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Abstract With the emergence of multi-dimensional data, we can more comprehensively analyze the pathogenic

mechanisms of complex diseases, and thereby improve the diagnosis, treatment and prevention of these diseases.

This study presents a novel multi-layer network-based strategy that integrates multi-dimensional data, and

identifies disease-related modules and components of viral infections. We first propose a systematic method

that constructs a virus-host interaction network with three layers: a viral protein layer, a host protein layer and

a host gene layer. This method combines the data of high-throughput gene expression, viral protein interactions,

virus-host interactions, protein-protein interactions and transcriptional regulatory relationships. To extract the

underlying mechanisms of viral infections from the multi-layer networks, we identify the intra-layer and cross-

layer modules, and investigate the conserved modules across multiple datasets. The essential components in

the multi-layer networks are detected by singular-value decomposition. The identified conserved modules and

essential components are combined into a functional enrichment analysis that reveals their contributions to

influenza virus replication. By this analysis, we elucidate the common and specific mechanisms of the replication

cycles of two influenza strains. By combining the different layers of information, we can comprehensively

understand pathogenic mechanisms of complex diseases.
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1 Introduction

Infectious diseases, especially viral infections such as influenza, human immunodeficiency virus, hepatitis

and dengue fever, pose a worldwide threat to public health. These viruses rely on their host’s cellular

machinery to complete their replication cycle [1]. By understanding the basic replication mechanisms of

viruses, we can decipher their pathogenic mechanisms and develop preventive strategies against potential

human pandemics.

Using recently developed high-throughput technologies and computational methods, researchers have

deduced various biological networks [2–4], such as protein-protein interaction networks, transcriptional

regulatory networks and metabolic networks. Network-based approaches allow the characterization and
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Table 1 Five gene expression datasets for two different types of influenza A viruses

GEO accession Viral agent Time post infection Strain/Line

GSE37571 California/04/2009 (H1N1) 0,3,7,12,18,24,30,36 and 48 hpi Calu-3 cells

GSE40844 California/04/2009 (H1N1) 0,12,24 and 48 hpi Calu-3 cells

GSE40844 Netherlands/602/09 (H1N1) 0,3,7,12,18,24,30,36 and 48 hpi Calu-3 cells

GSE19580 Wellington/43/2006 (H3N2) 2,6 and 24 hpi Calu-3 cells

GSE49840 Panama/2007/99 (H3N2) 3,7,12 and 24 hpi Calu-3 cells

exploration of diverse biological processes, including the pathogenic mechanisms of viral infections [5].

To date, network-based analysis methods have focused on single biological networks such as those men-

tioned above. Few studies have combined several kinds of networks. However, the biological relationships

described by different networks are usually interdependent, that is, they interact and influence each other

through sophisticated mechanisms that maintain the function and robustness of cells [6, 7]. Therefore,

studying single networks in isolation may not reveal the molecular mechanisms underlying the biologi-

cal relationships among multi-layer networks. Accumulating experimental studies have delivered large,

heterogeneous datasets at multiple levels. However, a systematic method that can integrate these multi-

dimensional data into multi-layer networks presents a new challenge. If such a tool were available, we

could unravel the intricate pathogenic mechanisms of viruses.

During the course of a viral infection, viral proteins interact with a group of host proteins and path-

ways. Viral and host factors and virus-host relationships have been extensively studied over the last

decade [8, 9]. Other researchers have integrated protein-protein and protein-DNA interactions to infer

signaling-regulatory pathways [10,11]. However, the protein-protein interactions between virus and host,

the protein-gene interactions in the host, and the disease-related modules involved in the virus life cycle,

have not been integrated to date. This lack of a systematic integrative approach may limit the effec-

tiveness of network-based approaches in deciphering the pathogenic mechanisms of viruses. To address

this problem, we propose a general framework that integrates multi-dimensional data into a multi-layer

network. The framework then mines the possible modules involved in the individual steps of viral repli-

cation, and uncovers the essential components of viral replication. To verify the framework, we apply it

to five influenza virus datasets: three datasets of strain H1N1 and two datasets of strain H3N2. Using an

identified atlas of conserved modules and the essential components of H1N1 and H3N2 infection, respec-

tively, we uncover the underlying biological phenomena and gain insights into the annotated biological

activities within the cell during influenza A infection.

2 Methods

2.1 Data collection

The gene expression profiling datasets of two influenza strains (H1N1 and H3N2 influenza A virus (IAV))

were downloaded from the NCBI GEO database (GSE37571, GSE40844, GSE19580 and GSE49840) [12].

Ignoring the probe sets without corresponding gene symbols, we averaged the expression values of probe

sets mapped to the same gene. To evaluate the efficiency and robustness of our proposed approach, we

collected two or three independent datasets for each strain. Table 1 details the information corresponding

to each dataset.

In the biological dataset GSE37571, Calu-3 cells were infected with A/CA/04/2009 (H1N1) influenza

virus at an MOI (Multiplicity of infection) of 3. Samples were collected at 0, 3, 7, 12, 18, 24, 30, 36 and

48 hours post-infection (hpi). There are 3 mock and 3 infected replicates at each time point.

In the biological dataset GSE40844, cells were infected at an MOI of 3. Samples of A/Netherlands/602

/09 (H1N1)-infected and mock-infected cells were collected at 0, 3, 7, 12, 18, 24, 30, 36, and 48 hpi.

Samples of A/California/04/2009 (H1N1)-infected cells were collected at 0, 12, 24, and 48 hpi. All

samples were collected in triplicate.



Li Y Y, et al. Sci China Inf Sci July 2016 Vol. 59 070102:3

Virus protein layer

Host protein layer

Host gene layer

Virus protein          Host protein            Host gene                                                                   Interaction
Transcription
regulation

Figure 1 (Color online) Schematic diagram representing three-layer network structure among virus proteins, host proteins

and genes.

The biological dataset GSE19580 contains 9 samples of H3N2-infected cells. There is one replicate at

2 hpi, three replicates at 6 and 24 hpi and two replicates of media control samples at 24 hpi [13].

In the biological dataset GSE49840 [14], Calu-3 cells were apically infected with a human seasonal

virus A/Panama/2007/1999 (H3N2) at an MOI of 1. There are 4 mock replications and 3 H3N2-infected

replications at 3 hpi, and 4 mock and 4 H3N2-infected replications at 7, 12, 24 hpi.

