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Abstract The challenge in variation-aware circuit optimization with consideration of yield is the trade-off

between optimized performance, yield and optimization runtime. This paper presents a practical variation-

aware circuit global optimization framework named GOYE, which shows the advantages on performance, yield

and runtime. It uses an approach called constraint violation elimination (CVE) in global search phase to prune

initial starting points and uses the gradient-based method in local search to locate optimum. The worst-case

analysis (WCA), which is necessary for variation-aware circuit optimization, is nested in the local optimization

process. The efficiency is significantly improved by a novel method based on extreme value theory (EVT). Our

EVT-based method is also the first one that allows users to control the target yield such that under-design or

over-design can be avoided. A design example in TSMC 65 nm technology is illustrated in the paper where

all performance achieves three-sigma yield with consideration of environmental and inter-die/intra-die process

variations.

Keywords global optimization, yield enhancement, analog design automation, extreme value analysis (EVA),

sequential quadratic programming (SQP), worst-case analysis

Citation Li M H, Huang G M, Wu X L, et al. A yield-enhanced global optimization methodology for analog

circuit based on extreme value theory. Sci China Inf Sci, 2016, 59(8): 082401, doi: 10.1007/s11432-015-0471-4

1 Introduction

As the consumer-driven, high-volume IC market continues to grow, the pressure on design teams to

deliver new and improved products is greater than ever. The competitive edge is usually derived from

time-to-market. To maximize the profit, it is desirable to minimize the design cycle. For system-on-chip

(SoC), the portions of analog and mixed-signal circuitry increase significantly compared with the past

that SoC contains mostly digital circuitry [1], which indicates more design time and effort is devoted to

analog and mixed-signal design than ever. Aside from design time, designers are also seeking potential

performance gains, power savings, and area reductions. On the other hand, as geometries shrink, vari-

ations challenge designers more than ever. To reduce the risk of re-spins, designers are more willing to
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trade some performance and area used, leaving more design margin to keep circuit performance stand

against variations.

Designers are spending more time on simulating and verifying the circuits due to the variations. There-

fore, the challenge for designers is how to deliver high-performance design considering variations before

deadlines to keep the competitive advantage for their products.

Analog design optimization provides efficient solutions for the challenge mentioned above. It is able

to accelerate time-to-market by reducing design time significantly while delivering higher performance

gain, lower power consumption, and less overall area without compromising design margins or decreasing

reliability. Analog design optimization tools take topology-fixed un-sized analog circuits, translate them

into optimization problems, and solve them with efficient optimization algorithms. Research works of

analog design optimization at earlier years are focused on performance optimization without considering

variations. Many of these works chose algorithms that are belonging to the class of evolutionary algorithms

(EA). EA includes: genetic algorithm (GA) [2], the most popular type of EA that mimics the process

of natural selection; differential evolution (DE) [3], which optimizes a problem by iteratively improving

a candidate solution based on vector differences; and imperialist competitive algorithm (ICA) [4], which

simulates human social evolution and can be thought of as the social counterpart of GA. Another widely

studied class of algorithm is swarm intelligence (SI). Ref. [5] presents the SI-based algorithms particle

swarm optimization (PSO) and ant colony optimization (ACO) on optimizing analog circuits. These kind

of algorithms mimic the intelligent behavior of decentralized, self-organized systems. Simulated annealing

(SA) is used in [6]. The disadvantage of SA is that it is computation-intensive [7]. Analog circuitry is

getting more and more complex in order to implement more functionalities. As such, from numerical

optimization perspective, the objective function is becoming more complicated, which introduce more

local optima. Due to the increasing complexity of the circuitry, transistor sizes are increased as well,

which creates a higher dimensional problem for circuit performance optimization. Therefore, the first

challenge is how to find an efficient global optimization method to overcome the increasing complexity of

circuitry while still able to deliver high optimized performance.

As geometries shrinking, the negative impacts on the circuit performance from variations are not negli-

gible. Therefore, some latest methods aim at yield-aware optimization, which is able to deliver optimized

performance while keeping high yield. Such methods require yield estimation or to find performance

worst-case during the optimization process. Ref. [8] obtained performance worst-case from the tradi-

tional three-corner analysis. However, it is no longer sufficient at advanced technology nodes. More

corners are required to find out the worse-case scenario of the design. Refs. [9–12] present methods for

yield estimation by linearizing the performance in worst-case scenarios, which could introduce errors.

Refs. [13–15] use improved sampling-based methods (LHS, QMC) for yield estimation. The overall simu-

lation counts are high, preventing them from being used in practice. Refs. [16,17] developed the analytical

yield model to improve the efficiency of optimization. For advanced technology process, the more detailed

model is required to maintain the accuracy. The response surface modeling technique is used to determine

the worst-case parameter in [18, 19], and the boundary integral method that formulates yield itself as a

surface integral on the boundary of acceptability region is given in [20]. The computational cost of these

methods is increased by the increase of dimensionality, which is not suitable for modern complex circuit

design. Ref. [21] applies the worst-case distance to estimate the boundary of the acceptable region which

could be too conservative, and could bring inaccurate estimation for the non-convex scenario. Ref. [21]

defines an ellipsoid-shaped region for process variation, and make an assumption that within the region is

Gaussian distributed. Literature that study efficient worst-case analysis (WCA) are presented in [22–25].

