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Abstract Conventional space-time adaptive processing (STAP) requires large numbers of independent and

identically distributed (i.i.d) training samples to ensure the performance of clutter suppression, which is hard to

be achieved in practical complex nonhomogeneous environment. In order to improve the performance of clutter

suppression with small training sample support, a robust and fast iterative sparse recovery method for STAP is

proposed in this paper. In the proposed method, the sparse recovery of clutter spatial-temporal spectrum and the

calibration of space-time overcomplete dictionary are achieved iteratively. Firstly, the robust solution of sparse

recovery is derived by regularized processing, which can be calculated recursively based on the block Hermitian

matrix property, afterwards the mismatch of space-time overcomplete dictionary is calibrated by minimizing the

cost function. The proposed method can not only alleviate the effect of noise and dictionary mismatch, but also

reduce the computational cost caused by direct matrix inversion. Finally, the proposed method is verified based

on the simulated and the actual airborne phased array radar data, which shows that the proposed method is

suitable for practical complex nonhomogeneous environment and provides better performance compared with

conventional STAP methods.
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1 Introduction

Space-time adaptive processing (STAP) is an effective technique to suppress clutter and achieve moving

target detection for airborne phased array radar [1]. According to the RMB rule [1], full dimension

STAP requires at least twice of the system degrees of freedom (DoFs) of the independent and identically

distributed (i.i.d) training samples. However, in practical complex nonhomogeneous environment, it is

very difficult to collect sufficient i.i.d training samples, so that the clutter suppression would severely

deteriorate. So it is necessary to develop novel STAP methods which can achieve acceptable performance

with small training sample requirement. In the past three decades, many STAP algorithms have been

proposed to counteract this problem. Reduced-dimension STAP algorithms [2–5] such as the extended

factored algorithm (EFA) and joint-domain localized (JDL) algorithm can reduce the requirement of
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number of training samples to twice of the reduced-dimension. However, the performance of reduced-

dimension STAP methods is easily influenced by the clutter environment. Reduced-rank STAP algorithms

[6–8] such as the principle-components (PCs) and multistage Wiener filter (MWF) can reduce the number

of training samples to twice of the clutter rank, but it is difficult to determine the rank of clutter in

practical scenarios, and the inappropriate rank selection would lead to serious performance loss. Recently,

knowledge-aided techniques have been developed to improve STAP performance with small training

support. However, precise environmental prior knowledge is difficult to obtain effectively.

In recent years, the sparse recovery techniques have been applied for STAP. The sparse recovery

techniques can effectively estimate the clutter spatial-temporal spectrum with limited training samples,

which can significantly improve the convergence compared with conventional STAP methods. The prob-

lem of clutter spatial-temporal spectrum sparse recovery is usually formulated as basis pursuit de-noising

(BPDN) problem [9–11], which can be solved by convex optimization. However, the computational

complexity will increase extremely when the dimension of convex optimization becomes large, which is

very difficult to be implemented for STAP. Focal underdetermined system solution (FOCUSS) employ-

ing lp-norm minimization to achieve sparse recovery recursively [11] and the complex-valued Homotopy

technique [12] have been investigated. However, the performance of these methods is heavily affected by

the mismatch of the space-time overcomplete dictionary and additive noise. Moreover, the pseudo inverse

operation in the recursive processing will lead to huge computational burden.

In order to improve the robustness of clutter suppression for noise and dictionary mismatch in practical

complex nonhomogeneous environment and reduce the computational complexity caused by direct matrix

inversion of conventional sparsity-based STAPmethods, a robust and fast iterative sparse recoverymethod

for STAP is proposed in this paper. In the proposed method, the sparse recovery of clutter spatial-

temporal spectrum and the calibration of space-time overcomplete dictionary are executed iteratively.

The robust solution of sparse recovery is derived by regularized processing and calculated recursively

based on the block Hermitian matrix property, afterwards the mismatch of space-time overcomplete

dictionary is calibrated by minimizing the cost function. The proposed method is verified based on

simulated and actual airborne phased array radar data.

This paper is organized as follows. The signal model for side-looking airborne phased array radar is

shown in Section 2. The sparsity of clutter spatial-temporal spectrum is analyzed in Section 3. The

proposed robust and fast iterative sparse recovery method for STAP is derived in Section 4. The compu-

tational complexity is analyzed in Section 5. The clutter suppression performance is investigated based

on the simulated data, MCARM data and actual measured airborne radar data in Section 6, and the

conclusions are given in Section 7.

2 Signal model

The side-looking antenna array configuration of airborne phased array radar is considered, and the cor-

responding geometry is shown in Figure 1. The antenna array is composed of N antenna element linear

array with uniform half-wavelength spacing, and aligned with the velocity direction of platform. M iden-

tical pulses are transmitted during each coherent processing interval (CPI) at a constant pulse repetition

frequency (PRF) fr. The platform altitude is h, the velocity is va, and the frequency wavelength is λ. It

is known that radar detection is a binary hypothesis problem where hypothesis H1 corresponds to target

presence and hypothesis H0 corresponds to target absence.

