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Abstract Recent years have witnessed successful use of tracking-by-detection methods, with a number of

promising results being achieved. Most of these algorithms use a sliding window to collect samples and then

employ these samples to train and update the classifiers. They also use an updated classifier to establish the

appearance model and they take the maximum response value of the classifier as the location of the target

within a fixed radius. Compressive Tracking (CT) is a novel tracking-by-detection algorithm that updates the

appearance model in a compressed domain. However, the conventional CT algorithm uses a single classifier to

detect the target, and if the selected region drifts, the classifier may become inaccurate. Furthermore, the CT

algorithm updates the classifier parameters with a constant learning rate. Therefore, if the target is completely

occluded for an extended period, the classifier will instead learn the features of the covered object and the target

will ultimately be lost. To overcome these problems, we present a compressive sensing tracking algorithm using

mixed classifier decision. The main improvements in our algorithm are that it adopts mixed classifiers to locate

the target and it applies a dynamic learning rate to update the appearance model. An experimental comparison

with state-of-the-art algorithms on eight benchmark video sequences in complicated situations shows that the

proposed algorithm achieves the best performance with 12 pixels on the average center location error and 66.82%

on the average overlap score.
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1 Introduction

Object tracking is a topic of great current importance in the field of computer vision [1,2] owing to its wide

applications in areas such as automated surveillance, video indexing and traffic monitoring, to name just

a few. The task of tracking is to estimate the target states in video sequences under the condition that

the initial state of the target in the start frame is already known from a sequence of measurements made

on the object. Although many detecting and tracking algorithms [3–25] have been proposed, no single

algorithm has been able to solve all the scenario problems that arise. This is because there are numerous

factors that may lead to changes in appearance and affect the performance of a tracking algorithm, such
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as pose adjustment, variations in illumination and occlusion. Therefore, the establishment of a new object

tracking system remains a challenging task with regard to efficiency, accuracy and robustness.

During the last few years, tracking algorithms based on an effective adaptive appearance model have

attracted a great deal of attention. In general, tracking algorithms can be categorized as either generative

or discriminative, based on the appearance models that they employ. A generative model first learns

an appearance model to represent the target object and then uses it to determine the location of the

target with the minimum error in subsequent frames. Hence, the construction of an efficient and robust

appearance model is crucial for the performance of a generative model in object tracking. Adam et

al. [9] developed an appearance model using some information fragments to deal with pose variation and

partial occlusion. The l1-tracker [10] uses a sparse linear combination of the target and trivial templates

to establish a target model with the aim of solving the problems caused by pose variation, changes

in illumination and partial occlusion. However, the computational complexity of this tracker is rather

high, limiting its application in real-time scenarios. Li et al. [11] effectively optimized the performance

of the l1-tracker in real-time applications by employing an orthogonal matching pursuit algorithm. To

enhance the discriminative power of the appearance model, Liu et al. [12] proposed a model based on

sparse coding. Jia et al. [13] made further improvement by using partial sparse coding to express the

appearance model with all the target templates being decomposed into a group of smaller image blocks

to make full use of local and spatial information on the objects. However, both of these tracking methods

ignore the connections among sparse representations. Zhang et al. [14] proved that tracking results can

be refined by applying correlations between each sparse representation, and they also demonstrated the

superior performance of the multi-task tracker. Although these algorithms have given good results in

some circumstances, several problems remain. First, algorithms based on generative models require a

variety of training samples for the initial learning of an appearance model. Second, they discard useful

background information that could have been exploited to separate the target from the background

more efficiently. Discriminative models pose object tracking as a detection problem in which a binary

classification is learned and then used to sort the target object from its surrounding background within

a local region. Much researches have been carried out in this direction. Collins et al. [15] showed that

tracking performance can be effectively improved by selecting discriminative features in an online tracking

algorithm. Babenko et al. [16,17] introduced multiple-instance learning into online tracking with samples

being considered to lie within positive and negative bags or sets. To correct errors in detection, Kalal

et al. [18] proposed the PN-learning algorithm for exploiting the underlying structure of positive and

negative samples to learn effective classifiers for object tracking.

