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Abstract The identification of essential proteins is not only important for understanding organism structure

on the molecular level, but also beneficial to drug-target detection and genetic disease prevention. Traditional

methods often employ various centrality indices of static protein-protein interaction (PPI) networks and/or gene

expression profiles to predict essential proteins. However, the prediction accuracy of most methods still has room

to be further improved. In this study, we propose a strategy to increase the prediction accuracy of essential

protein identification in three ways. Firstly, RNA-Seq datasets are employed to construct integrated dynamic

PPI networks. Using a RNA-Seq dataset is expected to give more accurate predictions than using microarray

gene expression profiles. Secondly, a novel integrated dynamic PPI network is constructed by considering both

the co-expression pattern and the co-expression level of the RNA-Seq data. Thirdly, a novel two-step strategy

is proposed to identify essential proteins from two known centrality indices. Numerical experiments have shown

that the proposed strategy can increase the prediction accuracy dramatically, which can be generalized to many

existing methods and centrality indices.
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1 Introduction

Essential proteins are indispensable for organisms. Recent research has revealed that essential proteins are

related to many significant areas, such as disease prediction, drug design, biological research on cellular

levels, and activity research on lives.

There are two kinds of traditional approaches to the detection of essential proteins. One kind is based

on experimental procedures, including knockout of a single gene [1] and RNA interference [2], while the

other kind is based on the topology of protein-protein interaction (PPI) networks, including using both

static PPI networks and dynamic PPI networks [3]. However, the former experimental procedures are
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often difficult and the resulting observations are accompanied with many noise data [4]. Hence, the latter

approaches that prioritize associations between vertex centralities and essentiality have been proposed

in many studies [5–7]. Most of those approaches focus on the topology of static networks and protein

complexes, where proteins with more interactions tend to be regarded as essential proteins [8–11].

Designing efficient vertex centrality contributes one aspect to identifying essential proteins [12].

Centrality-lethality rules consist of three well-known measures, namely degree centrality (DC), close-

ness centrality (CC), and betweenness centrality (BC) [13, 14]. The existing studies have declared that

high-degree vertices in a PPI network tend to be responsible for essential proteins [15, 16]. Several mea-

sures based on these three basic centralities have been proposed, such as eigenvector centrality (EC) [17],

local average connectivity (LAC) [18], information centrality (IC) [13], sub-graph centrality (SC) [19],

etc. They can all be used to identify essential proteins from various static PPI networks.

The construction of a dynamic PPI network contributes another aspect to identifying essential pro-

teins [20]. A classical dynamic PPI network construction method uses time-course microarray gene

expression profiles to generate a set of time-course temporary sub-networks [21]. Each sub-network

consists of a set of temporary active vertices whose gene expression levels are larger than a threshold

[22,23]. Some forms of novel centrality, such as DLAC [24], have also been proposed to identify essential

proteins from such a time-course dynamic network. However, we argue that the expression of essential

proteins should not tend to vary with time very often. Hence, the method of selecting only active proteins

could be further improved by considering an integrated dynamic PPI network.

Moreover, for the essential protein identification methods, although those using dynamic PPI networks

can capture the characteristics of gene expression profiles with temporal information, many existing

studies do not take full advantage of dynamic information [25], such as the degree of individual vertices and

their connection to neighbors [24]. They often simply add the averages of topology indices of individual

temporary sub-networks, instead of using the change information based on the temporal processes and

the links between them.

Last but not least, with the rapid development of high-throughput sequencing technology, time-course

RNA-Seq datasets have provided us with a new way to study gene expression profiles [26] and to construct

more accurate dynamic PPI networks. Hence, the prediction accuracy of the associated identification of

essential proteins can also benefit from using this new kind of data source.