Refs. [22,23,25] linearize circuits in the frequency domain and apply Kharitonov’s function to obtain the

performance bounds under variations. Ref. [24] applies optimization algorithm on the transfer function of

the circuit to find the maximum or minimum of the transfer function value, and obtain the performance

worst-case thereby. These methods are heavily relying on the accuracy of the small signal model, which

requiring extra effort to derive such model. It is applicable in the frequency domain, but hard to extend

to the time domain. In summary, the second challenge is how to obtain the performance worst-case value

accurately and efficiently. The performance with respect to variations is not single minima region. It
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cannot be simplified considered as an ellipsoid-shaped region. The increasing number of transistors con-

sequently increases the number of process parameters. The dimensional increment makes the modeling

method, such as Kriging, ineffective and loss of accuracy. From the distribution perspective to perform

WCA, one cannot be over-simplified consider process variation with respect to nominal design is Gaussian

distributed.

Therefore, we propose a very efficient and practical circuit performance Global Optimization with

Yield Enhancement framework named GOYE as a solution for above-mentioned challenges. The features

and innovations of this work are including as follows.

(1) This work proposes a hybrid global optimization framework for analog circuits. At global search

phase, it utilizes the multi-start (MS) strategy and combine with a method named constraint violation

elimination (CVE) to prune the starting points. The probability of finding global optimum is improved

by such strategy. As local search phase, WCA is nested at each iterate of the gradient-based algorithm,

to ensure the worst-case performances are within specifications.

(2) The most significant contribution of this work is to propose an efficient yet very accurate worst-case

estimation method based on extreme value theory (EVT). It does not require of knowing or making the

assumption of the probability density function of performance parameter with respect to process varia-

tions. Our approach is a statistical-based method, which can make success predictions when parameter

space is not a single optimum region. Our work is first one, to our best knowledge, that provides the

controllability of the yield value for performance parameters. It can optimize the circuit with performance

parameters to meet any user-defined yield value. Even in one circuit optimization, different parameters

can have different yield values. This is an important improvement, which will benefit different applica-

tions. For performance parameters that do not require a high-yield value (i.e., 3σ), users can set the

target yield as a lower yield value (i.e., 2σ) in the exchange of better performance. And for performances

that require high-yield (i.e., > 4σ), such as data retention voltage in SRAM [26], our approach is still able

to accurately estimate the value of performance high-sigma point. Another feature of this EVT-based

method is the nearly dimensional independence, which has the advantage of scalability. Our experimental

results in the following section will show good estimation accuracy on a circuit with over 100 statistical

parameters.

(3) The framework of GOYE is hierarchical and each phase can be fully run in parallel, which makes

it more efficient and attractive in the multi-core or multi-node platform.

The rest of the paper is organized as follows: Section 2 introduces the fundamentals of yield optimiza-

tion. Section 3 describes the framework of GOYE with algorithms/approaches used in GOYE. Section 4

illustrates worst-case analysis by EVA based method. Section 5 shows an example of yield-aware circuit

optimization by GOYE and Section 6 concludes the paper.

2 Yield optimization

2.1 Yield optimization formulation

Circuit design automation and optimization (circuit optimization in short) are the process of finding

the design parameters d that optimized the performances. When this process is taken place at nominal

PVT condition, we denote it as the performance optimization. However, when environmental variation

(temperature t and supply voltage v) e and process variation p are taken into account, we denote such

optimization process as yield optimization or performance optimization with yield enhancement. The

optimization problem is normally constrained problem, where performance specifications, specs for short,

are the constraints c of the optimization. The target yield γ is the percentage of manufactured circuits

that meet the specifications. For circuit optimization, since it is at pre-silicon phase, we redefine γ as the

probability of performance parameter, at a given set of design parameters, that within the specification

due to the variations. The relationship of γ and specs is illustrated in Figure 1. High yield circuit

optimization is normally more challenging because it requires adequate margin between the centering of
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Figure 1 The low-yield design could have a large portion of its PDF out of spec (a). A robust design with high-yield

could keep nominal value move away from spec to leave more design margin for variation (solid curve, (b)) or have narrow

PDF such that little portion is out of spec. The shifting of nominal value and performance sensitivity could happen at the

same time.

the design and the spec, or finds d such that the design is less sensitive to variations. Together, the yield

optimization problem is formulated as

min f(d, t, v, p, γ) s.t.

{

cieq,i(d, t, v, p, γ) 6 0, i = 1, . . . , nieq,

ceq,i(d, t, v, p, γ) = 0, i = 1, . . . , neq,
(1)

where f(d, t, v, s, γ) is the circuit performance parameter (power, delay, etc.) that should be minimized,

and cieq,i(d, t, v, s, γ) 6 0 and ceq,i(d, t, v, s, γ) = 0 are inequality and equality constraints respectively.

Conventionally, this standard form is defined as a minimization problem. Due to the complexity of circuit,

the cost function that combines objective function with constraints contains multiple local minima. Hence,

yield optimization problems are known as global optimization problems.