Recently, compressive sensing techniques have attracted much attention in many fields. Zhang et

al. [26] proposed an effective tracking algorithm in the context of compressive sensing theories, namely,

Compressive Tracking (CT). This method considers target tracking as a detection problem based on a

binary classification and thus it is a discriminative-based model. It has been proved that discriminative in-

formation present in high-dimensional features of a multi-scale image can be preserved in low-dimensional

features extracted at random from the image. Thus, real-time tracking can be realized through dimen-

sional reduction. This discovery has greatly accelerated the development of target tracking research.

Despite the fact that the CT algorithm has achieved great success in applications, problems still exist.

First, the algorithm uses an already-trained classifier to estimate the position of the target object in the

next frame. In this situation, if the object is influenced by occlusion, changes in appearance, variations

in illumination or other factors, the maximum response value of the classifier may be less than zero. As

a consequence, it is inappropriate to take the maximum response value of the classifier as the target

location or to label positive and negative samples around the target. Second, the CT algorithm updates

the classifier parameters at a constant learning rate. Under this condition, if the target is occluded for an

extended period, the classifier may learn the features of the covering object and the target will ultimately

be lost.

In this paper, we propose a CT algorithm based on mixed classifier decision; it is a discriminative

model-based method that takes target tracking as a detection problem based on a binary classification.

Our proposed algorithm is selective in choosing different classifiers for object tracking, and it adopts
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Figure 1 (Color online) Structure of the compressive tracking algorithm.

different strategies to update the classifiers. This means that it is better able to handle problems caused

by variations in illumination, by occlusion and by background clutter. The remainder of the paper is

organized as follows. Section 2 introduces the CT algorithm. Section 3 presents the selection principle

for the classifiers and the updating rules for both the classifiers and the dynamic learning rate in the

proposed algorithm. Section 4 provides details of the experiment setup and results. Finally, Section 5

concludes the paper.

2 Compressive tracking

The CT algorithm is a simple but efficient tracking algorithm based on compressive sensing theories. Its

main idea relies on dimensional reduction. The algorithm uses a very sparse measurement matrix that

satisfies the restricted isometry property (RIP) to project the original image into the feature space to

give a compressed low-dimensional subspace that preserves the features of the original high-dimensional

space. Thus, we can extract the foreground object as well as the background information via a sparse

measurement matrix and use them as the positive and negative samples for online learning. We then

classify the test target image in the next frame through a naive Bayes classifier.

The main structure of the algorithm is shown in Figure 1. We first take a set of images in frame(t) as

samples and extract the low-dimensional features of these samples on the basis of compressive sensing

theory. To deal with the multi-scale problem, the CT algorithm represents each sample z ∈ Rw×h by

convolving it with a set of rectangular filters at multiple scales {h1,1, . . . , hw,h}, where hi,j is defined as

hi,j =

{

1, 1 6 x 6 i, 1 6 y 6 j,

0, otherwise,
(1)



Sun H, et al. Sci China Inf Sci July 2016 Vol. 59 072102:4

where, i and j are respectively the width and height of the rectangular filter, and the sample z ∈ Rw×h

is a multi-scale sample represented as x = {x1, . . . , xm} ∈ Rm, with m = (wh)2. The dimensionality m is

typically in the range 106 ∼ 108. We then use a random Gaussian matrix R ∈ Rn×m(n << m) satisfying

the RIP to project a high-dimensional multi-scale sample z into a low-dimensional sample:

v = Rx. (2)

According to the theory of compressive sensing, we can obtain x with minimum error and a particular

high probability through the low-dimensional vector v = (v1, . . . , vn) ∈ Rn, which is generated from the

projection and dimensional reduction of the high-dimensional multi-scale sample z.

For each high-dimensional sample z, we assume that all the elements in low-dimensional representation

v are independently distributed and that the prior probability P (y = 1) = P (y = 0). We then model v

with a naive Bayes classifier,

H(v) = log

(∏n

i=1 p(vi|y = 1)p(y = 1)
∏n

i=1 p(vi|y = 0)p(y = 0)

)

=

n
∑

i=1

log

(

p(vi|y = 1)

p(vi|y = 0)

)

, (3)

p(vi|y = 1) ∼ N(µ1
i , σ

1
i ), p(vi|y = 0) ∼ N(µ0

i , σ
0
i ), (4)

where (µ1
i , σ

1
i ) and (µ0

i , σ
0
i ) are the mean and variance of the positive and negative samples, respectively.

