then, for any given r > 0, by Lemma 2.4, if Λω has a unique global maximum at 1/2 on [0, 1] and

Λ
′′

ω(1/2) < 0, then E[X2] = O
(

E[X ]2
)

and we get rk > r. Λ
′

ω(1/2) = 0, i.e., f
′

ω(1/2) = 0, is equivalent

to [1]

∑

v∈A

ω(v)(2|v| − k) = 0. (4)

The specific calculations of weighting scheme (2). For our weighting scheme, as defined in (2),

we can rewrite (4) as
[

∑k
j=1

(

k
j

)

λj(2j − k)
]

+ k(2− k)λβ = 0, i.e.,

(1 + λ)k−1(1− λ) + (k − 2)λβ = 1. (5)

For every truth assignment σ and every clause c = ℓ1 ∨ · · · ∨ ℓk, let S1(c) = {σ : d(σ, c) = 1} and let

H(σ, c) = d(σ, c) − (k − d(σ, c)) = 2d(σ, c)− k. For any fixed γ > 0, let

X =
∑

σ

∏

c

γH(σ,c)
(

1σ∈S(c) + β × 1σ∈S1(c)

)

. (6)

(Note that γH(σ,c) = γ2d(σ,c)−k, so this is consistent with (2) for γ2 = λ.)

Thus, we can rewrite (5) as

(1 + γ2)k−1(1− γ2) + (k − 2)γ2β = 1. (7)
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Let σ, τ be any pair of truth assignments that coincide in z = αn elements. Then

E

[

γH(σ,c)+H(τ,c)
]

=

(

α

(

γ2 + γ−2

2

)

+ 1− α

)k

,

E

[

γH(σ,c)+H(τ,c)1σ 6∈S(c)

]

= E

[

γH(σ,c)+H(τ,c)1τ 6∈S(c)

]

=

(

αγ−2 + 1− α

2

)k

,

E

[

γH(σ,c)+H(τ,c)1σ,τ 6∈S(c)

]

=

(

αγ−2

2

)k

,

E

[

γH(σ,c)+H(τ,c)1σ∈S1(c)

]

= E

[

γH(σ,c)+H(τ,c)1τ∈S1(c)

]

=

(

k

1

)(

αγ2 + 1− α

2

)(

αγ−2 + 1− α

2

)k−1

,

E

[

γH(σ,c)+H(τ,c)1σ 6∈S(c),τ∈S1(c)

]

= E

[

γH(σ,c)+H(τ,c)1σ∈S1(c),τ 6∈S(c)

]

=

(

k

1

)(

1− α

2

)(

αγ−2

2

)k−1

,

E

[

γH(σ,c)+H(τ,c)1σ,τ∈S1(c)

]

=

(

k

1

)(

αγ2

2

)(

αγ−2

2

)k−1

+ 2!

(

k

2

)(

1− α

2

)2(
αγ−2

2

)k−2

.

Observe that

(

1σ∈S(c) + β × 1σ∈S1(c)

) (

1τ∈S(c) + β × 1τ∈S1(c)

)

=
(

1− 1σ 6∈S(c) + β × 1σ∈S1(c)

) (

1− 1τ 6∈S(c) + β × 1τ∈S1(c)

)

= 1− 1σ 6∈S(c) − 1τ 6∈S(c) + 1σ,τ 6∈S(c) + β × (1σ∈S1(c) + 1τ∈S1(c)

− 1σ∈S1(c),τ 6∈S(c) − 1σ 6∈S(c),τ∈S1(c)) + β2 × 1σ,τ∈S1(c)

≡ Γ(σ, τ, β, c).

Therefore,

E

[

γH(σ,c)+H(τ,c)Γ(σ, τ, β, c)
]

= A(α, γ) + 2k ×B(α, γ)× β + k × C(α, γ)× β2 ≡ Fβ,γ(α),

where

A(α, γ) =

(

α

(

γ2 + γ−2

2

)

+ 1− α

)k

− 2

(

αγ−2 + 1− α

2

)k

+

(

αγ−2

2

)k

,

B(α, γ) =

(

αγ2 + 1− α

2

)(

αγ−2 + 1− α

2

)k−1

−

(

1− α

2

)(

αγ−2

2

)k−1

,

C(α, γ) =

(

αγ2

2

)(

αγ−2

2

)k−1

+ (k − 1)

(

1− α

2

)2(
αγ−2

2

)k−2

.

Then

E[X2] =E

[

∑

σ,τ

∏

c

γH(σ,c)+H(τ,c)Γ(σ, τ, β, c)

]

=
∑

σ,τ

∏

c

E

[

γH(σ,c)+H(τ,c)Γ(σ, τ, β, c)
]

=2n
n
∑

z=0

(

n

z

)

Fβ,γ(α)
rn. (8)

With Lemma 2.4 in mind, for fixed r, β and γ, let us define Gr,β,γ(α) = 2Fβ,γ(α)
r/(αα(1− α)1−α). If

Gr,β,γ has a unique global maximum at α = 1/2 on [0, 1] and G
′′

r,β,γ(1/2) < 0, then rk > r.