2.2 Construction of multi-layer networks

The multi-layer network is composed of three layers: a viral protein-protein interaction network, a host

protein-protein interaction network and a host gene regulatory network. The nodes in each layer are viral

proteins, host proteins and host genes, respectively. This three-layer network is schematized in Figure 1.

The nodes of the multi-network are the viral protein, the host protein and the host genes, respectively.

The interactions among the different three layers and between any two layers are obtained as follows.

2.2.1 Mining viral protein-protein interaction data and viral protein-host protein association

Influenza A viruses are segmented, single-stranded, negative-sense RNA viruses encoding at least 10 viral

proteins [15]. Some strains encode two additional viral proteins, PB1-F2 and PB1 N40 [16, 17]. Using a

yeast two-hybrid (Y2H) approach, Shapira et al. [8] systematically identified the direct binary contacts

among the ten major viral proteins, and between each viral protein and the 12000 human proteins

available in the Human ORFeome v3.1 collection [18]. They discovered 31 intraviral interactions among

the 10 viral proteins (NP, PA, PB1, M1, M2, NA, NS2, PB2, HA, NS1), and 135 pairwise interactions

between the ten H1N1 viral proteins and 87 human proteins. They also detected 81 interactions between

ten H3N2 viral proteins and 66 human proteins.

2.2.2 Collecting host protein-protein interactions and transcription regulations

Interactions within the host proteins, which directly interact with viral proteins, interactions between

them and other proteins with interaction scores exceeding 0.7, and interactions among the above pro-

teins with interaction scores exceeding 0.7 were downloaded from the Human Integrated Protein-Protein

Interaction rEference (HIPPIE) [19]. After filtering out the self- and repeated interactions, the largest

connected component of the network was considered as the host protein layer network. Altogether, there

are 1579 interactions among 304 host proteins in H1N1-infected cells, and 1555 interactions among 287

host proteins in H3N2-infected cells (see Appendix, Tables A1 and A2 respectively). The protein-protein

interaction network and gene regulatory network are interconnected through the transcription factor

(TF) interface. The potential TFs and the regulatory associations between the TFs and target genes
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(TGs) were obtained from the Integrated Transcription Factor Platform (ITFP) [20, 21]. Since 1998,

1449 human genes in six independent genome-wide screens have been identified as potential host factors

in influenza virus replication [9]. Potential regulator-target links were filtered by limiting each node of

the incoming links to a potential host gene involved in influenza virus replication. After the filtering,

we obtained two initial transcriptional regulatory networks; the first consisting of 52 TF nodes, 193 TG

nodes (see Appendix, Table A3) and 399 regulatory links of H1N1 infection, the second containing 52 TF

nodes, 200 TG nodes (see Appendix Table A4) and 400 regulatory links of H3N2 infection.

2.2.3 Optimization of transcriptional regulatory network

During transcription, a TF bound to the DNA sequence recruits RNA polymerase II to a DNA promoter

region, initiating the transcription procedure [22, 23]. Transcription can be simply described by the

following linear model:

(TG)i = (TF)Θi, (1)

where (TG)i = ((TG)1i , (TG)2i , . . . , (TG)mi )T, i = 1, 2, . . . , n is a vector, representing the expression

level of target gene i (i = 1, 2, . . . , n), n is the number of target genes, and m is the number of samples.

(TF) = (tfkj )m×c, tfkj denotes the activity of transcription factor j in sample k, c is the number of

transcription factors. Θi = (θ1i , θ
2
i , . . . , θ

c
i )

T, θ
j
i represents the transcription regulation strength of the

jth TF to the ith TG. Therefore, Θ = {θji , i = 1, 2, . . . , n, j = 1, 2, . . . , c} is a parameter set.

When constructing a transcriptional regulatory network, we must identify the parameters in the

model (1). The problem becomes the following optimization problem:

min
Θi

{||(TG)i − (TF)Θi||
2
2 + γ||Θi||1}. (2)

This least-squares problem with a penalty on the L1-norm of the parameters can be efficiently solved

by MATLAB’s LASSO tool [24]. The regularization parameter γ, which controls the sparseness of the

resulting networks, can be optimized by the Bayesian information criterion (BIC) score. Specifically, γ

is optimized as follows:

min
γ∈Γ

BIC(γ) = ln

(

‖(TG)i − (TF)Θγ
i
‖22

n

)

+
lnn

n

∥

∥Θγ
i

∥

∥

0
, (3)

Θγ
i
∈ argmin

1

2
‖(TG)i − (TF)Θi‖

2
2 +

γ

2
‖Θi‖1, (4)

where Γ = {γ0, γ1, . . . , γL}, γi = γ0ρ, 0 < ρ < 1, the whole procedure for solving this optimization

regularization parameter γ problem is presented as follows:

First, for a given γ ∈ Γ, the optimization problem (4) is solved to obtain Θγ
i . Second, Θ

γ
i is substituted

into (3) to obtain a BIC score. Finally, γ is optimized by minimizing BIC.

In the end, the significance of the transcription regulation relationship is tested by the Z-statistic [25].

Firstly, the transcription regulation strengths are normalized by

θ̂
j
i =

(|θji | −min(|Θ|))

(max(|Θ|)−min(|Θ|))
, θ

j
i ∈ Θ,

where | · | is an absolute value, min(|Θ|) and max(|Θ|) are the minimum and maximum value of absolute

value for all transcription regulation strengths, respectively. Secondly, z-transforms of the transcription

regulation strengths are calculated, by the following equation:

z
j
i =

1

2
log

(

1 + θ̂
j
i

1− θ̂
j
i

)

.

Lastly, classical decision theory yields the following rule when using the significance level α, we reject the

null hypothesis H0 : θji = 0, if Φ−1(zji ) < α, where Φ(·) is a normal cumulative distribution function of

the standard normal distribution N(0, 1). If H0 is not rejected, then we consider θji = 0, and we judge

the ith TG and the jth TF as being independent of each other.
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2.2.4 Inference of gene regulatory network

The gene regulatory network represents the causality of a developmental or regulatory process. The

expression profiles of two interacting genes are always temporally related. The mutual information (MI)

characterizing the nonlinear dependency between two genes X and Y is computed as [26]

MI(X,Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (5)

Assuming the widely accepted Gaussian distribution of gene expression data, Eq. (5) reduces to the

simplified form [27]:

MI(X,Y ) =
1

2
log

|C(X)| · |C(Y )|

|C(X,Y )|
, (6)

where C is the covariance matrix of variable, |C| is the determinant of matrix C.