2.2 Global and local optimization with consideration of variations

An analog circuit usually has tens or hundreds of transistors; despite the fact that some transistor sizes

are matched, there are still many transistors to be sized. In the optimization, these transistor sizes are

treated as variables, and form multidimensional space on each performance parameter. It is not difficult

to understand that within such variable spaces, the performance parameters will have multiple local

optima (maxima or minima), which leads to the existence of multiple qualified designs with different

sizing. In order to show this, we run a set of local optimizations from different starting points on a single-

stage folded-cascode circuit. The specifications that used as constraints of the optimization problem are

given in Table 1. Five feasible solutions after local optimizations are selected, and all of them satisfy

specifications strictly. In Table 2, three out of six performance parameters as well as 3 out of 13 variables

are shown. The last column is the normalized distances (ND) towards the first set of parameters,

NDi =

√

Σ(xi − x1)2

n
, (2)

where xi is normalized variable value. The greater the ND is, the more distance there is between these

two local optima. If ND=1, it means two optima are located at opposite corners. As we can see from

the table, the normalized distances are not small enough, which suggests all sets of variables could have

located in different local regions. Note that, we only show 10 set of optima in the table, and more local

optima exist for this circuit. Hence, we show that the circuit optimization problem belongs to global

optimization, and global optimization algorithms should be implemented to improve the efficiency of

finding the global optimum. There are generally two types of methods for solving global optimization

algorithm. One is to use pure global optimization methods such as genetic algorithms (GAs), simulated
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Table 1 The specification of test bench circuit

Gain GBW PM SRavg 1%Tsavg IQ

Spec. > 50 dB > 70 MHz > 80◦ > 40 V/µs < 10 ns < 800 µA

Table 2 The optimized performance from 10 different starting points with the normalized distances

No.
Performance Variables (3/13)

ND
IQ Gain Ts W1(µm) W3,4(µm) W11,12(µm)

1 0.68 62.50 6.90 171.12 198.90 40.20 0

2 0.59 53.72 9.50 191.68 120.04 20.04 0.23

3 0.61 60.15 8.34 193.70 108.24 22.54 0.18

4 0.67 62.21 6.98 186.78 172.42 20.07 0.12

5 0.60 61.89 8.16 183.47 191.96 36.03 0.33

Design parameter

P
er

fo
rm

an
ce

Global optimum
without variations

Global optimum
with variations

Feasible region

Spec

Figure 2 An illustration of performance global optimum with and without consider of variations. The solid line is the

performance from nominal condition while the dashed line represents the worst-case scenario once variations are considered.

The horizontal line represents the spec.

annealing (SA), and direct search (DA). These methods are normally derivative-free. They have the

advantages of searching the global optimum but have the efficiency disadvantages on their convergence,

which means a large amount of cost function evaluations are required to reach the optimum. Another

type of method is called hybrid optimization. These kinds of methods perform a global search at the

beginning to provide good candidate starting points and then use derivative-based optimization methods

to find local optima. If the choice of starting points is good enough, one of the local optima may end up

as a global or near global optimum. Due to the fast convergence, the hybrid optimization methods have

the advantages of simulation cost over pure global optimization methods.

Variations, including environmental and process variations, bring about performance degradation that

complicates the optimization problem. As illustrated in Figure 2, a global optimal design under nominal

condition does not necessarily be the global optimal design once PVT variations are considered. The

true yield-aware global optimum could shift to other local optimal where such optimum is less sensitive

to variations. Sometimes, when design specs are tight, “global optimum” from nominal condition could

have a large portion out of spec. Therefore, the robust design should have all performances worst-cases

within specs, and this is the objective of our GOYE.

3 GOYE methodology

In this section, we introduce the framework and optimization flow of GOYE, and present detailed algo-

rithms and techniques used in GOYE. Numerical experiments are conducted to verify the efficiency and

accuracy of approaches and techniques.
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QMC starting point generation < Threshold?

Local optimization with

SQP (Phase II)
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Inputs: netlist, process model,

design parameter ranges

Local optimization with SQP

(Phase I)

No
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Convergence ?
Outputs: performances,

design parameters

Inputs: environmental and

statistical parameter ranges,

netlist*, current design

parameters

WCA with EVT

Return performance

worst-case to SQP solver
No

Global
search

search
Local

Figure 3 GOYE framework.

3.1 GOYE framework

GOYE uses the hybrid optimization strategy multi-start (MS) as the circuit performance global op-

timization algorithm. The basic MS method generates uniformly distributed starting points in design

parameter space, and starts local optimizations from each of these. The attractive feature of MS is that it

applies a “region hit” strategy compared with “point hit” strategy, where population-based evolutionary

algorithms are belonging to the latter. With limited starting points, there is no guarantee MS is able to

converge to the global optimum, but a significant efficiency improvement of finding the good solutions can

be expected via MS method. The reason behind this is the probability of hitting the good region is much

larger than that of hitting a point. As long as we choose a handful of starting points that are located in

the good region (the region contains feasible solutions), by applying gradient-based local optimizations,

we can effectively find one or more feasible solutions. Therefore, this MS hybrid optimization framework

is chosen as our optimization flow.