In this study, we propose a strategy to increase the accuracy of the prediction of essential proteins in

the following three aspects. Firstly, we use RNA-Seq data to construct dynamic PPI networks. Compared

with general gene expression datasets, using RNA-Seq data to induce gene expression profiles has three

advantages, which are (1) a larger dynamic range, (2) lower background noise, and (3) a better ability

to detect and quantify unknown transcripts and subtypes [26]. Secondly, we propose a new method

to construct an integrated dynamic PPI network by using gene co-expression patterns (CPs) and gene

co-expression levels. Classic time-course dynamic PPI networks consist of many temporal sub-networks,

where active proteins are generally selected from static PPI networks according to the gene expression

levels. In this study, we argue that essential proteins should not exhibit significantly different expression

levels across the whole time period, but rather tend to have CPs and co-expression levels. Dynamic

information about individual protein pairs is then employed to construct an integrated dynamic PPI

network in two stages. In the first stage, protein pairs with similar CPs are employed to select protein

interactions, since they tend to have strong functional relationships [27]. In the second stage, the Pearson

correlation coefficient (PCC) values of individual protein pairs are used to filter protein interactions

further by setting a global cut-off threshold. By doing this, we can take advantage of both biological

sense and mathematical models of gene expressions. The CP only makes sure two genes have a similar

expression pattern, and it does not consider the amplitude information of the gene expressions. The

PCC value, on the other hand, mathematically only indicates that two genes are co-expressed, and their

expression patterns are not necessarily the same. Thirdly, based on the obtained PPI network, we propose

a two-step centrality improvement strategy to increase the accuracy of prediction of essential proteins.

Numerical experiments have shown that the proposed strategy can improve the prediction accuracy for

well-known DC and LAC centralities, which can be generalized to many existing methods.
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2 Methods

In this section, we introduce our method from four aspects: (1) the preprocessing of RNA-Seq data, (2)

the construction of the integrated dynamic PPI networks, (3) the motivation for the two-step centrality

improvement strategy, and (4) the evaluation methods for verifying the essentiality of the predicted

proteins.

2.1 Preprocessing of RNA-Seq data

The RNA-Seq dataset used in this study is derived from Saccharomyces cerevisiae, which includes four

time points, namely 0, 30, 60 and 180 min. Each of these includes around 2 million reads where the

length of each read is around 50 bp.

Data preprocessing consists of three steps. First of all, Bowtie2 [28] is used as the alignment engine. It

exploits an extremely economical data structure called the FM index [29] to store the reference genome

sequences. The FM index makes the searching of sequences very fast. After that, Tophat [30], a fast splice

junction mapper, is applied to align RNA-Seq reads to mammalian-sized genomes using the ultra-high-

throughput short-read aligner Bowtie2. It can also be used to analyze the mapping results for identifying

splice junctions between exons. Finally, the mapping results are used by Cufflinks [31] against the whole

genome for assembling the reads into transcriptions. The output files contain information that illustrates

the time-course expression profiles of individual genes. In this study, we use the gene expression profiles

obtained from these steps to construct dynamic PPI networks.

2.2 Construction of the integrated dynamic PPI network

Tang et al. [22] propose a classical method to construct a dynamic PPI network using time-course mi-

croarray datasets and static PPI networks. They focus on searching with a suitable threshold to select

the temporary active genes. Once the threshold is set, a gene with an expression level larger than the

threshold is regarded as an active gene and it is then used to construct a temporal network of that specific

time point. We argue that the essential proteins may not be active at all times. They may be considered

to have more interactions than others. Thus, in this paper, we pay more attention to the gene CPs and

gene co-expression levels between individual protein pairs [27]. Hence, both the gene CP and the PCC

values are employed to construct the integrated dynamic PPI networks as follows.