A high MI score indicates a close relationship between two paired genes, whereas a low MI score implies

independence between the genes. First, the MIs between all possible gene-gene pairs are computed by (6).

If the MI score is below a given threshold, the interaction is regarded as a noisy interaction and deleted

from the analysis.

Assuming linear interactions among the genes for simplicity, the gene regulatory network is further

simplified by minimizing the error between the simulation results and experimental data:

min
Φi

{

∑m
k=1

∥

∥

∥
xk
i

(sim)
− xk

i

(exp)
∥

∥

∥

p1
+ λ‖Φi‖p2

}

s.t. dXi

dt =
∑n

j=1 φijXj,

(7)

where Φi = (φi1, φi2, . . . , φin)
T, φij denotes the interaction ability from the jth gene to ith gene, Xi =

(x1
i , x

2
i , . . . , x

m
i )T, i = 1, 2, . . . , n represent the expression level of gene, m is the number of samples, n is

the number of genes, xk
i

(exp)
and xk

i

(sim)
are the experimental and simulation data for the kth sample,

respectively, and ‖ · ‖p1 and ‖ · ‖p2 are 1-norm or 2-norm. Here we set ‖ · ‖p1, ‖ · ‖p2 to be 1-norm. λ is

a regularization parameter that is used to balance the accuracy, sparse in the objective function. The

above BIC score method can also be used to optimize λ.

The data containing the desired samples are extracted from the microarray data by cubic spline inter-

polation. The derivatives can then be substituted by central difference approximations for convenience.

Let Yi =
dXi

dt , and the problem (7) is approximately transformed into the following problem:

min
Φi







m
∑

k=1

|yki −

n
∑

j=1

φijx
k
j |+ λ

n
∑

j=1

|φij |







. (8)

Let

uk + vk =

∣

∣

∣

∣

∣

∣

yki −

n
∑

j=1

φijx
k
j

∣

∣

∣

∣

∣

∣

, uk − vk = yki −

n
∑

j=1

φijx
k
j ,

ξj + ηj = |φij | , ξj − ηj = φij ,

where k = 1, 2, . . . ,m, j = 1, 2, . . . , n, uk, vk, ξj , ηj > 0. Then, problem (8) can be written as a standard

linear programming (LP) problem:

min
uk,vk,ξj ,ηj

∑m

k=1 (uk + vk) + λ
∑n

j=1 (ξj + ηj)

s.t. uk − vk = yki −
∑n

j=1 (ξj − ηj)x
k
j

uk, vk, ξj , ηj > 0.

(9)

The above LP problem (9) can be solved efficiently by MATLAB’s linprog function.

Finally, the significant gene regulation relationship is tested by the Z-statistic, as stated above. These

three steps are summarized in Figure 2, which presents a framework of the gene regulatory network.
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Step 1: Construction of a full connected network
> Regard gene regulatory network as a full connected network

Step 2: Detection of noisy interactions
> Calculate the mutual information of each gene pair

> Delete gene pairs with MI scores using statistical method

Step 3: Optimization of the gene regulatory network
> Build the ODE models of the refine networks

> Transform optimization problem into standard linear programming 

   problem to estimate the parameters in the models

> Select significant interactions using statistical method

Figure 2 The framework of the gene regulatory network referring.

2.3 Identification of conserved modules

Modules are the building blocks of higher-level functional organizations. An intra-layer and cross-layer

module can be defined as a subset of nodes belonging to the same layer and different layers, respectively.

First, we detected the intra-layer and cross-layer network modules from the constructed three-layer net-

work using module detection methods, such as the ClusterONE algorithm [28]. Second, to identify the

conserved modules across independent distinct datasets of the same influenza strain, we defined the

similarity score SS(Mi,Mj) of pairs of modules Mi and Mj [29]:

SS(Mi,Mj) =
|Mi ∩Mj|

min(|Mi|, |Mj |)
, (10)

where |Mi ∩Mj| is the number of elements in the intersection of two modules Mi and Mj , and min(|Mi|,

|Mj |) is the minimum of two modules element number [30]. If the similarity of two modules Mi and Mj

is equal to or larger than 0.6, we consider them as the same module. If a module appears in different

datasets of the same influenza virus type, we call it a conserved module of a influenza virus.

2.4 Functional annotation of modules

The modules were annotated according to the GO Biological Processes (BP), GO Cellular Component

(CC), GO Molecular function (MF) and the KEGG pathway annotations of their constituent compo-

nents. The annotation was performed in the DAVID bioinformatics database [31], and the enrichment

significance was determined by the DAVID tool. Significant enrichments in the annotation terms were

measured by Fishers’ exact test. A module was annotated to a function annotation if the P -value was

6 0.05.

2.5 Detection of essential components

The three-layer network is represented in the following block adjacency matrix:

Ã =









A11 A12 O

A21 A22 A23

O O A33









, (11)

where O is a null matrix, and A11,A22,A33 represent the intra-layer connections among viral proteins,

host proteins and host genes, respectively. A12 = A
T
21 represents the interactions between a viral and

a host protein, and A23 represents the effective abundance of TFs involved in TG regulation. The

components of the three-layer network are ranked according to their essential roles. We calculated the

largest eigenvalue and the corresponding eigenvector of the block adjacency matrix. For each component,

the essential score (ES) was defined as the modulus of the corresponding eigenvector elements. Based

on this score, we can rank the components of each influenza strain. The highest ranked components are

expected to be related to influenza virus replication.
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Figure 3 Overview of the proposed paradigm for mining important modules and components for influenza A virus

replication. (a) Multi-dimensional data were integrated to construct a multi-layer network. (b) Schematic diagram of the

constructed three-layer network. (c) Conserved modules were detected and compared of two different strains of influenza A

virus. (d) Functional enrichment analysis of the conserved modules revealed the functional contributions of these modules

to the influenza virus replication. (e) A three-layer network was represented by a block matrix. (f) Ranking the nodes of

the three-layer network by singular value decomposition method. (g) Overlap analysis of the essential common module and

the top ranked components based on inverse cumulative hyper geometric distribution.

3 Results

To identify the important modules and components in influenza A replication, we developed a general

paradigm that constructs a multi-layer network and performs system analyses. The proposed paradigm

is depicted in Figure 3. We applied our proposed methodology to three H1N1 IAV infection datasets and

two H3N2 IAV infection datasets.

