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Abstract This paper concerns the imaging problem for downward looking sparse linear array three-dimensional

synthetic aperture radar (DLSLA 3-D SAR) under the circumstance of sparse and non-uniform cross-track

dimensional virtual phase centers configuration. Since the 3-D imaging scene behaves typical sparsity in a certain

domain, sparse recovery approaches hold the potential to achieve a better reconstruction performance. However,

most of the existing compressive sensing (CS) algorithms assume the scatterers located on the pre-discretized

grids, which is often violated by the off-grid effect. By contrast, atomic norm minimization (ANM) deals with

sparse recovery problem directly on continuous space instead of discrete grids. This paper firstly analyzes the

off-grid effect in DLSLA 3-D SAR sparse image reconstruction, and then introduces an imaging method applied

to off-gird targets reconstruction which combines 3-D pseudo-polar formatting algorithm (pseudo-PFA) with

ANM. With the proposed method, wave propagation and along-track image reconstruction are operated with

pseudo-PFA, then the cross-track reconstruction is implemented with semidefinite programming (SDP) based

on the ANM model. The proposed method holds the advantage of avoiding the off-grid effect and managing to

locate the off-grid targets to accurate locations in different imaging scenes. The performance of the proposed

method is verified and evaluated by the 3-D image reconstruction of different scenes, i.e., point targets and

distributed scene.
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1 Introduction

Three-dimensional synthetic aperture radar (3-D SAR) is a new development of traditional 2-D SAR

which often suffers from distortions such as layover, shadowing and foreshortening [1]. Compared with

any other 3-D SAR, e.g., TomoSAR [2, 3] or CSAR [4], whose trajectory is hard to control accurately,

downward looking sparse linear array 3-D SAR (DLSLA 3-D SAR) puts less stress on trajectory control

and works in a more flexible mode. DLSLA 3-D SAR observes the nadir areas of the platform and can

obtain the true 3-D scene scatterers distribution and scattering properties, i.e., the 3-D resolution, by

pulse compression in wave propagation dimension, along-track aperture synthesis by platform movement,

and cross-track aperture synthesis with physical sparse linear array [5–12].

In recent years, DLSLA 3-D SAR imaging methods have attracted lots of attention. Most of the

proposed methods, such as 3-D range migration algorithm [6], 3-D pseudo-PFA [7], are all established

on the assumption that the sparse linear array can achieve uniform virtual antenna phase centers (APC)

like that in the ARTINO system [8]. However, in practical system, the APCs distribution is usually

non-uniform and sparse [9] due to some inevitable factors, e.g., installation restriction, wing vibration,

etc., which will make the above-mentioned cross-track dimensional Fourier-based methods ineffective.

For DLSLA 3-D SAR with sparse and non-uniform APCs distribution, there are two main imaging

methods: time-domain correlation (TDC) which suffers from low computational efficiency and high side-

lobes [1, 5], and compressive sensing (CS) methods [9–11]. CS-based methods enable the reconstruction

of sparse or compressible signal using a much smaller number of samples than that under the Nyquist

criterion [13]. Since the 3-D observed scene behaves typical sparsity in a certain domain, CS methods

have been successfully applied to 3-D SAR imaging [2, 3]. For DLSLA 3-D SAR imaging, in [5, 10], CS

methods are used by vectorizing the 3-D echo signal or rearranging each range slice 2-D signal into vector

form, which are time-consuming and suffer from high memory cost. In [11], 2-D focused SAR images

are obtained from each APC, and then CS or Bayesian CS method is implemented in the cross-track

dimension. Due to the range course approximation, the above methods cannot get precise imaging re-

sults for large imaging scenes. In [9], a method combining 3-D pseudo-PFA with L1-norm minimization

is introduced, which has the advantage of high reconstruction precision, low memory cost, etc..

However, the above CS-based methods assume scatterers to be located exactly on the pre-discretized

grids. A practical 3-D SAR imaging scene, especially localized or distributed extended scene [14], is always

a continuous field with scatterers scarcely on the exact grids, which will introduce the off-grid effect or

model mismatch problem [15]. To solve the above problem, methods based on dictionary learning [16]

or joint sparse recovery algorithms [14,17] are proposed, but they are still established on the foundation

of discrete dictionary or consider the high order Taylor approximation of the off-grid error. Besides, a

modified L1-norm minimization algorithm is proposed to solve the model mismatch problem in wideband

underwater sonar imaging [18], however, it is not suitable for the narrowband signal model in SAR

imaging. By contrast, the model of atomic norm [19,20], which deals with sparse recovery problem directly

on the continuous bearing space instead of discrete grids, has been studied in line spectral estimation and

direction of arrival (DOA) estimation to solve the off-grid problem [19–21]. By reformulating the atomic

norm minimization (ANM) as a semidefinite programming (SDP) problem, it provides not only a way to

denoise the signal, but also an efficient signal recovery method. However, ANM has seldom been applied

to SAR imaging due to the property of SAR echo signal, and to our knowledge hardly any literature

analyzes the off-grid problem in CS-based methods for DLSLA 3-D SAR imaging.