For the positive samples (µ1
i , σ

1
i ) can be updated according to

µ1
i ← λµ1

i + (1− λ)µ1,

σ1
i ←

√

λ(σ1
i )

2
+ (1− λ)(σ1)

2
+ λ(1 − λ)(µ1

i − µ1)
2
,

(5)

where, λ is the learning rate adopted to control the degree of freshness of the mean and variance of the

samples. For the negative samples (µ0
i , σ

0
i ) can be updated in the same way.

3 Updating of the target model based on mixed classifier decision

In this section, we present the details of our compressive sensing tracking algorithm via mixed classifier

decision. The tracking task is essentially completed and formulated as a dynamic sample state estimation

problem and usually involves updating of the model. The decision model adopted in our algorithm is

shown in Figure 2. When the maximum response value of the classifier is less than zero, we preserve

the original classifier and initialize a new classifier in the current frame. In this way, two classifiers are

obtained. We can then selectively use these two classifiers for object tracking. However, the two classifiers

need to be updated in different ways in order to track the target object correctly.

3.1 Mixed classifier decision model

Adaptive updating is used in a variety of tracking-by-detection algorithms to update models [27–32].

This is the case in particular in compressive sensing tracking, which uses (5) for updating. This target

updating method combines the fixed parameter reference templates extracted from the first frame with

subsequent tracked targets to update the target models. Its advantage is that it can dynamically reflect

changes in the appearance of the targets. However, it uses a single classifier and updates the classifier

with a constant learning rate, and if the target is subject to occlusion or variations in illumination, then

the performance of its classifier will degrade, and finally the selected region will drift and the target will

be lost.

The CT algorithm is basically a tracking method based on a discriminative model. It learns a binary

classifier and applies it to classification of samples. The response value of this binary classifier H(v) is

defined as

σ(H(v)) =
1

1 + e−H(v)
. (6)
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Figure 2 (Color online) Tracking model based on mixed classifier decision.

After the classifier has differentiated all samples, we draw the one with the highest score, namely,

max(σ(H(v))) as the result of current tracking. According to (6), when σ(H(v)) > 0.5, the corresponding

classifier H(v) > 0, and the corresponding sample is labeled as positive. Conversely, when σ(H(v)) < 0.5,

H(v) < 0, and the sample is labeled as negative. From the perspective of the Bayes classifier, if the

maximum response value of the classifier is less than zero, i.e., max(H(v)) < 0, then the classifier will

label all the test samples as negative. Under this condition, it is not appropriate to take the negative

samples with maximum likelihood as the target location. Furthermore, if we label positive and negative

sample regions around the determined object location and then train the classifier, the performance of

the classifier will degrade. The shortcomings of the CT algorithm are that it uses a single classifier for

target location and a constant learning rate to update this classifier. With the aim of overcoming these

two defects, this paper designs a new tracking algorithm based on mixed classifier decision. The main

steps of this algorithm are shown in Figure 2.

To handle the problems of inaccurate location of the target and performance degradation of the classifier

when the maximum response value of the original classifier is less than zero, we define two classifiers,
{

Hocp = {µ1
o, σ

1
o , µ

0
o, σ

0
o},

Hncp = {µ1
p, σ

1
p, µ

0
p, σ

0
p}.

(7)

As shown in Figure 2, in the process of tracking, the original classifier Hocp locates the position of

the target from frame(t−1) to frame(t). If the maximum response value of the original classifier is less

than zero and the classifier classifies all the samples as negative, then the target object may be influenced

by factors such as serious occlusion and changes in appearance. Under this condition, the classifier

Hocp cannot correctly estimate the location of the real target object. However, this does not mean that

Hocp will work less than ideally in estimating target location in the subsequent frames. Therefore, to

track the occluded target, we preserve the state parameters {µ1
o, σ

1
o , µ

0
o, σ

0
o} of Hocp and initialize a new

classifierHncp with the positive samples {µ1
p, σ

1
p} and negative samples {µ0

p, σ
0
p} that result from sampling

in frame(t−1), we thus have two classifiers Hocp and Hncp. The first is related to the target state in a

succession of frames from frame(1) to frame(t−1), while the second is related to the target state influenced

by several interference factors in frame(t−1).