3.1 Three-layer network construction

Our general framework constructs a three-layer network of viral protein interactions, virus-host molec-

ular interactions, host protein-protein interactions, and transcriptional regulations with gene expression

profiles. The viral protein layer constitutes a viral-viral interaction network based on Shapira et al.’s

results [8]. The corresponding physical interactions between the viral and host proteins in H1N1 IAV

and H3N2 IAV infections were also extracted from Shapira et al. [8]. The host protein layer contains a

PPI network constructed from the PPI database. On the host gene layer, the noisy interactions were

first filtered by the MI, which measures the nonlinear dependence between paired nodes. Next, the gene

regulatory network was described by a set of ordinary differential equations, and the model parameters

were identified by optimization algorithms [29]. Finally, the significance of the gene-gene interactions was

determined by a statistical method. The corresponding initial transcriptional regulatory network was
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Table 2 Average relative errors for the five data groups

GEO accession Viral agent
Average relative errors

Gene regulation network Transcriptional regulatory network

GSE37571 California/04/2009 (H1N1) 0.0016 0.0205

GSE40844 California/04/2009 (H1N1) 0.0044 0.0107

GSE40844 Netherlands/602/09 (H1N1) 0.0015 0.0123

GSE19580 Wellington/43/2006 (H3N2) 0.0041 0.0167

GSE49840 Panama/2007/99 (H3N2) 0.0016 0.0276

constructed using the Integrated Transcription Factor Platform. Finally, the transcriptional regulations

were depicted in a simplified linear equation model. Again, the model parameters were optimized, and

the significances of the transcriptional regulations between TFs and TGs were statistically determined.

Applying the above framework to the three H1N1 IAV datasets and two H3N2 IAV datasets, we

constructed five three-layer networks of H1N1 or H3N2 IAV infection.

The accuracies of the constructed transcriptional and gene regulatory networks were evaluated by the

average relative error (ARE). In numerical analysis, the relative error is the absolute error divided by the

magnitude of the experimental value. Accordingly, the ARE of the transcriptional regulatory network is

defined as follows:

ARE =
1

n

n
∑

i=1

1

m

m
∑

j=1

∣

∣X
exp
i (tj)−Xsim

i (tj)
∣

∣

|Xexp
i (tj)|

, (12)

Xsim
i (tj) and X

exp
i (tj) are the simulation and experimental value of the ith TG at time point tj , m is the

number of samples and n is the number of TGs. Xsim
i (tj) =

∑c

k=1 θ
k
i � Y

exp
k (tj), where Y

exp
k (tj) is the

experimental value of the kth TF at time point tj , c is the number of TFs and θki is the optimal solution

of the optimization problem (2), which denotes the transcription regulation strength of the kth TF to

the ith TG.

When for gene regulatory network, ARE is defined as below:

ARE =
1

n

n
∑

i=1

1

m

m
∑

j=1

|Xexp
i (tj +∆t)−Xsim

i (tj +∆t)|

|Xexp
i (tj +∆t)|

, (13)

Xsim
i (tj +∆t) and X

exp
i (tj +∆t) are the simulation and experimental value of the ith host gene at time

point tj +∆t, m is the number of samples and n is the number of host genes. Xsim
i (tj +∆t) is calculated

according to the following formula:

Xsim
i (tj +∆t) = X

exp
i (tj −∆t) + 2 ·∆t ·

n
∑

k=1

(φik ·Xexp
k (tj)), (14)

where φik is the optimal solution of the optimization problem (7), which denotes the interaction ability

from the kth gene to ith gene at time point tj , ∆t stands for the time increment.

Table 2 summarizes the AREs of the gene and transcriptional regulatory networks in H1N1 and H3N2

IAV infection. In all five data groups, the AREs of the gene regulation networks are below 0.005, whereas

those of the transcriptional regulatory networks are below 0.03. These results confirm the accuracy of

the constructed regulatory networks.

3.2 Identification of modules at each stage of influenza virus replication

Once the virus particles have attached to the surface receptors of their host cells, they can initiate their

life cycles. For this purpose, the virus particles enter the cell and uncoat their nucleic acids. The viral

ribonucleoproteins (vRNPs) are then transported into the cell nucleus through the nuclear pores. After

genome replication, transcription, and protein synthesis, the newly synthesized viral RNA is transported

from the nucleus to the cytoplasm. Virion components are transported to the assembly site and assemble

into progeny viruses, which then bud from the cells [9].
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Step 1: Detection of three-layer network modules
> Identify network modules from the constructed three-layer

   network by the module detection method

Step 2: Discovery of conserved modules
> Define the similarity of two modules

> Discovery of the module appears in different datasets of the 

   same influenza virus type

Step 3: Identification of disease-related modules
> Module function annotation to further detect modules that govern the

    steps of influenza virus replication

Figure 4 The framework of diseased-related module identification.

Table 3 Enriched module relate functional annotation in each step of influenza virus replication

Module
Functional annotation

P -value
Host cellular biological process Steps of viral life cycle

H1N1 H3N2 H1N1 H3N2

M1 M5 Vesicular fraction 4.9× 10−2 6.5× 10−3 COPI vesicular transport Endocytosis, fusion and

uncoating

Endocytosis 6.7× 10−4 1.7× 10−2 Endocytosis

Proton acceptor 2.9× 10−6 2.3× 10−5 V-type ATPase proton transport

Post-translational pro-

tein modification

6.9× 10−5 3.0 ×10−4 Post-translational modification vRNP transport from

the nucleus to the cyto-

plasm

Vesicular fraction 4.9× 10−2 6.5× 10−3 COPI vesicular transport Assembly and budding

Cytoskeleton 3.4× 10−2 3.4× 10−2 Cytoskeletal components

M2 M6 Nuclear pore 1.3× 10−6 6.5× 10−8 Nuclear pore complex Transport of vRNP into

the host nucleus

M3 M7 Nuclear mRNA splic-

ing

4.8× 10−6 4.3× 10−4 Pre-mRNA splicing Genome

replication/transcription

and translation

Eukaryotic translation

initiation factor

2.5× 10−2 2.8× 10−2 Translation initiation

Cytosolic ribosome 1.5× 10−3 2.3× 10−2 Ribosome

M4 M8 Post-translational pro-

tein modification

5.2× 10−6 5.2× 10−6 Post-translational modification vRNP transport from

the nucleus to the cyto-

plasm

To more comprehensively characterize the host machinery exploited by the influenza virus, we em-

ployed the ClusterONE algorithm [28] to detect the intra-layer and cross-layer modules in the three-layer

networks of each data group. The conserved modules common to all H1N1 IVA infection networks or to

all H3N2 IVA infection networks were obtained by defining the similarity between two modules.