In this paper, for DLSLA 3-D SAR with sparse and non-uniform APC distribution, we combine the 3-D

pseudo-PFA with ANM, which not only possesses the merits of 3-D pseudo-PFA, i.e., high reconstruction

precision (with the aid of wave front curvature phase error compensation), low computational and memory

cost [7], but also eliminates the off-grid effect that exists in traditional CS-based methods for cross-track

dimensional reconstruction. The proposed method considers the case with compressed measurements and

takes the system noise into account, which is an innovative exploration. Besides, we analyze the off-grid

effect and basis mismatch problem for DLSLA 3-D SAR, which will give a reference for system design

and array configuration.
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Figure 1 Imaging geometry of airborne DLSLA 3-D SAR.

2 Imaging principle for DLSLA 3-D SAR

2.1 Imaging geometry

The imaging geometry of airborne DLSLA 3-D SAR is shown in Figure 1. It operates nadir observation

and uses a sparse linear array distributed along the wing of the platform, i.e., X axis, the cross-track

dimension. By applying the MIMO array configuration, the linear array can achieve co-located transmit-

receive APCs according to the equivalent phase center principle [8]. The theoretic APCs distribution

should be uniform, which is usually not satisfied for practical system. The platform moves at altitude H

with constant velocity v, with Y axis as its along-track dimension. The Z axis, which is perpendicularly

downward to the XOY plane, represents the height dimension. The instantaneous position of the m-th

APC is denoted by the vector Qm = (xm, yn, 0),m ∈ [1,M ], N ∈ [1, Na], where xm is the cross-track

dimensional position of the APC, and yn is the n-th sample in along-track dimension, with yn = v×n×△ty
and △ty representing the pulse repetition interval. For a target P in the 3-D imaging scene, whose

coordinates are defined by the vector rp = (xp, yp, zp), P
′ is its projection onto XOZ plane and ρ = ‖rp‖2

is its distance from the coordinate origin, where ‖ · ‖2 denotes the l2-norm. With φ = ∠POP ′ and

θ = ∠P ′OZ, the coordinates of P are (xp, yp, zp) = (ρcosφsin θ, ρsinφ, ρcosφcos θ). At the n-th along-

track sample instant, the distance between P and the m-th APC is R(m,n;P ) = ‖Qm − rp‖2.

2.2 DLSLA 3-D SAR echo signal model

Suppose that the radar transmits a linear frequency modulated (LFM) signal with carrier frequency fc,

chirp rate Kr, pulse width T , then the echo signal after compensating for the phase error induced by the

difference between the APCs and the real transceivers [11] can be expressed as

sr(xm, yn, t) =

∫∫∫

P∈Ω

σ(P )× rect

(

t− td
T

)

× exp
{

−j2πfctd + jπKr(t− td)
2
}

dxp dyp dzp, (1)

where Ω is the support of the 3-D observed scene, σ(P ) represents the radar reflectivity of target P ,

td = 2 × R(m,n;P )/c is the time delay and c is the speed of light. After matched filtering, the range

frequency domain signal can be written as

sr(xm, yn, fk) =

∫∫∫

P∈Ω

σ(P )× exp

{

−j
4π(fc + fk)

c
R(m,n;P )

}

dxp dyp dzp, (2)
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where fk ∈ [−KrT/2,KrT/2], k ∈ [1, Nr], and Nr is the wave propagation dimension samples number.

Recall that

R(xm, yn;P ) =
√

(xm − ρ cosφ sin θ)2 + (yn − ρ sinφ)2 + (0− ρ cosφ cos θ)2

= ρ−
rp ·Qm

ρ
+
∑

i1

∑

i2

O(xi1
m × yi2n ),

(3)

where rp · Qm/ρ = xm cosφ sin θ + yn sinφ,
∑

i1

∑

i2
O(xi1

m × yi2n ) with i1 + i2 > 2 are the high order

expansion term, i1 and i2 are both non-negative integers. Defining ρ′ = ρ− xm cosφ sin θ − yn sinφ and

inserting (3) into (2), we get

sr(xm, yn, fk) =

∫∫∫

P∈Ω

σ(Pρ,θ,φ)× exp

{

−j
4π(fc + fk)

c

(

ρ′ +
∑

i1

∑

i2

O(xi1
m × yi2n )