After obtaining two classifiers in frame(t−1), we then need to locate the target in frame(t) with a

classifier. We define the position of the target in frame(t) as

L∗
t = max(H(v)). (8)
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Table 1 Updating strategy for classifiers

No. State of Hocp Learning rate of Hncp Learning rate of Hncp Learning rate of Hocp Condition in frame(t)

1 Update Initialization and decision λ λocc max(Hocp(v)) < 0

&& flag = 0

2 Update Update and decision λ λocc max(Hocp(v)) < 0

&& flag = 1

3 Update and – – λ max(Hocp(v)) > 0

decision && flag = 0

4 Update and Set 0 – λ max(Hocp(v)) > 0

decision && Cflag = 1

As classifier Hocp fails to accurately locate the target in frame(t), we use the newly trained classifier

Hncp to estimate the target state in the current frame and define the location of the target in frame(t)

as L∗
t = max(Hncp(v)). It should be noted that what classifier Hncp locates is a phony target influenced

by some interference information. In the following tracking process, we first apply the original classifier

Hocp to test each frame and then use different classifiers to locate the target in line with the different

maximum response values. Thus the decision model of the mixed classifiers can be defined as follows:

{

L∗
t = max(Hncp(v)), max(Hocp(v)) < 0,

L∗
t = max(Hocp(v)), max(Hocp(v)) > 0.

(9)

3.2 Updating strategy for classifiers

In practical applications, the appearance of the targets often changes under the influences of a number

of factors, such as occlusion and variations in illumination. The updating strategy for the classifier is

therefore crucial for the performance of the tracking algorithm. The CT algorithm updates the classifier

parameter with a certain fixed value. This indicates that no matter whether or not the target is within

the objective frame, the tracker will always take the content within the objective frame as the true target

and update the classifier with a constant learning rate. The learning rate λ is a parameter that measures

the freshness of the classifier. The higher the value of λ, the less is the influence of sample training on

the classifier, and vice versa. If the maximum response value of the original classifier is less than zero, i.e.

max(Hocp(v)) < 0, then the target to be tracked is influenced by some disruptive factors. In this case, to

reduce the influence exerted by the updated classifier, we set a new learning rate λocc for the updating

of the classifier Hocp and we update the learning rate in the following incremental and iterative fashion:

λocc = λocc + (1 − λocc)
n

n+ 1
, (10)

where n is number of the frames in which the maximum response value of the original classifier is less

than zero and the classifier Hncp is used to estimate the target state. This indicates that the learning

rate λocc will continuously increase if the target object has been occluded for an extended period, and

we thereby prevent the features of the true target tracked by the classifier from being replaced by those

of the covered object.

To prevent that tracker from losing its target object or the classifier from being updated with incorrect

sample information when its maximum response value is less than zero, our algorithm uses two classifiers,

Hocp and Hncp to track the target object; the updating of these two classifiers is of great importance

to the performance of the algorithm. In the process of tracking from frame(t−1) to frame(t), different

learning rates and classifier states are set in accordance with the maximum response values of the original

classifier and the flags in Table 1, where max(Hocp(v)) is the maximum response value of the classifier

for the test sample in frame(t) and a flag is used to determine the state to which Hncp should be set. The

initial value of Hncp is zero.
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Our algorithm, to be used in combination with Table 1, is shown here as Algorithm 1. We first

determine, in frame(t), whether condition 1 or condition 3 is satisfied. If the latter is the case, then the

tracking process is the same as with the CT algorithm. If condition 1 is satisfied, then the maximum

response value of the classifierHocp is less than zero, and the corresponding flag is zero. This indicates that

the classifier Hocp obtained in the previous (t−1) frames through adaptive updates cannot successfully

locate the real target in frame(t). Thus, steps 3–6 need to be carried out to initialize the classifier Hncp,

locate the target in frame(t), set the flag to one and collect samples in frame(t) to update both classifiers

Hncp and Hocp. It should be noted that in condition 1, the learning rate of Hncp is constant, while that

of Hocp is λocc, which is a dynamic value. We can then continue to handle the next frame. Since the

flag is equal to one, only conditions 2 and 4 may occur; their corresponding procedures are respectively

from steps 12–14 and steps 16–18, as shown in Algorithm 1. If condition 2 is satisfied, then to reduce

the performance degradation of the classifier Hocp, we update the learning rate λocc in line with (10). If

condition 4 is satisfied, the maximum response value of Hocp is first employed to locate the target. We

then update classifier Hncp to zero, retain the learning rate λocc and set the flag to zero. After all this

has been done, we jump back to step 2 and begin to deal with the next frame and to assess conditions 1

and 3.