The three GO categories BP, MF, and CC were separately analyzed to infer the biological activity

of all conserved modules. Our enrichment analysis identified significantly enriched function annotations

(P -value < 0.05) in each conserved module.

To understand the modules that govern the steps of influenza virus replication, we assigned the con-

served modules to different steps of the influenza virus replication. This assignment was based on the

likely host cellular processes in the viral life cycle. The computational framework of the diseased-related

module identification is shown in Figure 4. Tables 3 and 4 list the conserved modules that govern the

steps of influenza virus replication and the corresponding module components, respectively.

Using (10), we computed the similarity scores between modules M1 and M5, modules M2 and M6,

modules M3 and M7, and modules M4 and M8. If the similarity score between the paired modules

exceeded 0.6, it was considered as a common module in different influenza infections; otherwise, it was
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Table 4 The identified conserved modules that govern the steps of influenza virus replication. The host genes were noted

in bold and italic

Subtypes Modules Size Components in the corresponding module

H1N1 M1 49 {TUBA3D TANK CHUK TUBB4A LRRK2 TICAM1 EGFR TUBB TBK1

SLC25A5 BIRC2 TNFRSF1A DNAJA1 HSPA1A HSPA1L HSPA8 HSPA9

HSP90AA1 IKBKB BIRC3 MAP3K1 NAP1L1 NGFR TNFRSF1B CD40

PARK2 RPS3 SNCA SRC ACTG1 TNFAIP3 TUBA1A TRAF1 TRAF2

TRAF3 TRAF6 TUBA3C YWHAB ARRB1 CASP8 TRADD RIPK1 RIPK2

TNFRSF11A MAP3K14 HGS TIMM50 BAG2 MAP3K5}

M2 23 {KPNA6 KPNB1 KPNA3 MEPCE MYD88 DOCK8 SPOP DOCK7 PRPF3

TRIM13 RPL35 CIRBP CSE1L ERC1 MAZ MINK1 CDK17 SMU1

SAV1 TGFBR1 SMC1A CASP3 NUPL1}

M3 44 {PDLIM4 RBM12 RBM5 CALCOCO2 SF3A3 KIF2C COPA DFFB

E2F1 AHCY MDN1 PRPF31 GTF3C2 KIF11 MAZ MYBL2 NFYA

MINK1 CDK12 GTPBP2 PSMD12 PTBP1 ARID1B SAV1 RPS10

CX3CL1 SGK1 SHC1 TGFBR1 TOP2A CAD C6orf62 SMC1A

ZNF414 RUVBL1 EIF3B EIF3C EFTUD2 EXOSC8 EIF4G1 BLM

SUMO2 EXOSC9 PRPF3}

M4 33 {TRIM28 ESR1 PARP1 ZNF451 HDAC1 ZMYND11 HNRNPK PIAS3 AR

JUN ETS1 MDM2 HIPK2 MYC PIN1 PML TRIM27 BLM SIAH2 SUMO3

SUMO2 SP100 NCOR1 BRCA1 STAT3 TP53 UBE2I SUMO1 USP7

SNIP1 AXIN1 BHLHE40 PIAS1 CASP8AP2}

H3N2 M5 51 {TUBA3D TANK CHUK TUBB4A LRRK2 TICAM1 MAP3K14 AGO2

MAP3K1 TBK1 SLC25A5 BIRC2 BIRC3 DNAJA1 HSPA1A HSPA1B

HSPA1L HSPA4 HSPA8 HSPA9 IARS IKBKB ARRB1 CASP8 RIPK1

MAP3K5 NAP1L1 PARK2 QARS RELB RPS3 SNCA ACTG1 TNFAIP3

EGFR TRADD RIPK2 TRAF1 TRAF2 TRAF3 TRAF6 TUBA3C TUBB

TNFRSF1A TNFRSF1B HSP90AA1 TUBA1A GAPDH}

M6 17 {KPNA6 KPNB1 KPNA3 MEPCE MYD88 SKP2 DOCK8 SPOP PRPF3

BRCA1 CFLAR CHAF1A CSE1L E2F1 KIF11 POLA1 NUP107}

M7 36 {RBM12 RBM5 PAPOLA CREB1 DENND1B EPRS MDN1 FUS

FBXO22 KIF11 MYBL2 ATF1 GINS2 NXT2 RELA SAV1 BID

FBXL17 SNRPD3 SRP54 TOP2A TP53 TPT1 C6orf62 SMC1A TR-

RAP RUVBL1 RABEP1 EXOSC8 EXOSC9 AICDA EIF4G1 EIF3E HM-

BOX1 BLM SUMO2}

M8 32 {TRIM28 ESR1 PARP1 ELK1 HDAC1 ZMYND11 HNRNPK PIAS3 HSPB1

AR JUN EIF4G1 HIPK2 MYC PIAS4 PML RANBP2 TRIM27 SIAH2

SUMO2 BRCA1 STAT1 STAT3 TP53 UBE2I SUMO1 ZBTB16 SNIP1

BHLHE40 PIAS1 PIAS2 NCOR1 CASP8AP2}

considered specific to one influenza infection. Table 5 lists the similarity scores of the above module

pairs. Most of the common modules launched their effect in the cytoplasm, whereas modules specific to a

particular virus tended to operate in the cell nucleus. Modules M1 and M5 were considered as the most

important module pair, because of their important role in three steps of the viral life cycle.

3.3 Essential components centered on essential common modules

The 507 components in the H1N1 viral replication network, and the 497 components in the H3N2 viral

replication network, were ranked by their corresponding eigenvector elements of the maximum eigenvalue.

The top 2%, 4%, 6% and 8% of the ranked components were selected as candidates of essential components

involved in the influenza virus life cycle. The top 2% essential components of H1N1 and H3N2 infection,

predicted by singular value decomposition (SVD), are listed in Table 6.