GOYE starts with global search phase to select promising starting points for local search phase, the

efficiency of global search is improved by an approach named constraint violation elimination (CVE). The

local search applies gradient-based optimization algorithm. To enhance the yield of optimized design,

the worst-case analysis (WCA) is nested at major iterate of local optimization to ensure the worst

performances can still be optimized within specs. We use a metric, called the weighted constraint violation

sum, to monitor the degree of convergence, and once it is less than a threshold, WCA is enabled. This

could reduce the simulation cost brought about by WCA in the local optimization phase, and the efficiency

of WCA is improved by the proposed approach based on the extreme value theory (EVT), which will be

introduced in Section 4. Figure 3 gives an overview of GOYE framework. Details of the framework are

described below.

3.2 Global search

The objective of the global search phase is to prune the starting points, which are used as initial points

for the subsequent local optimizations. In the first step of global search phase, a set of random design

parameters is generated in the design parameter space by using quasi-Monte Carlo (QMC) method. QMC

uses low-discrepancy sequence, which is able to generate highly uniformed samples in variable space over

the pure Monte Carlo (MC) method. This could avoid the scenario that two starting points are adjacent

and optimizations from them will end up to the same local optima. Considering a local circuit optimization

is time-consuming, eliminating such scenario via QMC could significantly improve the efficiency. Latin

hypercube sampling (LHS) is also widely used for generating low-discrepancy sequence [13,27]. However,

the efficiency of QMC over LHS is shown in [28]. Hence, we apply QMC method in this paper.
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Table 3 Numbers of optimized results on each performance level

Lv.1 Lv.2 Lv.3 Lv.4

With CVE 5 5 10 30

Without CVE 0 10 5 35

Among the design parameter spaces, designs in many regions cannot make circuits operate correctly.

These regions are referred as infeasible regions. For instance, considering a two-stage Miller Op-Amp

design, the common practice of the second stage transistor sizes should be much larger compared with

that of first stage transistors, in order to keep a good phase margin. As such, the design parameter space,

where the values of first stage transistor sizes are greater than the values of the second stage should

be considered as infeasible regions. Local optimizations from starting points located in the infeasible

regions have little probability of finding the feasible solution. Therefore, it is necessary to eliminate

these starting points. CVE method evaluates each starting point generated by QMC and calculates the

weighted constraint violation sum (WVS) of each starting point:

WVS =
n1
∑

i1=1

·wi1 ·max

(

(Pi1 − pi1)

Pi1
, 0

)

+
n2
∑

i2=1

·wi2 ·max

(

(Pi2 − pi2)

Pi2
, 0

)

, (3)

where n1 is the number of performances that should be optimized greater than the specs, and n2 is the

number of performance that should be optimized less than the specs; pi1 or pi2 denotes the performance

that is obtained from QMC sampling, and pi1 or pi2 denotes the target performances which are specifi-

cations. wi1 and wi2 are weights of different specifications. WVS is a non-negative number, if WVS=0,

then there is no constraint violation, where all performances are in specs. By calculating the WVS of each

starting point, CVE eliminates starting points that have high WVS to provide an intelligent selection

of initial points for local search. Table 3 compares the success rate of finding the feasible solution from

using and not using CVE on the optimizations of a single-stage folded-cascode Op-Amp. We select 50

out of 500 starting points using the CVE approach and then execute local optimization. The results are

compared with local optimization results from 50 random starting points. Level one results indicate all

performances meet the specs. Level two and level three results indicate all performances meet the 95%

and 90% of specs respectively. And level four results are scenarios that local optimizations failed to find

feasible solutions, which implies these starting points are more likely located in bad regions. We can see

from the table that local optimizations that use CVE method, have the higher possibility of finding the

good regions among design parameter spaces than that from the starting points without using CVE.

3.3 Local optimization

In the local optimization phase, a derivative-based local optimization algorithm is chosen. Newton’s

method (also known as the Newton-Raphson method), is one of the most popular derivative-based al-

gorithms for local optimization. It approximates the problem as a quadratic function and finds the

minimum in a few iterations. The proof of its convergence is given in [29]. Sequential quadratic pro-

gramming (SQP), a derivative-based local optimization algorithm that is a natural extension of Newton’s

method, is applied in GOYE. The SQP algorithm is considered one of the most powerful nonlinear pro-

gramming algorithms we know today for solving differentiable nonlinear programming problems [30]. It

is an iterative procedure, which models non-linear problems at each iterate, as quadratic programming

(QP) sub-problems. It solves current QP problem and takes the solution to constructing the sub-problem

of the next iteration. The theory of the SQP algorithm is well discussed in [31, 32].

The starting points for local SQP optimization are chosen from global search phase. To improve the

yield of the circuit optimization, WCA is nested in the iteration of local optimization to find out the

worst performance values with respect to a target yield at current design parameters of the iteration. This

iterative worst-case optimization method has the advantages of finding the local optimum as compared

with the two-step method, such as [33], where the latter finds the local optimum vector at the nominal
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condition and then maximize the yield by minimizing tolerance region around the vector. As such, the

worst-case should be checked every iterate to ensure the optimization process can converge to dWC.