)

}

dρ dφdθ. (4)

2.3 3-D Pseudo-PFA

Define

so(xm, yn, fk) =

∫∫∫

P∈Ω

σ(Pρ,θ,φ)× exp

{

−j
4π(fc + fk)

c
ρ′
}

dρ dφdθ,

se(xm, yn, fk) = exp

{

−j
4π(fc + fk)

c

∑

i1

∑

i2

O(xi1
m × yi2n )

}

,

(5)

then sr(xm, yn, fk) = so(xm, yn, fk)×se(xm, yn, fk), where the last term represents the wave-front curva-

ture phase error which will cause imaging distortion and defocus. By adopting the pseudo-polar format-

ting and compensating the wave-front curvature phase error, the radar reflectivity of the 3-D observed

scene can be obtained by the endomorphism mapping principle of the pseudo-PFA [7],

σ̂(α, β, γ) =

M
∑

m=1

Na
∑

n=1

Nr
∑

k=1

P [sr(xm, yn, fk)] · P [sHe (xm, yn, fk)] · exp{j2π(αf̂k − βx′
m − γy′n)}, (6)

where the superscript H is the complex conjugate, P [·] represents the pseudo-polar formatting, x′
m =

xm(fc + fk)/fc, y
′
n = yn(fc + fk)/fc, f̂k = fc + fk, and α, β, γ have the following expression respectively,

α =
2ρ

c
, β =

2 cosφ sin θ

λc

, γ =
2 sinφ

λc

, (7)

where λc = c/fc is the nominal radar wavelength. Obviously, the 3-D pseudo-polar coordinate image in

(α, β, γ) domain can be obtained by the kernel of a 3-D Fourier transform with respect to ( f̂k, x
′
m , y′n).

The corresponding Cartesian coordinates of (x, y, z) can be obtained by interpolating as

x =
λcc

4
αβ , y =

λcc

4
αγ , z =

λcc

4

√

4

λ2
c

− β2 − γ2. (8)

However, the practical DLSLA 3-D SAR system is often subject to possible channel failure or array

design imperfection, which leads to a sparse and non-uniform virtual APCs distribution. Then the cross-

track FFT of the 3-D FFT kernel for (6) cannot be used.

3 3-D imaging scene reconstruction by sparse recovery method

After applying a wave propagation and along-track 2-D FFT to the pseudo-polar formatted signal, the

α and β dimensional focused 3-D signal turns into

U(α, x′
m, γ) =

∫

σ(α, β, γ) · sinc(Brα) · sinc(Laγ) · exp {j2πβx
′
m} dβ

=

∫

σ̂(α, β, γ) exp {j2πβx′
m}dβ,

(9)

where Br is the signal bandwidth, La is the cross-track virtual array length, and σ̂(α, β, γ) is the radar

reflectivity coefficient needed to be recovered.
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3.1 Sparse property analysis for different kinds of targets

We know that an imaging scene usually contains different kinds of targets, including point targets, lo-

calized or distributed extended targets [14], and volumetric scatterers [3]. Point targets mainly include

dihedral or trihedral reflectors, metallic structures, etc., and extended targets often refer to urban build-

ings or mountainous areas. For DLSLA 3-D SAR imaging geometry, these two kinds of targets behave

typically pixel-wise spatial sparsity, i.e., each along-track and wave propagation pixel contains only a

limited number of dominating scatterers compared with the total cross-track dimension. Nevertheless,

for volumetric targets or rough surface, e.g., vegetated areas, the pixel-wise sparsity in the spatial domain

is rarely true. However, a proper sparse basis, e.g., wavelet basis, can be utilized to represent the scene

sparsely in the corresponding domain [3]. Thus, unlike traditional 2-D SAR, the 3-D SAR imaging scene

usually has a sparse representation in a certain domain. In this paper, we mainly consider the scenes of

point targets and extended targets, whereas volumetric scatterers are left for further study.