Among these essential components, Cao et al. [32] reported that influenza A virus co-opts DNAJA1

to enter the nucleus and enhance its RNA polymerase activity in an Hsp70 cochaperone-independent

manner, Momose et al. [33] identified HSP90 as a host factor that stimulates viral RNA polymerase

activity. NP-TRF1, PB2-TRF1, PB2-TRF2, NS1-UBE2I and PB1-UBE2I interactions in H1N1 virus

infections, and PB2-TRF1, PB2-TRF2 and NS1-UBE2I interactions in H3N2 virus infections, were de-
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Table 5 Common modules and specific modules in each step of influenza virus replication

Module Size of

overlap

Module

similarity score
Module type Steps of viral life cycle Work location

H1N1 (Size) H3N2 (Size)

M1(49) M5(51) 44 0.898 Common module Endocytosis,fusion and un-

coating

Cytoplasm

vRNP transport from the nu-

cleus to the cytoplasm

Assembly and budding

M2(23) M6(17) 10 0.588 Specific module Transport of vRNP into the

host nucleus

Nucleus

M3(44) M7(36) 15 0.417 Specific module Genome

replication/transcription

and translation

Nucleus

M4(33) M8(32) 25 0.781 Common module vRNP transport from the nu-

cleus to the cytoplasm

Cytoplasm

Table 6 List of top 2% essential components of H1N1 or H3N2 infected predicted by SVD

Symbol Descriptions Rank (H1N1) Rank (H3N2)

HSP90AA1 Heat shock protein 90kDa alpha (cytosolic), class A member 1 3 3

HSPA1A Heat shock 70kDa protein 1A 4 9

HSPA1B Heat shock 70kDa protein 1B – 10

HSPA8 Heat shock 70kDa protein 8 6 4

MAP3K14 Mitogen-activated protein kinase kinase kinase 14 9 6

SUMO2 Small ubiquitin-like modifier 2 8 11

TNFRSF1A Tumor necrosis factor receptor superfamily, member 1A 11 8

TP53 Tumor protein p53 5 7

TRAF1 TNF receptor-associated factor 1 2 2

TRAF2 TNF receptor-associated factor 2 1 1

TRAF6 TNF receptor-associated factor 6 10 5

TUBB Tubulin, beta class I 7 14

tected by Shapira et al. [8]. Many of the top 8% essential components are involved in multiple signaling

pathways. TRAF2, TNFRSF1A, RIPK1, TP53, IKBKB, MAP3K14, CHUK and TRADD are enriched in

apoptosis regulation, EGFR, TRAF2, RELB, TP53, HSPA1A, HSPA1B, HSPA1L, TNFRSF1A, ARRB1,

MAP3K1, TRAF6, IKBKB, MAP3K14, MYC, CHUK and HSPA8 are enriched in the MAPK signaling

pathway and TRAF2, TBK1, MAP3K1, RIPK1, TRAF6, IKBKB, CHUK, TANK, TRAF3 and TRADD

are enriched in the RIG-I-like receptor signaling pathway, which senses cytoplasmic viral RNA.

Furthermore, to deduce the relationship between the candidate essential components and the essential

modules M1 and M5, we computed their overlaps and their significance by the inverse cumulative hype-

geometric distribution. The P -value is given by

P (at least x|N,m, k) =

min(k,m)
∑

i=x

P (i|N, k,m) = 1−

x−1
∑

i=0

P (i|N, k,m), P (i|N,m, k) =
Ci

mCk−i
N−m

Ck
N

, (15)

where N is the total number of the elements in the virus replication network,m is the number of candidate

essential elements, k is the size of the essential module, and i is the number of common elements between

the candidate essential elements and the essential module M1 or module M5.

The results are listed in Table 7. The P -value defines the probability to find at least the number

of overlapping components in a random selection of the size of the essential module. The smaller the

P -value, the higher the significance of the results.
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Table 7 The relationship between candidate essential components and essential module

Size of essential module Percentage of top

essential components (%)

Overlap/Top components P -value

H1N1 (M1) H3N2 (M5) H1N1 H3N2 H1N1 H3N2

49 51 2 8/10 9/10 2.77 × 10−9 5.52 × 10−11

4 16/20 16/20 2.22× 10−16 8.88 × 10−16

6 24/30 24/30 0 0

8 28/41 30/40 0 0

4 Discussion and conclusion

Identifying the disease-related components and modules in a multi-layer network is crucial to elucidating

the underlying pathogenic mechanisms of complex diseases and developing effective treatments. This

study proposes a systematic strategy that integrates multi-dimensional data into multi-layer networks. It

also discovers both common and specific mechanisms of viral infections by identifying multi-layer modules

and components. Our work makes three major contributions to systems biology. (1) First, we developed

a systematic approach that constructs a multi-layer network from integrated multi-dimensional data.

The multi-layer network better represents the actual biological network than single-layer networks, and

is more predictive. (2) Applying our approach to H1N1 and H3N2 influenza viruses and referring to gene

ontology information, we identified essential disease-related modules at each step of the viral replication

cycle. A disease-related module is a connected subgraph containing all molecular determinants of a

disease, and contributes to a systematic understanding of the molecular mechanisms underlying that

disease [34]. Through comparison and analysis, we deduced that common and specific modules usually

function in the cytoplasm and cell nucleus, respectively. (3) We detected disease-related components of

viral infections by applying singular value decomposition. Determining the essential components in a

multi-layer network is important, because such components are usually critical to cell survival, or provide

potential drug targets in the signaling network of a complex disease [35]. Strikingly, in comparison studies,

we discovered that essential disease-related components are concentrated in the essential common module.

Overall, our study not only offers a novel general framework for revealing the pathogenic mechanisms of

viral infections, but can assist the development of new prevention and treatment strategies against viral

infections. In future work, we will focus on mathematical modeling and control of multi-layer networks

based on disease-related multi-omics data [36–40].
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Appendix A