2.2.1 The CP model

The protein interactions of static PPI networks are first filtered by using a CP model. Let g1 and g2 be

two genes, and g1 = (g1,1, g1,2, . . . , g1,k), g2 = (g2,1, g2,2, . . . , g2,k) be the gene expression profiles induced

from the RNA-Seq dataset with k time points. The gene CP of g1 and g2, is defined as follows:

CP(g1, g2) =

k−1
∑

i−1

|fi(g1)− fi(g2)| =

k−1
∑

i−1

|sgn(g1,i+1 − g1,i)− sgn(g2,i+1 − g2,i)| , (1)

where (g(1,i+1) − g(1,i)) is the change of gene expression level of g1 from time i to time i+ 1, and sgn(∗)

is the sign function. Let fi(gn) denote the gene expression pattern of gn changing from time i to time

i + 1, where fi(gn) = 1 means the expression level rises during this time interval, fi(gn) = 0 means

the expression level is unchanged during this time interval, and fi(gn) = −1 means the expression level

declines during this time interval. Mathematically, these three patterns are described as follows:

fi(gn) = sgn(gn,i+1 − gn,i) =















1, gn,i+1 > gn,i,

0, gn,i+1 = gn,i,

−1, gn,i+1 < gn,i.

(2)

If gene g1 and g2 have the same expression pattern, then we have fi(X) = fi(Y ) for every i = 1, 0,−1,

so that CP(g1, g2) = 0.
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2.2.2 The PCC model

The PCC value of a gene pair g1 and g2 is given as follows:

PCC(g1, g2) =
1

s− 1

s
∑

i=1

cov(g1, g2)

δg1δg2
, (3)

where the value of PCC(g1, g2) ranges from −1 to 1. If PCC(g1, g2) is a positive value, there is a positive

correlation between gene g1 and g2. By setting a global threshold, one can select protein interactions

from PPI networks if the associated PCC value of two genes is larger than the threshold.

2.3 Construction of integrated dynamic PPI networks

A step-by-step description of the method to construct an integrated dynamic PPI network is given as

follows.

1. The gene expression data are prepared first from the RNA-Seq dataset by using Bowtie2, Tophat,

and Cufflinks.

2. According to the above results, all gene names are transformed to protein names using the ID

mapping function in UniProt.

3. The gene CP model is employed to filter out the less important interactions.

4. The PCC model is employed to filter out interactions further by considering the amplitude effect of

gene expressions.

5. A static PPI network is used, where only interactions that satisfy the conditions of steps 3 and 4

are kept in the final network.

2.4 Degree connectivity

According to centrality-lethality, essential proteins are considered to have more interactions than unessen-

tial proteins. Degree centrality (DC) is the most straightforward topology index of individual vertices.

DC represents the direct influence of a vertex. It is defined as

DC(i) =
ki

n− 1
, (4)

where ki is the degree of protein i and n is the number of all nodes in this network.

LAC [15] is another important centrality index used to identify essential proteins, which is defined as

LAC(u) =

∑

wǫNu

degCu(w)

|Nu|
, (5)

where u is a given vertex, Nu is the set of neighbors of u, Cu is the induced sub-graph of Nu, and

degCu(w) is the degree of any given vertex w in Cu.

In paper [32], we can see that although DC [13] is the most basic vertex centrality in networks, it

performs well compared to BC, CC [13, 14], SC [19], EC [17] and IC [13] when predicting essential

proteins. Based on DC, we propose a new measure called DC2 in the following section. LAC is a very

good topology measure based on DC, so we also conduct some experiments based on LAC.

In this study, we propose a two-step strategy to induce a new measure M2 from any given known

measure M of a vertex u, by simply adding the measure of the vertex u together with the measure of

its neighbors. By doing this, the new measure can contain topological information about a larger area,

which indicates the connectivity information of the target vertex u and its neighbors. Take the LAC

measure, for example. The index itself describes the local connectivity of only direct neighbors, while the

new LAC2 integrates the local connectivity information of vertices within the second order of neighbors.

LAC2 is defined as

LAC2(u) = LAC(u) +
∑

wǫNu

LACCu(w), (6)
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where u is a given vertex, Nu is the set of neighbors of u, Cu is the induced sub-graph of Nu, and

LACCu(w) is the LAC of any given vertex w in Cu. Similarly, we can get DC2 from DC based on the

same principle.

Finally, we use DC2 and LAC2 to describe the essentiality of a protein. A higher value of LAC2

indicates a higher probability of being an essential protein.