3.2 On-grid CS

In the framework of traditional CS, to recover the sparse signal we usually discretize the potential space

in equal grids and assume the true scatterers located exactly on the pre-discretized grids. Recall (9) and

suppose that the true locations of scatterers in β dimension are βtrue = [β1, β2, . . . , βK ], where K is the

number of the scatterers. For convenience, we use Um and σ̂(β) to represent U(α, x′
m, γ) and σ̂(α, β, γ),

respectively. After dividing β domain into equal grids as β = [β′
1, β

′
2, . . . , β

′
L] with L ≫ K, for each (α, γ)

pixel, Eq. (9) can be expressed as

Um =

L
∑

i=1

σ̂(β′
i) exp(j2πβ

′
ix

′
m), (10)

and the matrix expression for each (α, γ) pixel is

Um = R · e+ ε, (11)

where Um = [U1, U2, . . . , UNe
]T, Ne is the number of APCs, e = [(σ̂(β′

1), σ̂(β
′
2), . . . , σ̂(β

′
L)]

T is the zero-

padded version of signal σ̂(β) from βtrue to β, ε is the noise and R is the measurement matrix with the

m-th row and i-th column element rmi = exp(j2πβ′
ix

′
m). When there is no priori knowledge of K and in

the presence of noise, the under-determined equation can be solved by convex L1-norm minimization [2],

ê = arg min
e

(‖Um −R · e‖22 + δ‖e‖21), (12)

where δ is the regularization parameter. If βtrue ⊂ β holds, the on-grid CS can give exact reconstruction,

i.e., if βn = β′
i then σ̂(β′

i) = σ̂(βn), otherwise, σ̂(β
′
j) = 0. However, when scatterers are not coincident

with the pre-discretized grids, i.e., βtrue * β, then the off-grid effect will arise. Analysis in [15] shows

that any off-grid scatterer located between two adjacent grids will spill non-zero values into all grids with

the amplitude following a Dirichlet kernel, which will highly deteriorate the reconstruction performance.

3.3 Measurement matrix coherence property and basis mismatch analysis

To remedy the off-grid effect we may attempt to use a denser grid, however, it will in turn greatly

increase the coherence of the measurement matrix for reliable sparse recovery [13]. Known from Eq.

(10), R approximates a random partial Fourier matrix when the APCs are equally spaced. In most cases,

the APCs follow a randomly uniform distribution and the coherence [13] of R is defined as

µ(R) = µ(rk, rp) = max
16k,p6L,k 6=p

|〈rk, rp〉|

‖rk‖2‖rp‖2
. (13)

Inserting the expression of rk and rp, i.e., the k-th and p-th columns of matrix R, into (13), yields

µ(R) = max
16k,p6L,k 6=p

∣

∣

∣

∣

∣

Ne
∑

m=1

exp{j2πx′
m(β′

k − β′
p)

∣

∣

∣

∣

∣

/

Ne. (14)
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Figure 2 Mutual coherence versus grid interval and sample number.

We know that the lower the level of mutual coherence, the better the reconstruction performance.

Figure 2 illustrates the mutual coherence versus grid interval and sample number in the case of uniformly

distributed APCs. From Figure 2 and Eq. (14) we know that for DLSLA 3-D SAR, large scene grids and

sufficient APCs will guarantee the low coherence. Besides, the above analysis is based on the assumption

that the transmitting waveform is LFM signal which has a relatively poor incoherence performance com-

pared with those waveforms obeying a specific Gaussian distribution, such as random signal or OFDM

signal [22]. Thus, considering the incoherence property, computational complexity and imaging perfor-

mance, a finer gridding is still not an advisable remedy for the off-grid effect. Besides, just like that in

the frequency mismatch, damping factors [15] may also exist in the measurement matrix R and this kind

of mismatch cannot be remedied by choosing proper girds in the framework of traditional CS.

3.4 Atomic norm and continuous CS

Unlike the traditional CS, ANM has been proposed to work in the continuous domain to eliminate the

off-grid effect, and this kind of sparse reconstruction approach is referred to as continuous CS [19–21].

Suppose we observe a signal which is a superposition of a few complex sinusoids,

xo
m =

K
∑

k=1

cke
j2πfkm , m ∈ [M ], (15)

where the support of K normalized frequencies is f = [f1, f2, . . . , fK ] ⊂ [0, 1], ck ∈ C is the complex

amplitude, [M ]
∆
= [0, . . . ,M − 1] or [−

⌊

M
2

⌋

, . . . ,
⌊

M
2

⌋

− 1] is an index with the length M , and ⌊·⌋

means rounding towards the nearest integer. Instead of observing xo
m on the whole index [M ], we have

only a portion set Ω ⊂ [M ] with L
∆
= |Ω| 6 M . Continuous CS is to recover complete support set

x = [xo
m] ∈ CM in the continuous domain with the measurements on the subset xo. Define atoms

a(f, ϕ) ∈ CM , f ∈ [0, 1], ϕ ∈ [0, 2π) as

[a(f, ϕ)]m = ej2πfm+jϕ, m ∈ M. (16)

Then Eq. (15) can be rewritten as

xo =

K
∑

k=1

|ck|a(fk, ϕk), (17)

where ϕk ∈ [0, 2π) is the phase of the k-th scatterer whose amplitude is |ck|. The atomic set A =

{a(f, ϕ) : f ∈ [0, 1], ϕ ∈ [0, 2π)} is defined as the simplest building blocks of the raw signal, the same
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way as one-sparse vectors for sparse signals and unit-norm rank-one matrices for low-rank matrices [19].