However, considering the extra simulation cost brought about by WCA, it is not practical to perform

WCA at each iterate of optimization. Hence, we set a threshold for WVS; if WVS is above the threshold,

referred as local optimization phase I in Figure 3, which generally indicates the local optimization is not

near to its convergence. We only perform optimization with respect to the nominal corner. Once the

WVS is below a threshold, referred as phase II, the worst-case performances are checked at each iterate

of the rest of optimization process, and the worst-case values are returned to the SQP solver. This idea

is similar as presented in [34, 35]. Note that WVS is only an indicator; its value has no interference to

the local optimization process.

4 Worst-case estimation with extreme value analysis

Circuit performance is inevitably influenced by variations. Variations due to manufacturing processes

(P), and variations due to the environment such as voltage (V) and temperature (T). Process variations

can be further classified as intra- and inter-die variations. Intra-die or die-level variations are comprised of

systematic variations, which are strongly layout dependent; and random variations, which reflect random

fluctuations of process parameters. Inter-die or wafer-level variations occur from one die to another, which

means the chip performs differently from other chips of the same wafer. Foundries provide statistical

variables to model process variations. In this paper, we denote statistical variables and environmental

variables together as PVT variables.

The worst-case analysis (WCA) is to find out the worst-case performance value with respect to varia-

tions. Designers usually use Monte Carlo (MC) sampling to find worst-case performances by evaluating

on randomly selected statistical parameter values. The worst-case of circuit performance in MC sampling

is found on the tail of the performance distribution. When performance parameters are not Gaussian

distributed or symmetrical distributed, which is not rare, MC method then requires thousands or more

samples, making it computational inefficient and expensive, especially been used in the yield-aware circuit

optimization. Literature that provides alternative WCA methods are introduced in Section 1. We briefly

summarize the shortcomings from these previous works.

(1) Given a set of design parameters, the space of performance with respect to PVT variables contains

multiple local minima. As such, local optimization on the variable space is not sufficient to guarantee

that the worst-case can be found.

(2) Due to the multiple local minima property, the modeling of such space will show inaccuracy. As

the circuit scales up, the number of statistical parameters increases as well. Modeling-based methods

then suffer from the curse of dimensionality, made them computational inefficient.

(3) The distribution of performance parameter with respect to PVT variables is non-parametric.

Therefore, any assumption of its type, such as Gaussian distribution, will eventually lead to huge es-

timation error.

In this section, we introduce a very efficient sampling-based worst-case analysis approach based on

extreme value theory (EVT). EVT or extreme value analysis (EVA) [36] is used to model and estimate

the behavior of rare events with extreme probability. Our application is aim to obtain the worst-case

performance value, which is on the tail of the performance distribution. As such, EVT provides a natural

advantage of exploiting the statistical extreme value, in this case, the worst-case value. The proposed

method is able to estimate performance worst-case in handful circuit simulations while keeping high

accuracy of the estimation, and the cost is able to remain almost the same as the circuit scales up

(contains more statistical parameters). The proposed approach can be used either in yield-aware circuit

optimization or as a standalone worst-case analysis tool.

4.1 WCA formulation

The semiconductor foundry defines process statistical parameters and their distributions for both intra-
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Figure 4 GEV distributions of different types of statistics. (a) Short-tailed; (b) medium-tailed; (c) long-tailed.

and inter-die variations in the process library. However, environmental variables have no available distri-

butions. Therefore, in this section, we consider two cases for environmental variables. In each case, the

environmental variables are combined with all available statistical parameters to construct performance

parameter space under variations.

Case 1. Evaluating on two deterministic extreme environmental conditions: fast condition (1.1VDD

and −40◦C) and slow condition (0.9VDD and 125◦C) while keeping process statistical parameters as

random variables. The worst-case of performances can then be found on the worse one of these two

conditions. This method avoids to under-weight failures at extreme environmental variations with the

cost of doubling the circuit simulation count.

Case 2. Modeling both voltage and temperature variations as uniform distributions, where the range

of voltage is [0.9VDD, 1.1VDD] and the range of temperature is [−40◦C, 125◦C]. These two environmental

variations are mixed together with statistical parameters to form PVT variables.

The purpose of Case 1 is to investigate performance distribution at extreme temperature and voltage

conditions to avoid underestimate the influence brought about by temperature and voltage (VT). How-

ever, theoretically speaking, the worst-case performance may not exactly happen at the two extremes the

environmental conditions. Therefore, we model VT as uniform distributions in Case 2, to further ensure

that worst-case performances will not be omitted by Case 1. We will show the efficiency and accuracy of

our WC estimation approach on both cases this section.

4.2 Extreme value theory

One of the approaches for EVA relies on block maxima series, which is described as follows: Let

X1, X2, . . . , Xn be a sequence of independent and identically-distributed (i.i.d.) random variables, and

Mn= max{X1, X2, . . . , Xn}, Mn then follows a generalized extreme value (GEV) distribution as n → ∞

[36]. The probability density function (PDF) for the GEV distribution is,

f(x|k, µ, σ) =

(

1

σ

)

exp

(

−

(

1 + k
(x− µ)

σ

)
1

k

)(

1 + k
(x− µ)

σ

)−1− 1

k

, for 1 + k
(x− µ)

σ
> 0, (4)

where k is the shape parameter, µ is the location parameter, and σ is the scale parameter. Note that µ

and σ are not the mean and standard deviation of GEV distribution. For k > 0, it is referred to as a

Type II case, and for k < 0, it is referred to as a Type III case. The Type I case is when k = 0 and the

corresponding density is

f(x|k, µ, σ) =
1

σ
exp

(

− exp

(

−
(x− µ)

σ

)

−
(x− µ)

σ

)

. (5)

Distributions, whose tail decreases exponentially, such as normal distribution, lead to Type I [37].