Theoretically, one can also induce a similar LAC3 from LAC2 by using the same procedure. However,

as suggested in [33], a higher order of an iterative step is not always good. Besides, due to the small-world

property of the majority of biological networks, an index related to third-order neighbors may involve too

many vertices, which may not be efficient for distinguishing the essentiality of individual vertices. Hence,

we also argue that the second order of the neighborhood is enough for a topological index.

2.5 Evaluation method

The proposed strategy is evaluated by using the F-measure, fold enrichment, and the text mining method,

respectively.

2.5.1 F-measure

The F-measure is regularly employed to measure the performance of an algorithm. Suppose X is a set

of predicted essential proteins and P is the set of the known essential proteins. The precision and recall

are defined as follows:

precision = Pr =
|X

⋂

P |

|X |
, (7)

recall = Rc =
|X

⋂

P |

|P |
, (8)

where |∗| is the cardinality of a set.

The F-measure combines Pr and Rc, and it is defined as

F-measure =
2 · Pr ·Rc

Pr+Rc
, (9)

which is the harmonic mean of precision and recall.

2.5.2 Fold enrichment

Fold enrichment [34, 35] is employed to describe how those known essential proteins are enriched in the

set of predicted essential proteins. Suppose X is the set of predicted essential proteins and Ex is the

number of essential proteins in X . The percentage of true positives is TPR = Ex/|X |. Let V be the

set of all proteins in the static PPI network and P be the set of all known essential proteins in V . The

percentage of all essential proteins in V is given as EPR = |P |/|V |. Hence, the fold enrichment of the

predicted essential proteins is defined as

fold enrichment =
TPR

EPR
. (10)

2.5.3 The text mining method

The list of known essential proteins is by no means complete. Hence, we could also employ text mining

technology to evaluate the predicted essential proteins by using our method. A text mining method is

proposed as follows. First, we download all the articles that contain both the key words ‘essential’ and

‘protein’ (or ‘gene’) in the content. Then, we traverse all these articles to see whether they contain the

predicted protein name. Last, we manually evaluate the predicted proteins for their essentiality in these

articles. In this way, we can certify the essentiality of a protein.
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Figure 1 (Color online) The number of true positive predictions using three kinds of dataset. (a) From top 100 to top

300; (b) from top 400 to top 600.

3 Results

3.1 Experimental data sources

Three datasets are employed in this study: a static PPI dataset, an essential protein dataset, and a RNA-

Seq dataset. The static PPI dataset was obtained from the DIP database (updated on April 29, 2015). It

includes 5146 proteins and 22526 interactions. Redundant interaction and loops were removed from the

dataset. The essential protein dataset was downloaded from http://ogeedb.embl.de/#download. Only

the data for Saccharomyces cerevisiae were selected, which include 1136 essential proteins. The RNA-Seq

dataset (SRX362640) was collected from the NCBI SRA database. We also use only the data for the

yeast transcriptome during wine fermentation.

We use the ID Mapping function in UniProt to transform a gene name to a protein name. After that,

4633 proteins were left in the static PPI network and 1136 known essential proteins remained as the

reference. A set of integrated dynamic PPI networks was then constructed based on the RNA-Seq gene

expression profiles. The final integrated dynamic PPI network consists of 1239 proteins of which 500 are

essential proteins.

3.2 Effectiveness of using the RNA-Seq dataset

Using the RNA-Seq dataset to construct dynamic PPI network is more powerful than using traditional

microarray datasets in terms of predicting essential proteins. Figure 1 illustrates three groups of degree

centrality predictions using the different kinds of dataset. Specifically, group A (DPPIN) was proposed

by Luo et al. in [24], who selected a set of active proteins from static PPI networks. Group B (APPIN)

was proposed by Xiao in [21], who filtered out noisy genes using both a time-dependent model and a time-

independent model. Both methods use the time-course microarray data to describe the gene expression

profiles. Group C is the network we constructed using the RNA-Seq dataset. The numbers of true

positive predictions among the top 100–600 predictions are given in Figure 1. We can see from the figure

that our method using the RNA-Seq data is much better than those using microarray datasets.