Then atomic norm is defined as the gauge function of the hull of A:

‖ x ‖A = inf{t > 0 : x ∈ t · conv(A)}

= inf
|ck|>0
ϕk∈[0,2π)
fk∈[0,1]

{

∑

k

|ck| : x =
∑

k

|ck|a(fk, ϕk)

}

. (18)

Due to the fact that low-dimensional faces of conv(A) correspond to signals involving only a few atoms,

the atomic norm can derive sparsity of the signal [19]. In the framework of continuous CS, only a subset

of entries Ω ⊂ [M ] is observed and the missing samples subset ΩC = [M ]\Ω can be estimated by ANM,

min
x

‖x‖A s.t. xm = xo
m , m ∈ Ω. (19)

Eq. (19) can be equivalently solved by an exact SDP, then dual polynomial can be used for identifying

the frequencies. For more details, readers can refer to [19].

3.5 Robust off-grid scatterers reconstruction by atomic norm minimization

Without loss of generality, next we consider the case with both compressed and contaminated measure-

ments, which is not much studied in the common application of ANM. By combining the compression

with noise, Eq. (17) turns into the matrix expression form,

y = Φx+w, (20)

where Φ ∈ RL×M is the sparse representing matrix that is an identical matrix for the sparse signal, and

w ∈ CL is the noise. Then, the atomic norm optimization can be used to reconstruct x from y,

min
x

1

2
‖y − Φx‖22 + τ‖x‖A, (21)

where τ is the regularization parameter. In the framework of bounded real lemma, the above atomic

norm optimization problem can be solved by the following equivalent SDP [20,21]:

min
q,x,u

1

2
‖y − Φx‖22 +

1

2
τ{tr(T (u)) + q} s.t.

[

T (u) x

xH q

]

≻0, (22)

where T (u) ∈ CL×L is the Hermitian Toeplitz matrix with its input u ∈ CL, tr(·) denotes the trace.

The SDP problem can be solved efficiently by many mature Matlab solvers such as CVX [23]. Then dual

optimization is implemented to identify the frequencies in the recovered signal [21]. The dual norm ‖ · ‖∗A
of the atomic norm that lies in a finite dimensional set is defined as

‖z‖∗A = sup
a∈A

〈z,a〉Re , (23)

where 〈z,a〉Re = Re(zHa) represents the real inner product. Suppose ẑ = ΦH(y − Φx̂) where x̂ is the

optimal solution of (22), then ẑ is the solution to the dual problem of (21) on the foundation of the strong

duality. According to the dual problem lemma proofed by [20], the solution for the frequency support set

of (20), defined by S, satisfies that

{

|〈ẑ,a〉| < τ , ∀a /∈ S,

〈ẑ,a〉 = τ , ∀a ∈ S,
(24)

i.e., the frequency support could be identified by finding the maximums of the inner product of ẑ and all

the atoms. After identifying the frequencies, the debiased amplitudes can be obtained by the least square

method. Since the atoms lie in the continuous domain, the estimated frequency support is guaranteed to

be a compact set [19], therefore, the off-grid effect in traditional CS will no longer exist.



Bao Q, et al. Sci China Inf Sci June 2016 Vol. 59 062310:8

3.6 Combine 3-D pseudo-PFA with atomic norm minimization for DLSLA 3-D SAR imag-

ing

To apply the ANM to DLSLA 3-D SAR cross-track imaging, we firstly formulate (9) with a proper set

of atoms. Suppose that the number of scatterers in a (α, γ) pixel is K, then Eq. (9) can be expressed as

Um =

K
∑

i=1

σ̂(βi) exp(j2πβix
′
m) , m ∈ [Ne] , (25)

where [Ne] is the measurements index with lengthNe. Insert x
′
m = m·d′ into (25) with d′ as the resampled

interval of the cross-track APCs. Multiplying both sides of (25) with exponential term exp(jπm) and

considering the noise, we have

Sm =

K
∑

i=1

σ̂(βi) exp(j2πfim) + wm, (26)

where Sm = Um · exp(jπm), fi = βi · d′ +
1
2 and wm is the additive noise.