Figure 4 illustrates GEV distributions of three-type of parent distributions. It is shown that regardless

the type of the parent distribution, its GEV distribution can be accurately fitted with parameterized

distribution. Hence, given a performance distribution that is hard to fit any known distribution, it is

therefore hard to obtain worst-case value accurately on such distribution. The concept of our proposed

method is to fit GEV distribution of original performance distribution firstly, and then find a value on

GEV distribution that could map to the worst-case value of the original distribution.
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Figure 5 The normalized CI of the GEV distribution pa-

rameters k, µ, σ are improved by increasing the number of

blocks. In this experiment, when Nb=38, all norm. CIs are

below the threshold, T=0.1.

Figure 6 Prediction accuracy is improved as the number

of blocks increases.

4.3 Worst-case estimation with EVA

Circuit performance P = f(x) under variations, at a set of fixed design parameters, is a function of PVT

parameters x. The cumulative distribution function (CDF) of P is denoted as F . Given a percentage

point, γ → 1, F−1(γ) represents the worst-case PWC when P is the less the better, and for P is the

greater the better, negating the sign of P , this still applies. The percentage point can be 2-sigma, 3-sigma,

or any user-defined percentage. The original distribution of circuit performance F is not known to us.

However, as stated in the previous section, the GEV distribution is parametric and can be fitted through

sampling. The CDF of GEV distribution is denoted as FGEV.

The worst-case estimation starts with Nb times of independent generation of random samples of design

parameters, with equal sample sizes Ns. N = Nb ·Ns random sets of design parameters are generated at

this point. Each set of design parameter is treated as the input of the circuit netlist, and evaluated by

SPICE simulator. Ns is also referred as the blocksize, while Nb is called the number of blocks. The target

circuit performances are calculated after circuit simulations. The maxima from sample blocks, denoted as

the block maxima, are used to form block maxima series (BMS). BMS is used as the dataset to perform

maximum likelihood estimation (MLE) on three parametric variables of the GEV distribution, FGEV.

The accuracy of the GEV distribution fitting is impacted by Nb. The larger Nb, the more accurate

the GEV distribution is. We iteratively perform such sampling and fitting until the normalized 95%

confidence interval (CI) of parameters of GEV distribution are below a threshold T , or Nb reaches a

pre-defined maximum number Nb,max. The normalized CI is defined as

CInorm =
CBU − CBL

|µ|+ 1
, (6)

where CBU and CBL are upper and lower confidence bounds, and |µ| is the mean of fitted parameter

values. The reason CI is normalized by |µ|+ 1 instead of |µ| is to prevent |µ| → 0 scenario. In practice,

only a handful of Nb is required to achieve this. Figure 5 demonstrates a GEV distribution fitting

accuracy is improved by increasing Nb. The parent distribution of this GEV distribution is a normal

distribution with µ = 0 and σ = 1. The accuracy improved GEV distribution will eventually help to

enhance the worst-case estimation accuracy. Figure 6 shows the worst-case (γ = 3σ) prediction error

with respect to Nb (Nb=[10, 500]), the fluctuation of the prediction error is caused by the natural of

statistics but overall trade shows that the increase of Nb improves the estimation accuracy.

If Ns → ∞, the location parameter µ̂ of GEV distribution is a good estimate of PWC [38]. However,

a large Ns makes such method computational inefficient, which is contrary to our initial intention. In

this paper, we show our improvement by using a small deterministic Ns while still keep high accuracy

of estimation. The mean of GEV distribution is pushed towards the tail of parent distribution as Ns
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Figure 7 The mean of the multiplier with respect to blocksize Ns and percentile γ.

increases, and the variance of GEV distribution decreases. With small Ns, the location parameter µ̂ is no

longer valid for estimating PWC. Our method, instead, seeks a percentage point β of GEV distribution

with respect to Ns that could accurately estimate PWC,

PWC = F−1
GEV(β). (7)

The percentage point β should be a function of γ. Since they are both percentage, intuitively, a multiplier

α is applied to link between them,

β = αγ. (8)

Therefore, PWC can be obtained by

PWC = F−1
GEV(αγ). (9)

To investigate the property of this multiplier α, we design a set of experiments. We pick several

well-known parametric distributions: Normal, Parato, Log-normal, Logistic, Loglogistic, Rayleigh, T

location-scale, Weibull, Chi-square, Skew-normal and Exponential. For each distribution, we assign

reasonable ranges for its parameters, and randomly generate 100 sets on each distribution type. Since

the CDF of original distribution is known at this time, we are able to calculate the corresponding α.