Algorithm 1 Mixed classifier decision tracking

1: Input: t-th video frame

2: if condition 1 is satisfied then

3: Initial classifier Hocp with both the positive and the negative samples collected in frame(t−1),

locate the target in frame(t) as L∗
t = max(Hncp(v)), initialize λocc;

4: Collect both the positive and the negative samples in frame(t), update classifier Hncp with λ in

accordance with (5);

5: Update λocc according to (10), then update classifier Hocp with the updated λocc in line with (5);

6: Set flag to 1, then go to step 11 to handle the next frame, t=t+1;

7: else if condition 3 is satisfied then

8: Locate the target in frame(t) as L∗
t = max(Hocp(v)), update classifier Hocp with λ according to

(5);

9: Jump back to step 2 to handle the next frame, t=t+1;

10: end if

11: if condition 2 is satisfied then

12: Locate the target in frame(t) as L∗
t = max(Hncp(v)), update classifier Hncp with λ based on (5);

13: Update λocc on the basis of (10), then update classifier Hocp with the updated λocc on the basis

of (5);

14: Jump back to step 11, and deal with the next frame, t=t+1;

15: else if condition 4 is satisfied then

16: Locate the target in frame(t) as L∗
t = max(Hocp(v)), update classifier Hocp with λ in accordance

with (5);

17: Set the state of classifier Hocp to zero, retain λocc, set flag to zero;

18: Jump back to step 2 to deal with the next frame, t=t+1;

19: end if

20: Output: Tracking location L∗
t and classifier parameters

3.3 Discussion

It is undeniable that the CT algorithm is a simple and efficient real-time tracking method. However,

several aspects still need improvement. It may not work well when the tracking targets are influenced by

occlusion, variations in illumination and background clutter, etc. In this section, we discuss the merits

of the proposed algorithm in comparison with the CT algorithm.
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Figure 3 (Color online) Comparison between the CT algorithm and the proposed method. (a) Classifier state of the CT

algotithm; (b) video sequence subject to serious occlusion; (c) two classifiers state of the proposed method.

Taking serious occlusion as an example, Figure 3 demonstrates that when dealing with the same

video sequence subject to serious occlusion, the states of the classifiers in the CT algorithm and in our

proposed method are quite different. As shown in Figure 3(b), if occlusion is serious, the classifiers in

both algorithms will label all the test samples as negative samples, i.e., outlier objects, with the maximum

response values of the current classifiers being less than zero. Under this condition, however, the CT

algorithm will still take the outlier object as the current tracking result. This is because it keeps only

a single classifier as its tracker, and therefore there will be a rather large error between the real target
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location and the position of the target located by the tracker. What makes this situation even worse is

that the location of the target offered by the tracker may be totally wrong under some circumstances.

Moreover, the classifier of the CT algorithm in this situation still needs to be updated in the subsequent

frames. Therefore, much authentic information about both real positive and real negative samples is

gradually replaced by the wrong information coming from the inaccurate target location. Thus, the

performance of the classifier in the CT algorithm will continue to deteriorate. In Figure 3(a), H on the

left represents the state of the classifier trained in the previous frame(t−1), while H on the right shows

the state of the classifier that has experienced a period of training in the frames that have suffered serious

occlusion. It is clear that the classifier on the right has already taken much false information generated

from the wrong positive and negative samples in the frames after frame(t), and the target under tracking

may ultimately drift away and even be lost.

To deal with the shortcomings of the CT algorithm, we propose a method of efficient compressive

sensing tracking via mixed classifier Decision. Our algorithm uses the mixed classifier model introduced

in Subsection 3.1 and applies the updating strategy shown in Table 1. If the maximum response value of

the classifier is less than zero, our method employs the classifier Hocp to preserve the previously learned

sample information and, at the same time, establishes a new classifier Hncp based on the target located

by Hocp in the previous frame. Once the target object has been occluded for an extended period, the

classifier of the CT algorithm will learn all the features of the covered object. When this happens, the

original target will be lost. To avoid this shortcoming of the CT algorithm, as shown in the green frame in

Figure 3(c), our classifier Hncp takes the seriously occluded target as a positive sample and then functions

as a new tracker to continuously track the target that has undergone occlusion.