According to the DLSLA 3-D SAR system parameters and the unambiguous imaging conditions referred

in [7], we know that the normalized frequency satisfies fi ∈ [0, 1]. Owing to the spatial sparse feature of

the 3-D imaging scene, the sparse representing matrix Φ is a binary sample matrix. Thus, the expression

(26) falls into the model of ANM. Then we can get fi and further βi by solving the SDP problem in (22)

and finding the maximums of the dual polynomial by (24). After that, the scatterer’s coefficient σ̂(βi)

can be easily obtained by the least square method.

3.7 Robust reconstruction conditions analysis

(1) Regularization parameter estimation

As shown in (22), to exactly resolve the SDP problem, the regularization parameter τ should be a

prior information, which depends on the dual atomic norm of the noise [21]. Supposing that the additive

noise follows the Gaussian distribution N (0, σ2
n), if the optimal regularization parameter is chosen as the

upper bound of the dual atomic norm, then it follows

τ = σn

(

1 +
1

lg(M)

)

√

M lg(M) +M lg(4π lg(M)). (27)

In a practical SAR system, the noise variance σ2
n is not a priori and needs to be estimated from the

measurements. Combining the property of line spectral estimation with SAR imaging, the estimation of

σ2 can be obtained by methods proposed in [11, 16, 21].

(2) Resolution and sampling number analysis

Recall that the APC index set is

[Ne] ⊂ [M ] =

{

−

⌊

M

2

⌋

, . . . ,

⌊

M

2

⌋

− 1

}

with origin at the middle point of the linear array, and the elements of set [Ne] can be obtained by

selecting from [M ]. According to the analyses and results in [19, 20], when the APC samples follow a

uniform distribution or Bernoulli distribution, the minimum separable location in β dimension satisfies

∆β = min
k 6=j

|βk − βj | >
c1

⌊(M − 1)/4⌋ · d′
(28)

for some small universal constant c1, then there exists a numerical constant C so that

Ne > Cmax

{

lg2
M

η
,K lg

K

η
lg

M

η

}

(29)
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Table 1 Simulation parameters

Parameters Value Parameters Value

Carrier frequency 37.5 GHz Signal bandwidth 250 MHz

Platform fly height 1500 m Range sampling number 2500

ATa) sampling number 236 AT sampling interval 0.015 m

Filled array CTb) APC number 236 CT sampling interval 0.015 m

AT beam width 14◦ CT beam width 14◦

a) AT is short for along-track; b) CT is short for cross-track

is enough to reconstruct the scatterers in β dimension by solving the SDP problem (22) with probability

at least 1− η [19,20]. In the case of non-uniform samples, the achievable resolution may break the above

restriction [21], i.e., when the APCs distribute sparsely and non-uniformly, the ANM may achieve a much

higher resolution than the restriction in (28). Moreover, if we want to achieve comparable resolution, it

also provides a reduction in the number of APCs when designing the array configuration.

4 Experiments and results

In this section, three experiments are presented to illustrate the performance of our proposed method.

Point targets and distributed scene are provided to evaluate the effectiveness. All experiments are per-

formed in MATLAB v8.3.0 environment, and CVX [23] is used to solve the SDP.

4.1 Cross-track multiple scatterers reconstruction performance analysis

(1) Reconstruction performance comparisons

For a practical imaging scene, usually more than one scatterer is located in the same wave propagation

and along-track resolution cell, i.e., after pseudo-polar formatting they are inside the same (α, γ) pixel.

In the first experiment we assume that there are three scatterers inside one (α, γ) pixel and compare the

reconstruction performance of different methods. The three scatterers’ amplitudes are all equal to 1 and

their phases follow uniform distribution. The first two scatterers are located within one β dimensional

Rayleigh resolution and the third one is more than one resolution cell apart from them. The simulation

parameters are listed in Table 1. We randomly choose 50% APCs from the filled virtual array and consider

the signal to noise ratio (SNR) 30 dB. After pseudo polar fomatting, we implement the ANM, L1-norm

minimization and multiple signal classification (MUSIC) for β dimensional reconstruction. For L1-norm

minimization, we use the iterative thresholding algorithms (IST) [24] for implementation and the grid

interval is set as ∆g = factror · ρfnor , where ρfnor is the normalized frequency Rayleigh resolution and the

parameter factor is assigned to {1, 1/2, 1/4} in the following simulations respectively. The normalized fre-

quencies fnor, which are transformed from β dimensional locations by (26), are guaranteed to have a shift

from the pre-discretized grids. Figure 3 shows the reconstruction results of the normalized frequencies.

ANM outperforms L1-norm minimization both in frequencies location and amplitude estimation, and it

is shown that a finer grid is not an advisable remedy for the off-grid effect. Compared with MUSIC, ANM

has no sidelobes and does not need the scatterer number as a priori. Thus, in the following experiments

we only use ANM and L1-norm minimization with grid factor = 1 for comparison.