Table A1 The 304 host proteins selected of H1N1 virus infection

Symbol

ABLIM1 CBS ENKD1 HSPA9 MEPCE PXN SUMO2 TRAF3 ACOT9 CBX5 ESR1 HSPB1 MLH1 QARS SUMO3

TRAF4 ACTG1 CCAR2 ETS1 HSPB2 MYC QTRT1 SUV39H2 TRAF6 AFF4 CCDC172 EWSR1 HTT MYD88

RABGEF1 TACC1 TRAIP AGO2 CCDC85B EXOC3-AS1 IARS NAP1L1 RAD54B TAL1 TRIM13 AIMP2 CCNK

EXOSC8 ICT1 NCAPH2 RBPMS TANK TRIM27 AMOT CD27 EXOSC9 IKBKB NCK2 RHOXF2 TARBP2 TRIM28

AP1M1 CD40 FAM107A IKZF1 NCOR1 RIBC2 TBK1 TRIM29 AP2M1 CDC42 FANCG IKZF3 NDC80 RIPK1

TCEA2 TRIM33 APIP CDC42EP4 FATE1 ILF3 NDUFS3 RIPK2 TCEANC TRIM37 AR CEP70 FBF1 ILK NECAB2

RNF5 TCEB3B TRIP6 ARHGEF39 CFLAR FBXO7 JUN NGFR RPS3 TCF12 TSC22D4 ARRB1 CHMP4B FHL3

KCNRG NIF3L1 RUVBL1 TCF3 TUBA1A ATF2 CHMP6 FMR1 KDM1A NONO RUVBL2 TDRD7 TUBA3C ATN1

CHUK FN1 KHDRBS3 NRF1 SDCBP2 TFCP2 TUBA3D ATXN1 CMTM5 FTH1 KPNA3 NRIP1 SEPT1 THAP1

TUBB AURKB COL4A3BP FXR2 KPNA6 NT5DC2 SH3GL3 TICAM1 TUBB4A AXIN1 CREB3 GABPB1 KPNB1

NUDT18 SIAH1 TIFA UBE2D2 BAG2 CRYAB GAPDH KRT15 NUMB SIAH2 TIMM50 UBE2D3 BAG6 CSNK2A1

GCN1L1 LDOC1 PARK2 SLC25A5 TNFAIP3 UBE2I BAHD1 CTNNB1 GMCL1 LMO3 PARP1 SLC9A3R2 TN-

FRSF11A UROS BANP DAB2 GORASP2 LNX1 PCBD1 SNAP23 TNFRSF12A USHBP1 BCAP29 DAZAP2 HCFC1

LNX2 PDLIM4 SNCA TNFRSF14 USO1 BCAP31 DHX9 HDAC1 LRPPRC PEG3 SNF8 TNFRSF17 USP7 BCL2L1

DICER1 HDAC4 LRRK2 PIAS1 SNIP1 TNFRSF18 VANGL1 BET1 DNAAF5 HGS LTBR PIAS3 SORBS3 TNFRSF19

VCAM1 BHLHE40 DNAJA1 HIPK2 LYPLA1 PIN1 SP100 TNFRSF1A WT1 BIRC2 DOCK7 HIVEP3 LZTS2 PML

SPOP TNFRSF1B XIAP BIRC3 DOCK8 HNRNPC MAGEA11 PNMA1 SPTAN1 TNFRSF4 YWHAB BLM DPPA2

HNRNPK MAGEA6 POM121 SRC TNFRSF8 ZBTB16 BLZF1 DVL1 HOOK1 MAGED1 PPM1A SRPK2 TNFRSF9

ZBTB25 BRCA1 DVL2 HOOK2 MAP3K1 PPP2R1A SRPK3 TNFSF9 ZBTB8A C16orf45 DVL3 HOXA1 MAP3K14

PPP2R5C SSBP2 TNNT1 ZMAT3 C1orf94 DYNLL2 HOXA9 MAP3K5 PRKAB2 SSSCA1 TOLLIP ZMAT4 CAL-

COCO1 EGFR HSP90AA1 MAPK1IP1L PRKDC STAT3 TP53 ZMYND11 CALCOCO2 EIF2AK2 HSPA1A MAPK9

PRKRA STAU1 TRADD ZNF346 CASP8 EIF4G1 HSPA1L MCRS1 PRPF3 STX5 TRAF1 ZNF451 CASP8AP2 ELK1

HSPA8 MDM2 PSMF1 SUMO1 TRAF2 ZNF646

Table A2 The 287 host proteins selected of H3N2 virus infection

Symbol

ABLIM1 CCDC85B EXOSC9 HSPB2 MYD88 RABGEF1 TANK TRAIP ACTG1 CCNK FAM107A IARS NAP1L1

RAD54B TARBP2 TRIM13 ACTN1 CD27 FANCG KBKB NCK2 RANBP2 TBK1 TRIM27 AFF4 CD40 FATE1

ILF3 NCOR1 RB1 TCEA2 TRIM28 AGO2 CEP70 FBF1 ILK NDC80 RBPMS TCEANC TRIM29 AICDA CFLAR

FBXO7 IPO13 NECAB2 RELB TCEB3B TRIM33 AIMP2 CHUK FHL3 JUN NGFR RHOXF2 TCF12 TRIM37 AMOT

CREB3 FMR1 KCNRG NIF3L1 RIBC2 TCF3 TRIP6 AP1M1 CRX FTH1 KDM1A NINL RIPK1 TDRD7 TSC22D4

AP2M1 CRYAB FXR2 KHDRBS3 NONO RIPK2 TFCP2 TUBA1A APIP CSNK2A1 GABPB1 KPNA1 NRF1 RPS3

THAP1 TUBA3C AR CTNNB1 GAPDH KPNA3 NRIP1 RUNX1T1 TICAM1 TUBA3D ARHGEF39 DAB2 GCN1L1

KPNA6 NT5DC2 RUVBL1 TIFA TUBB ARRB1 DAZAP2 GMCL1 KPNB1 NUDT18 RUVBL2 TIMM50 TUBB4A

ATF2 DHX9 GOLGA2 KRT15 NUMB SDCBP2 TNFAIP3 UBE2D1 ATN1 DICER1 GORASP2 LMO3 PARK2 SIAH1

TNFRSF11A UBE2D2 ATXN1 DNAAF5 HCFC1 LNX1 PARP1 SIAH2 TNFRSF12A UBE2D3 AXIN1 DNAJA1

HDAC1 LNX2 PCBD1 SKP2 TNFRSF14 UBE2I BAG2 DOCK7 HGS LRPPRC PDLIM4 SLC25A5 TNFRSF17 UBE2N

BAHD1 DOCK8 HIPK2 LRRK2 PEG3 SLC9A3R2 TNFRSF18 UBR5 BANP DPPA2 HIVEP3 LTBR PIAS1 SNCA

TNFRSF19 USHBP1 BHLHE40 DVL1 HMBOX1 LZTS2 PIAS2 SNIP1 TNFRSF1A USO1 BIRC2 DVL2 HNRNPC

MAGEA11 PIAS3 SORBS3 TNFRSF1B USP7 BIRC3 DVL3 HNRNPK MAGEA6 PIAS4 SPOP TNFRSF4 VANGL1