Since the CT algorithm updates the classifier with a constant learning rate and the updated classifier

tends to learn the current samples, the information about the previously learned samples is easily lost.

To remedy this defect of the CT algorithm and to reduce the loss of features of the previously learned

samples, we use the dynamic incremental learning rate defined in (10) to update the classifier Hocp when

the classifier Hncp is used to track the target. As shown by the states of Hocp on the right-hand side

of Figure 3(c), only a small number of samples are replaced by samples that have experienced serious

occlusion. As a result, the classifiers in our method are able not only to learn new samples in order to

adapt to changes in appearance, but also to preserve the previously learned sample information.

4 Results and analysis of experiments

In this section, we compare our mixed classifier decision CT (MDCT) method with five state-of-the-

art tracking algorithms on eight standard video sequences. The five tracking algorithms are (CT) [26],

the circulant structure tracker (CSK) [33], the online multiple-instance learning tracker (MIL) [17], the

online AdaBoot tracker (OAB) [34], and the tracking-learning-detection tracker (TLD) [35]. The eight

video sequences cover a number of challenging problems caused by serious occlusion, pose adjustment

and variations in illumination, etc. Our experiments are carried out in a Windows 7 environment, using

Matlab R2013a, and the computer configuration is an Intel Core i5 with a 2.8 GHz CPU and 8 GB of

RAM.

4.1 Experimental setup

We set the search radius that is used to detect the object location as γ = 20, the search radius for

drawing positive samples of the update classifiers as ∂ = 4, and the inner and outer search radii for

drawing negative samples as ξ = 8 and β = 30, respectively. As all trackers are sensitive to the size and

scale of the initial frame, for fair comparison, we set the value of the first frame in the ground truth files

provided by reference [36] as the standard for all the locations and sizes of the initial object frames in

our video sequences. We compare the experimental results from the proposed algorithm with those from

the other algorithms on corresponding video sequences.
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Figure 4 (Color online) Precision plots and success rate for all video sequences.

4.2 Experimental results

The center location error is a metric that is widely used to evaluate the performance of trackers and

is defined as the average Euclidean distance between the center location of the tracked targets and the

manually labeled ground truth. However, when the tracker loses the target, the output location can be

random and therefore, the center location error may fail to measure tracking performance correctly. The

bounding box overlap is a measurement for estimating the degree of overlap of the tracked bounding box rt

and the ground truth bounding box ra. The overlap score is defined as S = rt∩ra
rt∪ra

. In accordance with the

evaluation criterion given in reference [36], we measure the overall tracking performance of the tracking

algorithms using four important norms: average center location error, average overlap score, precision

plots, and success plots. The precision plots indicate the percentage of frames whose estimated location

is within the given threshold distance of the ground truth, and the success plots are the corresponding

percentage of the frames whose overlaps S are larger than the given threshold from the total frames.

The experimental results about the precision plots and success rate of the six algorithms on the eight

benchmark video sequences mentioned in this paper are shown in Figure 4. We also display the average

center location errors and the average overlap scores of all the trackers on each video sequence. As shown

in Tables 2 and 3, the bold fonts indicate the best performance, while the bold print fonts indicate the

second-best performance.

According to the results, our proposed MDCT exhibits excellent performance for both the metric

overlap and the center location error. As shown in Figure 4, when the reference threshold is set as 20

pixels from the center location error, the precision plots within the given threshold of the video sequences

for Basketball, Boy, Subway, David3, Faceocc2 and Shaking are 92.83%, 95.51%, 98.29%, 98.81%, 90.76%
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Table 2 Average center location errors (in pixel)