(2) Quantitative comparisons

Quantitative comparisons are carried out in the following experiments to evaluate the algorithms. We

use four scatterers located at (−8.2 m, 100 m, 1500 m), (−6.5 m, 100 m, 1500 m), (16.4 m, 100 m, 1500 m),

(45.2 m, 100 m, 1500 m) for simulation. The reflectivity coefficient of the fourth scatterer is only 1/3

of the other three scatterers. Figure 4 shows the results under three different SNRs, and for display

convenience, we only give the cross-track profile of the reconstructed targets. We see that when SNR

is as low as 5 dB, the proposed method cannot give accurate reconstruction. When SNR increases

to 25 dB, the proposed method can reconstruct not only the closely separated scatterers but also the

weak target, while the method combining pseudo-PFA with L1-norm minimization (pseudo-PFA-L1) still

suffers from off-grid effect. Furthermore, to quantize the performance under different SNRs and sampling
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Figure 3 Normalized frequencies reconstruction results by ANM, L1-norm minimization and MUSIC, respectively. For

L1-norm minimization, the grid interval factor is (a) 1; (b) 1/2; (c) 1/4.

Figure 4 Cross-track profile of reconstruction results with different SNRs: (a) 5 dB; (b) 15 dB; (c) 25 dB.

numbers, we give the statistical performance via 100 Monte Carlo trials by the mean square error (MSE)

of the cross-track location estimation, which is defined as the error between the reconstructed locations

and the true locations. Since the cross-track dimensional target reconstruction of the proposed method

is a problem of parameters estimation, Cramer-Rao lower bound (CRLB) is a common benchmark to
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Figure 5 (Color online) (a) MSE vs SNR; (b) MSE vs APC sample ratio.

evaluate the performance. Supposing that the noise is Gaussian white noise and the APCs follow uniform

distribution, the CRLB of cross-track single target location is asymptotical [2, 25]:

CRLB(x̂p) =
3

2π2

(ρx̂p
)2

Ne · SNR
, (30)

where ρx̂p
is the cross-track resolution in Cartesian coordinate, SNR = (σ(x̂p)/σn)

2 is the target signal

to noise ratio. The CRLB of location estimation is a little different from (30) when there are multiple

scatterers to estimate. While suppose that the scatterers are uncorrelated and the Fisher information

matrix has no coupling, the difference is slight [2,25]. We can use (30) as a rough benchmark to evaluate

the performance of targets reconstruction in cross-track dimension.

Figure 5(a) gives the MSE in the presence of Gaussian white noise with different SNRs under APC

sparsity ratio (defined as the value of Ne/M) 0.5. We see that when SNR is low, both the proposed

method and pseudo-PFA-L1 have high errors. As the SNR increases to 25 dB, the MSE of the proposed

method is obviously lower than pseudo-PFA-L1. When SNR becomes larger, both algorithms have lower

errors, but the proposed method still has a better performance than pseudo-PFA-L1, which still suffers

from off-grid effect. Figure 5(b) shows the MSE under different APC sparsity ratios and the SNR of

Gaussian white noise is 25 dB. We can see that with fewer APCs the proposed method can achieve more

satisfactory results than pseudo-PFA-L1, which is in accordance with the analysis in Section 3.

Next, we will compare the computational complexity of the algorithms. It is known that the pseudo-

PFA is computationally effective, thus, the main computational time is determined by the cross-track

reconstruction algorithm. In the experiment with SNR=25 dB and APC sample ratio 0.5, for the cross-

track reconstruction of one (α, γ) pixel, it takes about 19 s to use ANM, while about 1.1 s to implement

L1-norm minimization by IST. We know that when using CVX to solve the SDP in ANM, it uses SDPT3

solver and adopts the interior point methods to solve the program [23,26]. For interior-point methods, the

number of iterations is usually small and the most expensive step in each iteration is the computation of

the Schur complement. The computational complexity of different path-following algorithms of interior-

point methods are slightly different, but they are rough on the order of O(M2 ·N2 +Ne ·M3). Results

in [19] show that the computational burden of ANM approximates that of basis pursuit (BP), which is

higher than that of IST, a fast reconstruction algorithm with computational complexity about O(M ·

Ne +M · logM). Considering the reconstruction performance, it is acceptable to use ANM for 3-D scene

reconstruction. Interested readers can refer to [19–21] for some fast methods to approximate ANM.