Figure 7 shows the mean of α from 100 sets for each type of distributions with respect to different Ns

at (γ=99.9). From this figure, we can see that α is monotonically decreasing with respect to Ns. The

amazing phenomenon is that α is not a function of distribution type neither their parameters. It is only

determined by Ns and γ. This distribution-independent property allow us to choose an accurate α for

unknown distributed parent distribution to make an accurate extreme estimation. Note that, the relative

standard deviation (RSD) of α, defined as the ratio of the standard deviation over the mean, increases

along with the increase of blocksize. Therefore, the choice of the blocksize should not be too large to

avoid large RSD, and meanwhile keeps the total simulation cost low. On the other hand, a choice on α

very small also should be avoided. This is due to the reason that the extreme value theory holds true

when n, in this case, the blocksize, is sufficiently large. A small blocksize would lead to the inaccuracy

of the GEV distribution, and eventually enlarges the extreme estimation error.

Because of the multiplier is distribution-independent, we are able to fit the function of α with respect

to Ns and γ by using the normal distribution. Below gives the empirical function fit by a polynomial

with the coefficient of determination R2=0.9998,

α = 0.83 + 0.35γ − 0.001Ns − 0.18γ2 + 3.5e−7N2
s + 6.8e−5Nsγ. (10)

4.4 Experimental results of WCA and EVA

In this subsection, we show estimation results of our approach on two circuits: a two-stage miller Op-

Amp (C1) and a folded-cascode Op-Amp (C2), and compare the results with that from other estimation



Li M H, et al. Sci China Inf Sci August 2016 Vol. 59 082401:12

M3 M4
Vin+ Vin-

Vo

Vbp1 M5 M6

M7 M8

M9 M10

M11 M12

Vbn2

Vbn1

M1

Vbn2

Vbn1

Vbp1

Vbp2

Vbp2

VDD

VSS

VIN VIP

VSS

VDD

Vo

M3 M4

M1 M2

M5

M8
M9

CC

VBias
VBias

(a) (b)

Figure 8 (a) Two-stage miller Op-Amp (C1) and (b) folded-cascode Op-Amp (C2).

Table 4 Comparison of estimation errors (%)

Method 1 Method 2 Method 3 Proposed

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Fast Slow Fast Slow Fast Slow Fast Slow

C1 Gain (dB) 6.20 2.50 8.97 4.14 6.12 1.01 13.90 10.97 14.74 0.44 6.03 3.76

VOS (µV) 10.10 13.70 41.97 5.79 6.63 15.11 8.89 11.65 9.00 3.13 0.79 0.86

SR (V/µs) 6.70 8.60 27.71 4.79 3.05 2.93 17.08 12.55 9.30 0.47 1.52 0.71

Power (µW) 16.60 12.80 55.46 3.97 17.91 6.87 12.72 11.35 10.15 2.88 0.94 0.98

C2 Gain (dB) 3.70 2.10 13.71 10.68 1.17 6.40 8.53 16.35 10.67 5.65 3.76 4.97

VOS (µV) 5.70 9.80 3.90 6.61 2.95 7.09 11.76 7.48 9.30 0.87 0.86 2.05

SR (V/µs) 10.20 12.50 73.43 3.56 3.20 8.14 4.43 10.16 16.16 1.97 0.71 0.29

Power (µW) 9.70 10.70 4.95 3.97 24.50 24.54 13.46 12.50 12.17 1.90 0.98 3.05

Avg.Error 15 8 11 2.1

methods, to verify the accuracy and efficiency of proposed method. Schematic views of C1 and C2

are given in Figure 8. Both circuits are simulated with TSMC 65 nm process technology. The design

parameters are fixed. The numbers of statistical variables for C1 and C2 are 32 and 59 respectively. We

perform our experiment on two extreme environmental variation cases: fast condition and slow condition.

The block size N is 10 and we keep to increase the number of blocks Nb until normalized CIs are all

below 0.2. We also simulate these test-benches by MC method with sample size equal to 100000, from

which the 3σ value of each performance are used as the reference for the following comparison. Three

MC-based methods are used to compare with, which are described as follows.

Method 1. Considering the performances are normal distributed, and calculating the mean and stan-

dard deviation from the same number of MC samplings.

Method 2. Fitting probability distribution function by using maximum likelihood estimation [39] on

over ten common known parametric. The three sigma values are then calculated based on the PDF of

best fitted distribution.

Method 3. Use kernel density estimation (KDE) to estimate the PDF of circuit performances.

Table 4 provides the estimation error comparison of these methods. The estimation error is defined as

Estimation Error =

∣

∣

∣

∣

Pest − Ptrue

Ptrue − Pavg

∣

∣

∣

∣

, (11)

in which Pest is the estimated three sigma value, Pavg is the average value, and Ptrue is the true three

sigma value. The average Nb for these two experiments is 44. However, we can further decrease the T

to achieve less Nb by trading off the estimation accuracy.