An enhanced method: truncation and weighting. For any given random k-CNF formula F on

V , note that S = S(F ) ⊆ {0, 1}n is the set of all satisfying truth assignments of F . Let S+ = {σ ∈ S :

H(σ, F ) > 0} and let X+ =
∑

σ∈S+

∏

c ω(σ, c). For any weighting scheme (3), from [12], we have the

following Lemma.



Liu J, et al. Sci China Inf Sci September 2016 Vol. 59 092101:5

Table 1 Lower bounds for k=3, 4, 5, 6, and 7

k 3 4 5 6 7

β (0.56, 0.74) (0.13, 0.15) (0.04, 0.06) 0.02 0.01

r 2.83 8.09 18.91 40.81 84.87

Lemma 2.5. If f
′

ω(1/2) = 0, then E[X+]/E[X ] → 1/2 as n → ∞.

For any fixed γ > 0, let X+ =
∑

σ∈S+

∏

c γ
H(σ,c)

(

1σ∈S(c) + β × 1σ∈S1(c)

)

. (This is consistent with

those random variables X defined in (6), i.e., consistent with our weighting scheme (2).)

A simple calculation gives

X2
+ =

(

∑

σ∈S+

∏

c

ω(σ, c)

)(

∑

τ∈S+

∏

c

ω(τ, c)

)

=
∑

σ,τ

1σ,τ∈S+

∏

c

ω(σ, c)ω(τ, c)

=
∑

σ,τ

1σ,τ∈S+

∏

c

γH(σ,c)+H(τ,c)Γ(σ, τ, β, c). (9)

Given a tuple (β0, γ0) ∈ (−1,+∞) × (0,+∞) which satisfies (7), in particular, if X+ =
∑

σ∈S+

∏

c γ
H(σ,c)
0

(

1σ∈S(c) + β0 × 1σ∈S1(c)

)

, then for any γ > γ0, following the derivation of (8) and (9), we

deduce that

E[X2
+] =

∑

σ,τ

E

[

1
σ,τ∈S+

∏

c

γ
H(σ,c)+H(τ,c)
0 Γ(σ, τ, β0, c)

]

6
∑

σ,τ

E

[

∏

c

γH(σ,c)+H(τ,c)Γ(σ, τ, β0, c)

]

=
∑

σ,τ

∏

c

E

[

γH(σ,c)+H(τ,c)Γ(σ, τ, β0, c)
]

=2n
n
∑

z=0

(

n

z

)

Fβ0,γ(α)
rn.

Therefore E[X2
+] 6 2n

∑n
z=0

(

n
z

)

infγ>γ0
Fβ0,γ(α)

rn ≡ 2n
∑n

z=0

(

n
z

)

fβ0,γ0
(α)rn.

With Lemma 2.4 in mind we take

gr,β0,γ0
(α) =

2fβ0,γ0
(α)r

αα(1− α)1−α
6

2Fβ0,γ0
(α)r

αα(1 − α)1−α
= Gr,β0,γ0

(α).

Suppose that gr,β0,γ0
(1/2) > gr,β0,γ0

(α) holds for all α 6= 1/2 and G
′′

r,β0,γ0
(1/2) < 0. Note that there

exists a constant ǫ such that Gr,β0,γ0
(1/2) > Gr,β0,γ0

(α) holds for all α ∈ (1/2− ǫ, 1/2) ∪ (1/2, 1/2 + ǫ).

With Lemma 2.4 in mind, we consider the function defined as follows:

φβ0,γ0
(α) =

{

Fβ0,γ0
(α), if α ∈ (1/2− ǫ, 1/2 + ǫ),

fβ0,γ0
(α), otherwise.

It is clear that E[X2
+] 6

∑n
z=0

(

n
z

)

φβ0,γ0
(α)rn, and then by Lemmas 2.4 and 2.5, we get rk > r.

3 Use of the method

We apply the method to the cases k = 3, 4, 5, 6 and 7, respectively. To do this, we demonstrate values

β, r and let γ satisfies (7), such that gr,β,γ(1/2) > gr,β,γ(α) holds for all α 6= 1/2 and G′′
r,β,γ(1/2) < 0.

We obtain Table 1.
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4 Conclusion

In this paper, we exploit the power of the weighted second moment method in improving lower bounds for

rk, 3 6 k 6 7, and some useful techniques on how to choose weights of the second moment are introduced.

These techniques can also be of use for other random models when applying the second moment method.

For further work, one interested problem is whether (1) is the optimal weight asymptotically for random

k-SAT when k → ∞.
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