4.2 DLSLA 3-D SAR imaging of point targets

In this subsection, point targets simulation is shown to verify the proposed method for DLSLA 3-D SAR

imaging. Simulated parameters are listed in Table 1. There are eight scatterers with the unit reflectivity

in the Cartesian coordinate system, as shown in Figure 6(a). After transforming (X,Y, Z) coordinates

into (α, β, γ) domain, the projection image onto βγ plane is shown in Figure 7(a). For pseudo-PFA-L1 the
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Figure 6 (a) Point targets locations in (X, Y, Z) coordinate system. 3-D imaging result (top 15 dB magnitude) by (b)

the proposed method; (c) pseudo-PFA-L1.

Figure 7 (a) Projection of the true scatterers onto βγ plane compared with the nearest grids. Imaging projection (black

spots) onto βγ plane by (b) the proposed method; (c) pseudo-PFA-L1.

discretized grid interval is chosen as the Rayleigh resolution [7] δβ = 0.89/Le, where Le is the length of

the cross-track array. Figure 7(a) shows that on βγ plane there are scatterers off the grids. We randomly

choose 50% APCs from the filled virtual array and the SNR is 25 dB.

The projection of the 3-D polar reconstructed images onto βγ plane by the proposed method and

pseudo-PFA-L1 are shown in Figure 7(b) and (c), respectively. The 3-D imaging result in (X,Y, Z) coor-

dinate system by the proposed method is shown in Figure 6(b), and Figure 6(c) gives the corresponding
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Figure 8 3-D reconstructed image in (X, Y, Z) coordinate system by (a) the proposed method; (b) pseudo-PFA-L1.

Figure 9 XY plane projection image by (a) the proposed method; (b) pseudo-PFA-L1.

result by pseudo-PFA-L1. Figures 6 and 7 indicate that when the off-grid effect and noise exist, the

reconstructed result from the traditional CS suffers from lots of spurious and inaccurate scatterers. By

contrast, the proposed method can perform a much more satisfactory reconstruction result. The total

time for the 3-D scene reconstruction by the proposed method is about 81 h, while about 5.7 h by the

pseudo-PFA-L1 that uses IST for L1-norm minimization.

4.3 DLSLA 3-D SAR imaging of distributed extended targets

In this subsection, an airborne CSAR 2-D image and its DEM data [4] are used to simulate the distributed

scene. The scene has the extent of 300 m × 300 m × 40 m in the Cartesian coordinate system with the

system parameters listed in Table 1. The along-track coordinate (Y dimension) of scatterers is uniformly

distributed in [−150 m, 150 m] with interval 1.5 m. To simulate the off-grid scatterers, the cross-track

coordinate (X dimension) of scatterers has a ±10% random deviation from the uniform distribution

[−150 m, 150 m] with interval 1.5 m. The grid interval for pseudo-PFA-L1 is chosen as the β dimensional

Rayleigh resolution, therefore, after transformed into (α, β, γ) domain, off-grid scatterers exist in the

simulated scene. 50% APCs are randomly selected from the filled virtual array and the two APCs at

both ends of the virtual array are always left out to guarantee the total array length. The SNR is chosen

as 25 dB. The 3-D reconstructed image in (X,Y, Z) coordinate system by the proposed method is shown

in Figure 8(a), and Figure 8(b) gives the corresponding result from pseudo-PFA-L1. The orthogonal

projection images onto the XY plane by the two methods are illustrated in Figure 9. Obviously, pseudo-

PFA-L1 method suffers from many spurious reconstructed scatterers and loses many image details for

the distributed extended scene with off-grid scatterers. By contrast, the proposed method shows better

image contrast and much clearer shape of road, hydropower station, etc.
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5 Discussion and conclusion

DLSLA 3-D SAR whose imaging scene shows sparsity in a certain domain, can exploit the sparse recovery

technique to achieve cross-track dimensional high resolution in the case of sparse and non-uniform cross-

track APCs distribution. This paper analyzes the off-grid effect of traditional CS and proposes a method

exploiting the 3-D pseudo-PFA and atomic norm minimization (ANM) for DLSLA 3-D SAR imaging.

By transforming the atomic norm optimization as an SDP, the proposed method can avoid the off-grid

effect and achieve continuous sparse signal reconstruction. The sparse reconstruction method provides a

reference for practical array design, i.e., to achieve a comparable performance we may no longer need a

filled cross-track virtual array, which will decrease the system burden and expense. Moreover, the paper

gives the conditions that can guarantee the cross-track dimensional exact reconstruction. The method is

suitable for DLSLA 3-D SAR imaging of point targets and extended scenes which both behave spatial

sparsity. The experiments verify the imaging performance and the robustness of the proposed method.

For volumetric scatterers scene that needs a proper spare representation basis such as wavelet basis, the

atomic norm approach may also perform better than the traditional CS, which needs further study.
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