Columns under Case 1 show estimation errors for fast and slow extreme environmental conditions, and

columns under Case 2 show that when environmental variations are modeled as uniforms. For both cases,

our approach is able to estimate performance three sigma worst values accurately. Furthermore, it shows

good scalability on the complexity of circuits. C2 that contains more statistical parameter does not show
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Table 5 Estimation errors with different number of blocks (%)

Nb = 20 Nb = 50 Nb = 100

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Gain (dB) 4.80 3.45 2.62 2.25 1.71 1.61

VOS (µV) 3.04 3.58 1.84 2.39 1.10 1.35

SR (V/µs) 3.87 4.12 1.37 1.96 1.91 1.62

Power (µW) 2.77 2.80 2.05 1.78 1.56 0.77

Avg.Error 3.55 2.03 1.46

Table 6 Estimation errors on different yield (%)

2σ 3σ 4σ

C1 Gain (dB) 1.35 3.76 6.03

VOS (µV) 0.77 0.86 1.07

SR (V/µs) 0.71 0.71 1.34

Power (µW) 0.64 0.98 1.76

C2 Gain (dB) 1.28 4.97 4.75

VOS (µV) 0.62 2.05 3.45

SR (V/µs) 0.48 0.29 1.05

Power (µW) 0.66 3.05 4.49

accuracy degradation compared to C1. On the other hand, method 1 treats all performances as normal

distributed which is not always the case, therefore shows large estimation errors on some performances.

This inaccuracy becomes more obvious in Case 2, as shown in Table 4, that performance distributions

are further diverted from normal distributions. The inaccuracy of methods 2 and 3 is caused by two

aspects. The first aspect is the limited number of samplings that statistically only a few samplings are

located at the tail of the distribution which makes the distribution fitting accuracy, especially at the edge

of the distribution, deteriorated. The second aspect is that the performance variation distribution may

not belong or similar to any of known distribution, therefore, deviates from fitted distribution that cause

inaccuracy.

The overall estimation accuracy is influenced by the value of Nb, Table 5 shows the estimation ac-

curacy on the performances of C1 with different Nb. The total number of samplings required increases

proportionally as Nb increases, but shows better estimation accuracy.

The comparisons shown in Table 4 are at 3σ target yield. However, our method can be used on any

target yield. Table 6 shows estimation results of Case 2 on C1 and C2 with different target yields. The

estimation performance at high-sigma yield has slightly drop compared with the low-sigma case; how-

ever, the overall accuracy is still promising, which shows the attractive of our method for circuits require

high-yield.

5 Circuit design with yield optimization

In this section, yield optimization experimental results are demonstrated on a Gain-boosted (GB) Op-

Amp. The schematic view is shown in Figure 9. The complexity of this circuit made it not easy to be

designed, even for experienced designers. The number of transistors including bias circuits and CMFB

circuits up to 120, and it has as many as 253 PVT parameters for WCA. It is implemented in TSMC

65 nm technology node. The number of design parameters is 24. The distributions of process parameters

are extracted from the technology library provided by the foundry, and voltage and temperature are

modeled as uniform distribution. The block size for EVA is 10. The specifications are defined as follows:

Gain > 65 dB, Slew-rate (SR) > 30 V/µs, Settling time < 30 ns and Current Consumption (Idd) <

600 µA. The experiment is conducted on a 4-core CPU system with 16 GB of RAM. The code is imple-

mented in MATLAB and the Synopsys HSPICE is used as the simulator.

We perform five independent runs of yield optimization on this GB Op-Amp. The yield optimization
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Figure 10 Experimental results.

Table 7 Yield optimization results (verified by 5000 MC samplings)

Worst Best Average

Yield 98.5% 100% 99.6%

# of simulations 6327 2526 4677

Runtime (hour) 2.5 1.2 1.8

results are given in Table 7. They are verified by 5000 MC samples. The average performance yield from

five runs is 99.6%. The worst yield (98.5%) occurs on the performance of settling time, which is less than

the target yield (99.7%), this is caused by the estimation error. The histograms of one-run are shown in

Figure 10. The average simulation count is less than 5000, and the yield optimization cost only 2 hours

of runtime on average.
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6 Conclusion

In this paper, a global performance and yield optimization framework, GOYE, has been proposed for

analog circuits with the consideration of environmental variation and inter- and intra-die process varia-

tions. GOYE shows ultra-low computation cost without losing accuracy or compromising the optimized

performance. The efficiency is achieved by several techniques/approaches, stated as follows.

(1) GOYE uses hybrid global optimization framework that combines global search phase and local

optimization phase. A starting point selection technique called CVE is proposed and used in global

search phase, which can select better promising initial points for local search. The state-of-art non-

linear optimization algorithm SQP is used as a local solver and a metric WVS is used during the local

optimization to determine if the worst-case analysis is needed.

(2) Inspired by the extreme value theory, a novel worst-case analysis approach is proposed. In this

approach, we convert the problem of finding the worst extreme value on original distribution to the

problem of calculating the extreme value on its generalized extreme value distribution whose distribution

is much easier to model from a handful of samples. This approach greatly enhances the efficiency for

worst-case analysis without losing accuracy. Furthermore, this method is able to estimate worst-case

performance for different target yield while keeping the same accuracy.

(3) Each stage of the framework is suitable for parallel computing which makes this framework more

attractive in many-core and multi-node computing platform.

The proposed EVT-based method not only can be used in our optimization flow, it can also be used

as standalone WCA tool, to fast estimate accurate n-sigma performance worst-case values. Beyond this,

the innovation of this estimation method can be further extended to assess the extreme performance

values with respect to design parameters. This application is able to help fast determination of topology

selection, whether it is feasible to meet all design requirements before put effort onto the design.
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