BLM DYNLL2 HOOK1 MAGED1 PIN1 SPTAN1 TNFRSF8 WT1 BLZF1 DYRK1A HOOK2 MAP3K1 PML SRC

TNFRSF9 XIAP BRCA1 EGFR HOXA1 MAP3K14 PNMA1 SRPK3 TNFSF9 ZBTB16 C16orf45 EIF2AK2 HOXA9

MAP3K5 POM121 SSSCA1 TNNT1 ZBTB25 C1orf94 EIF3E HSP90AA1 MAPK1IP1L PPM1A SSX2IP TOLLIP

ZBTB8A CALCOCO1 EIF4G1 HSPA1A MAPK9 PRKAB2 STAT1 TP53 ZMAT3 CALCOCO2 ELK1 HSPA1B MBD4

PRKDC STAT3 TRADD ZMYND11 CASP8 ENKD1 HSPA1L MCRS1 PRKRA STAU1 TRAF1 ZNF346 CASP8AP2

ESR1 HSPA4 MDFI PRMT6 SUMO1 TRAF2 ZNF451 CCAR2 EWSR1 HSPA8 MEPCE PRPF3 SUMO2 TRAF3

ZNF581 CCDC172 EXOC3-AS1 HSPA9 MLH1 PSMF1 SUV39H2 TRAF4 ZNF646 CCDC33 EXOSC8 HSPB1 MYC

QARS TACC1 TRAF6
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Table A3 The 193 host genes selected of H1N1 virus infection

Symbol

ACAP2 CHAF1A ERC1 LSM2 NTHL1 RACGAP1 SGCA TFDP1 AHCY CIRBP FASN LSM4 NUDCD3 RANBP9

SGK1 TFE3 APOBEC3G CKS1B FBXL17 MAP2K2 NUP107 RAPGEF2 SHC1 TGFBR1 ARID1B CLIP1 FBXL5

MAP2K5 NUPL1 RBM12 SIGMAR1 TIMM17A ASAH1 CLU FBXO22 MAP3K2 NXT2 RBM14 SLC4A7 TLK1 ATF1

COPA FCGR2A MAPK1 PAICS RBM34 SLIRP TMF1 ATP2C1 COPE FUS MAPK14 PAK2 RBM5 SMC1A TOP2A

BID COPS6 GABPA MAPKAPK2 PAPOLA RELA SMU1 TP53 BUB1B CPSF4 GCAT MARK3 PBK RNPS1 SNRPB

TPT1 BUB3 CREB1 GINS2 MAZ PCMT1 ROCK1 SNRPD2 TRAP1 C16orf72 CRY2 GOPC MCF2L PELI1 RPL35

SNRPD3 TRIM27 C6orf62 CSE1L GTF3C2 MDN1 PIK3C2A RPL5 SNRPF TRMT61A CACTIN CSNK1A1 GTPBP2

MINK1 PLEC RPS10 SNW1 TRRAP CAD CX3CL1 HEATR1 MRPL12 PLK4 RPS2 SPAG5 TUBB CALCOCO2

DAPK3 HMGA1MRPL42 POLA1 RPS5 SRP54 UBAC2 CASP3 DENND1B HNRNPUMTFR1 POLR2H RPS8 SRSF7

UBE2E1 CBX2 DFFB HSPD1 MYBL2 PRKDC RUVBL1 STAT1 WDR18 CCDC51 E2F1 INPPL1 NAGK PRPF31

RXRB STAT3 XPNPEP1 CCT6A E2F3 IQGAP1 NBN PSMB1 SAE1 STIP1 XPO5 CD58 EFTUD2 IRF3 NCOR1

PSMC3 SAV1 STX5 YWHAZ CDK1 EIF3B KANSL1 NFYA PSMD12 SCD SUMO2 ZFAND3 CDK12 EIF3C KIF11

NHP2L1 PTBP1 SELPLG SUPT6H ZFHX3 CDK17 EIF4A3 KIF2C NLE1 PTPN11 SF3A3 SUV420H1 ZMAT3 CDK4

EPRS LEPR NT5C RABEP1 SF3B3 TCF3 ZNF414 CFLAR

Table A4 The 200 host genes selected of H3N2 virus infection

Symbol

ACAP2 CIRBP ERC1 LSM4 NUP107 RABEP1 SF3B3 TCF3 AHCY CKS1B FASN MAP2K2 NUPL1 RACGAP1

SGCA TFDP1 ARID1B CLIC4 FBXL17 MAP2K5 NXT2 RANBP9 SGK1 TGFBR1 ASAH1 CLIP1 FBXL5 MAP3K2

PAICS RAPGEF2 SHC1 TIMM17A ATF1 CLU FBXO22 MAPK1 PAK2 RBM12 SIGMAR1 TIMM44 ATP2C1 COPA

FNTB MAPK14 PAPOLA RBM14 SLC4A7 TLK1 BID COPE FUS MAPKAPK2 PBK RBM34 SLIRP TMF1 BUB1B

COPS6 GABPA MARK3 PCMT1 RBM5 SMC1A TOP2A BUB3 CPSF4 GCAT MAZ PELI1 RELA SMU1 TP53

C16orf72 CREB1 GINS2 MCF2L PIK3C2A RHOA SNRPB TPT1 C6orf62 CRY2 GOPC MDN1 PIP4K2B RNPS1

SNRPD2 TRAP1 CACTIN CSE1L GTF3C2 MINK1 PLK4 ROCK1 SNRPD3 TRIM27 CAD CSNK1A1 GTPBP2

MRPL12 POLA1 RPL35 SNRPF TRMT61A CALCOCO2 CX3CL1 HEATR1 MRPL42 POLR2H RPL5 SNW1 TRRAP

CASP3 DAPK3 HMGA1 MTFR1 PRKDC RPS10 SPAG5 TUBB CBX2 DBT HNRNPU MYBL2 PRPF31 RPS2

SRP54 UBAC2 CCT6A DENND1B HSPD1 NAGK PRPS1 RPS5 SRSF7 UBE2A CD58 DFFB INPPL1 NBN PSMB1

RPS8 STAT1 UBE2E1 CDK1 E2F1 IQGAP1 NCOR1 PSMB3 RUVBL1 STAT3 WDR18 CDK12 E2F3 IRF3 NFKB1

PSMC3 RXRB STIP1 XPNPEP1 CDK17 EFTUD2 KIAA0430 NFYA PSMD11 SAE1 STX5 XPO5 CDK4 EIF3B KIF11

NHP2L1 PSMD12 SAV1 SUMO2 ZFAND3 CFLAR EIF3C KIF2C NT5C PTBP1 SCD SUPT6H ZFHX3 CHAF1A

EIF4A3 LEPR NTHL1 PTPN11 SDE2 SUV420H1 ZMAT3 CHM EPRS LSM2 NUDCD3 RAB5A SF3A3 TAOK1

ZNF414
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