3.3 Construction of dynamic PPI networks

Five different kinds of protein networks are constructed to predict essential proteins. Firstly, the static

PPI network obtained from DIP is employed to predict essential proteins. Secondly, the PCC values of

individual protein pairs are employed to construct a dynamic PPI network, where only edges of the static

PPI network with a PCC value larger than a threshold are kept. Thirdly, the gene CPs are employed to

construct the dynamic PPI networks. In this study, since the RNA-Seq dataset contains only four time

points, we propose two methods to describe the gene CPs at two extents. Pattern A shows when two

genes are co-increased or co-decreased during at least two time intervals, while pattern B shows when

http://ogeedb.embl.de/#download


Shang X Q, et al. Sci China Inf Sci July 2016 Vol. 59 070106:7

Static PPI

Static PPI&patternA

Static PPI&patternB

Static PPI&PCC

Static PPI&PCC&patternB

0.55

0.53

0.51

0.49

0.47

0.45

F
-m

ea
su

re

DC                               LAC

a

b

c

d e

a b
c

d

e

Figure 2 (Color online) The F-measure of essential proteins predicted using different PPI networks.
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two genes are co-increased or co-decreased during all three time intervals. The final kind of dynamic

PPI network is constructed by considering both the PCC values and the co-expression pattern B when

selecting edges from the static PPI network of DIP.

The DC and LAC methods are employed to identify essential proteins from the above five kinds of PPI

networks. The F-measure is employed to evaluate the accuracy of prediction for the essential proteins.

The results are shown in Figure 2. We can see from the figure that no matter whether we use the PCC

value or the CP, the performance of the constructed dynamic protein networks is always better than the

static PPI network in terms of prediction of essential proteins (a vs the other values in Figure 2). To

be more specific, the PCC values are better than CPs (d vs b and c); pattern B is better than pattern

A (c vs b in Figure 2); while using both PCC and co-expression pattern B achieves a better result than

using either of them alone (e vs c and d in Figure 2). Hence, we conclude that the quality of a dynamic

PPI network is better than a static one, and using more time intervals to describe the CP is better than

using fewer. Moreover, the final dynamic PPI network we construct by using both the PCC values and

the CPs is relatively better than all the others.

3.4 Effect of varying PCC threshold in predicting essential proteins

In the previous section, the PCC threshold is selected as 0.9 empirically, since this value is often employed

to describe a strong positive correlation between two objects. However, the value of the PCC threshold

apparently influences the accuracy of prediction of essential proteins. To select a better threshold, we

use the fifth kind of dynamic PPI network to predict essential proteins by changing the value of the PCC

threshold from 0.5 to 0.99 when selecting the active interactions. Both the DC and the LAC methods

are employed to calculate the F-measures.

Figure 3 shows the change in F-measure when varying PCC threshold values, while Figure 4 illustrates

the change in the numbers of proteins, interactions and known essential proteins of the PPI networks

under the same conditions. We can see from the figures that with an increase in the value of the PCC

threshold, the value of the F-measure and the percentage of essential proteins rise gradually (Figure 3),
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Figure 5 (Color online) The fold enrichment of essential proteins when using M and M2. (a) Compare of DC and DC2;

(b) compare of LAC and LAC2.

whereas the proportions of proteins, interactions and essential proteins decrease gradually (Figure 4).

Although the F-measure shows a positive correlation with the PCC threshold, we cannot use the PPI

network with the PCC threshold equal to 0.99 to identify essential proteins, since the number of proteins

is only 523, which is even less than the number of all known essential proteins (1136). Therefore, we

select 0.95 as the best PCC threshold to construct the dynamic PPI networks.