Sequence MDCT CT CSK MIL OAB TLD

Basketball 12 89 7 92 205 304

Boy 8 9 20 13 3 4

Subway 10 11 164 8 113 205

David3 8 89 56 30 83 245

Dudek 16 27 14 18 31 21

Faceocc1 18 26 12 30 25 27

Faceocc2 10 19 6 14 20 12

Shaking 12 80 17 24 192 227

Average value 12 44 37 29 84 131

Table 3 Average bounding box overlap score (%) and FPS

Sequence MDCT CT CSK MIL OAB TLD

Basketball 63.26 25.63 70.73 21.96 2.86 2.23

Boy 62.3 59.01 65.39 49.1 79.1 66.16

Subway 59.53 57.45 19.28 64.81 16.35 18.33

David3 71.79 30.64 49.16 53.68 32.55 9.67

Dudek 71.43 64.7 71.76 70.73 65.67 64.57

Faceocc1 73.52 63.68 79.46 59.58 66 58.47

Faceocc2 70.47 60.77 77.97 67.21 59.75 61.65

Shaking 62.28 10.12 56.76 42.68 1.33 12.76

Average value 66.82 46.5 61.31 53.72 40.45 36.73

Average FPS 36.196 45.248 192.971 19.988 3.98 19.381

and 91.52%, respectively. The average precision plot of MDCT on all these sequences is 87.6%, which is

the highest among those of all the trackers whose threshold from the location error is within 20 pixels.

Moreover, the success rate of MDCT reaches 88.4% when the overlap threshold S=0.5, surpassing the

values of all the other trackers. The average overlap scores for each algorithm on the eight sequences

are shown in Table 3, the last column of which shows the average frame per second (FPS) for each

algorithm on the eight sequences. The average overlap scores achieved by MDCT are greater than 70%

for most of the video sequences, and for all sequences, the scores are much greater than or close to 60%,

as shown in Table 3. When dealing with interference factors such as occlusion, variations in illumination

and background clutter, the CSK algorithm ranks first on FPS for the eight video sequences, reaching

192.971 FPS. The CT algorithm and our MDCT achieve the second and the third places, respectively,

on FPS. Since MDCT requires a heavier computing load for the judging, establishing and updating the

states of the classifiers, it will be slightly weaker than the CT algorithm with regard to FPS. Nevertheless,

it still shows good real-time performance. Although both CT and the CSK algorithm perform better

than our tracker on FPS, we can see from Tables 2 and 3 that our algorithm performs better than most

of the other trackers, ranking either first or second for average center location error and average overlap

score. Moreover, the average values of these two metrics on all the video sequences rank first. What

deserves special attention is that the locations of the target boxes provided by the tracker in the TLD

algorithm have gone out side the frames in some sequences. In this case, to ensure accuracy, we adopt

the average value of the maximum location errors of the other algorithms as the original location error of

the TLD algorithm and set the overlap score to 0. Figures 5 and 6 present screenshots from some video

sequences for all the trackers.

4.3 Performance analysis on occlusion

To further illustrate the performance of our proposed method, we analyze its capacity to deal with

occlusion. The tracking results for the video sequences Subway, David3, Faceocc1 and Faceocc2 are

shown in Figure 5(a), (b), (c) and (d), respectively. The total number of these sequences is 2132. The
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(a)

(b)

(c)

(d)

MDCT CT CSK MIL OAB TID

Figure 5 (Color online) Screenshots of some sampled tracking results. (a) Subway; (b) David3; (c) Faceocc1; (d) Faceocc2.

targets in Subway in #42 and #103, David3 in #28, #88 and #185, Faceocc1 in #720, #785 and #890,

and Faceocc2 in #495, #707 and #709 all suffer from partial or serious occlusion. We can see that the

performance of MDCT is clearly improved compared with that of CT. Taking Faceocc2 as an example,

the face of the man is occluded by a book in the sequence from #686 to #736. Among these frames, more

than 30 are subject to serious occlusion. As with CT, our method uses a single classifier during tracking.

So, when the maximum response value of its classifier is less than zero, the algorithm will continue to

take the sample with the maximum response value as the location of the target. Under this condition,

the location error with the green target box will occur in frame #709 in Figure 5(d). Moreover, the CT

algorithm will fail to take into account whether the object is occluded. Therefore, when the target in

the Faceocc2 sequence is subject to serious occlusion for an extended period, the features of the covered

object will gradually replace those of the original samples learned by the classifier and wrong locations

will still occur even if the real target appears again in subsequent frames. The situation is shown in the

green object box in #757.