3.5 Effect of topology in predicting essential proteins

We propose a two-step strategy to increase the prediction accuracy of initial topological indices in this

study. Take DC and LAC, for example. We can see from Figure 5 that both DC2 and LAC2 are better

than the initial DC and LAC, respectively. This indicates that adding the neighbors’ connection is useful

in increasing the prediction accuracy in terms of predicting essential proteins.

However, we suggest that the two-step method is generally a safe choice to derive a new index, and it

is similar to the method of [33]. The prediction results of DC3 and LAC3 also support our conjecture.

The results are shown in Figure 6. We rank the predicted proteins according to the value of the double

set and triple set of DC and LAC from high to low by selecting the top-ranked predictions from 100 to

600, respectively. We find that the result for the triple set is not always better than for the double set.

We guess the result is due to the small-world property of most biological networks, where the triple set

of an index will involve the connectivity of the third-order neighbors of individual vertices, which would

be associated with the connectivity of the majority of vertices in a network. An index associated with

the third-order neighbors may not distinguish vertices in terms of their essentialities.
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3.6 The time-course dynamic network and the integrated dynamic network

Generally, a dynamic PPI network represents a set of time-course PPI networks, where the elements of

vertices and/or edges change with time. However, in this study, we observe that using such a time-course

dynamic PPI network does not perform well compared with our proposed integrated dynamic network

in terms of the identification of essential proteins. The results are shown in Figure 7, where DLAC is

calculated from a time-course dynamic PPI network constructed using the method of Tang [22], while

LAC is calculated from our integrated dynamic PPI network.

Therefore, we argue that the essential proteins themselves may not be active at all times. They may

be considered to have more interactions than others. Thus, the dynamic PPI network constructed by our

method is relatively good in predicting essential proteins.

As well, we compare the performance of DLAC and DLAC2 in Figure 8 using the time-course dynamic

network. In this figure, we can see that DLAC2 is better than DLAC in the majority of cases. This result

also supports the generality of our proposed two-step strategy, which could be extended to many other

topological indices and methods.

3.7 Verification of essential proteins from text mining

The list of known essential proteins is by no means of complete. Hence, we also evaluated our predic-

tions from the public literature by using a text mining method. We predict YGR262c, YJL125c, and

YBR128c as essential proteins, although they do not appear in the known essential protein list. Ref. [36]

shows that disruption of the Saccharomyces cerevisiae YGR262c gene causes severely defective growth.

Ref. [37] explains that disruption and basic functional analysis of five chromosome X novel open reading

frames(ORFs) of Saccharomyces cerevisiae reveals YJL125c as an essential gene for vegetative growth.
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Figure 8 (Color online) The number of essential proteins when using DLAC and DLAC2.

Ref. [38] shows that disruption of YBR128c causes the infertility of the yeast. The support of these

papers suggests that our proposed method is useful for predicting novel essential proteins.

4 Conclusion

In this paper, three types of improvement have been proposed to optimize the prediction of essential

proteins: (1) the data source, (2) the construction of a dynamic PPI network, and (3) the novel two-step

M2 measure for almost all known topological indices. Using the RNA-Seq dataset has proved its efficiency

in constructing dynamic PPI networks, and the proposed two-step strategy for known topological indices

has also been shown to increase the predictive accuracy. Moreover, the proposed strategy is quite flexible.

It can be easily extended to many other topological indices and methods for identifying essential proteins.

Although the proposed strategies have achieved some good results, this study can also be extended in

at least the following three ways. Firstly, the gene expression profiles obtained from RNA-Seq data can

be further improved, since RNA-Seq data normally contain isoform information, which can be used to

formulate more accurate gene expression profiles. Secondly, the RNA-Seq data we obtained has only four

time points. It may not cover the gene expression profiles in detail. Therefore, if one can get RNA-Seq

data with more time points, a more accurate dynamic PPI network can be constructed with it. Thirdly,

for the two-step measure used in this study, we employ only the widely tested DC and LAC, as examples.

These two measures consider the connective information of a node and its neighbors separately. But the

combination of these two kinds of connection should be investigated further.
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