In our algorithm, we use a mixed classifier decision model and a dynamic learning rate to handle the

occlusion that occurs in the Faceocc2 sequence. When the maximum response value of our classifier is

less than zero, we first preserve the previously learned sample information with the classifier Hocp and

then use a new classifier Hncp to model the man’s face that is occluded by a book. Thus, from the

discussion above, we can see that when the maximum response value of the classifier is less than zero, the

MDCT can still track the occluded object, whereas the CT algorithm uses the sample with the maximum

response value, which is less than zero, as the tracking result. From a comparison between the tracking

results from MDCT (the red target box in Figure 5(d)) and CT (the green box in the same frame), we

can see that our method is more accurate than the CT algorithm. While the classifier Hncp is tracking

the target, we update the classifier Hocp with a dynamic incremental learning rate. Thus, much of the
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(a)

(b)

(c)

(d)

MDCT CT CSK MIL OAB TLD

Figure 6 (Color online) Screenshots of some sampled tracking results. (a) Basketball; (b) Boy; (c) Dudek; (d) Shaking.

sample information that was learned before serious occlusion occurred is preserved by Hocp, and when

the true target reappears, we can again locate it correctly. This situation is illustrated in the red box

in Figure 5(d). In this case, both the uses of mixed classifiers and the dynamic learning rate are very

important.

In addition, for a short period of serious occlusion, as shown in the Subway sequence from #40 to

#43, since the CT algorithm employs a single classifier to track the target, location error occurs, as can

be seen in Figure 5(a). In contrast, our method applies a mixed classifier decision model and uses the

classifier Hocp to track the occluded target. Its tracking result is therefore more accurate than that of the

CT algorithm. As the occlusion continues for only a short period, only a small number of the features

of the target previously learned by the classifier of the CT algorithm are replaced by the features of the

covered object. Therefore, the CT algorithm may still find the target in the following frames to some

degree. From the analysis above, the use of a mixed classifier decision model is more important than the

dynamic learning rate in these sequences. To sum up, we can see from the tracking results that when

compared with the CT algorithm, which uses a single classifier and updates the classifier parameters with

a constant learning rate, the performance of our method in dealing with occlusion is improved to some

extent.

4.4 Performance analysis on some interference factors

Since variations in illumination, motion blur and background clutter are very common in practice, we

analyze the performance of MDCT on these factors. Interference factors make it difficult to track the

targets in the video sequences shown in Figure 6. The targets in Basketball in #700 as well as in Shaking

in #60 and #303 are subject to variations in illumination, and the target in the Basketball sequence in

#284 and #471 moves into regions with similar texture. We can see from Tables 2 and 3 that the average

center location errors and the average overlap score of MDCT in the Basketball sequence are 12 and
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63.26%, and in the Shaking sequence they are 12 and 62.28%. This illustrates that when dealing with

variations in illumination and background clutter, the proposed tracker is the only one that can match

CSK, whose average center location error and average overlap score in the Basketball sequence are 7 and

70.73% and those in the Shaking sequence are 7 and 56.64%. Meanwhile, the other algorithms such as

CT and MIL function perform less well. As shown in the Boy sequence in Figure 6(b) and the Dudek

sequence in Figure 6(c), the targets undergo motion blur or camera shake. In #445 of the Boy sequence

and #221 of the Dudek sequence, the tracking results of the CT algorithm are illustrated in the green

target boxes. They show that the real targets drift away owing to motion blur and camera shake, while

the tracking results demonstrated in the red target boxes prove that MDCT can still correctly locate the

targets despite these challenging factors. Although MDCT fails to achieve the best performance on these

two sequences, it is still better than the CT algorithm. The reason is that MDCT not only uses a mixed

classifier decision strategy but also updates its classifiers with a dynamic learning rate.

5 Conclusion

We proposed an efficient and robust tracking algorithm using a mixed classifier decision strategy. The

establishment of the target model and the updating strategy of the classifier are of great importance for

the performance of a tracker. In our algorithm, the two classifiers are designed to establish different target

models at different times and to use different learning rates to update the models. Thus, the amount of

error in the information used to update the target appearance model can be effectively reduced and the

robustness of the compressive sensing tracking algorithm in some complicated scenarios can be improved.

From a comparison with five state-of-the-art algorithms on some challenging benchmark video sequences,

we can conclude that the proposed algorithm performs much better in handling factors such as serious

occlusion, variations in illumination and background clutter. In future work, we will focus on several

other challenging problems in a tracking-by-detection framework, such as scale changes and relocation of

the target after it has been lost.
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