{

H0 : x = xi,

H1 : x = xs + xi,
(1)

where xi is composed of clutter xc and noise xn, xs is the received target echo, and the space-time

snapshot is expressed as a NM × 1 vector.

The clutter data of each range cell can be modeled as the superposition of Nc independent clutter

patches which are distributed in azimuth with angle interval ∆ϕ = 2π/Nc. Each clutter patch can be
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Figure 1 Geometry of side-looking antenna array configuration.

described by the elevation angle θ and the azimuth angle ϕ. The spatial frequency ϑc,i and the normalized

Doppler frequency ωc,i of the ith clutter patch can be respectively denoted by

ϑc,i =
dA
λ

cos (θi) sin (ϕi) , ωc,i =
2va
λfr

cos (θi) sin (ϕi) , (2)

where i = 1, 2, . . . , Nc, and dA is the inter-element spacing. Hence the space-time steering vector of ith

clutter patch can be expressed by

v(ωc,i, ϑc,i) = b(ωc,i)⊗ a(ϑc,i), (3)

where b(ωc,i) = [1, exp(j2πωc,i), . . . , exp(j(M − 1)2πωc,i)]
T is the M × 1 temporal steering vector, and

a(ϑc,i) = [1, exp(j2πϑc,i), . . . , exp(j(N − 1)2πϑc,i)]
T is the N × 1 spatial steering vector. ⊗ and (·)T

denote the Kronecker product and vector transposition, respectively. The space-time clutter snapshot of

lth range cell is expressed by

xc =

Nc
∑

i=1

ξ̃ivi, (4)

where ξ̃i denotes the random complex amplitude corresponding to ith clutter patch associated with radar

transmitting power, slant range, and antenna patterns. Thus, the space-time snapshot of lth range cell is

xl = xc + xn =

Nc
∑

i=1

ξ̃iv(fs,i, fd,i) + xn, (5)

where xt,l(m) is the N × 1 data vector received by mth pulse, and the noise is assumed to be Gaussian,

spatially and temporally white. Hence the NM ×NM space-time covariance matrix can be calculated

by R = E[xlx
H
l ], where H is the conjugate transpose operator. The STAP weight vector is derived from

the maximization of signal to clutter and noise ratio (SINR), which is given by

w = R−1vt(ωt, ϑt), (6)

where vt (ωt, ϑt) is the target space-time vector, and R is a prior unknown in practice, which is usually

estimated from training samples around the range cell under test as

R̂ = E[xxH] =
1

K − 1

K−1
∑

k=1,k 6=l

xkx
H
k

= Rc + σ2I =
∑Nc

i=1
E
{

∣

∣ξ̃i
∣

∣

2
}

[

b(fd,i)b(fd,i)
H
] [

a(fs,i)a(fs,i)
H
]

+ σ2I, (7)

where K is the number of i.i.d training samples around lth range cell under test.
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Figure 2 Sparse distribution of clutter spectrum in spatial-temporal plane.

3 Sparsity of clutter spatial-temporal spectrum

The clutter component xc is the superposition of different clutter patches with corresponding spatial

frequency and Doppler frequency as analyzed in Section 2. In order to demonstrate the sparsity of clutter

spectrum, the whole spatial-temporal plane is firstly discretized into Ns and Nd, where Ns = ρSN and

Nd = ρdM grids are the number of spatial and Doppler bins, respectively. Therefore Eq. (5) can be

rewritten as

xl = xc + xn =

Nd
∑

i=1

Ns
∑

j=1

γ̃i,jv (fd,i, fs,j) + xn = Φγl + xn, (8)

where γl = [γ̃l,1,1, γ̃l,1,2, . . . , γ̃l,Ns,Nd
] is the NsNd × 1 complex amplitude of xc from the lth range cell

snapshot which represents the clutter spectrum. NM ×NsNd matrix Φ composed of all possible space-

time steering vectors is the space-time overcomplete dictionary, which is given by

Φ = [v (fd,1, fs,1) ,v (fd,1, fs,2) , . . . ,v (fd,1, fs,Ns
) , . . . ,v (fd,Nd

, fs,Ns
)] . (9)

Then the space-time covariance matrix in (7) can be rewritten as

R =

Nd
∑

i=1

Ns
∑

j=1

|γ̃i,j |
2
v (fd,i, fs,j)v (fd,i, fs,j)

H
+ σ2I. (10)

It is known that major components of the clutter spatial-temporal spectrum are distributed near the

ridge determined by coupling relationship between the spatial frequency and the Doppler frequency of

clutter. As shown in Figure 2, the complex amplitude in most area of the spatial-temporal plane is

rather small, so the clutter spectrum shows great spares distribution character with respect to the whole

plane. Therefore, if the complex amplitude γl can be estimated effectively based on the property of sparse

distribution, the space-time covariance matrix R can be well reconstructed by complex amplitude and

corresponding space-time steering vectors.

As NsNd is much bigger than the system DoFs, the space-time dictionary Φ is overcomplete and highly

correlated, so that Eq. (8) is undermined, which may have many solutions. However, based on the theory

of sparse recovery [13–15], the ill-posed equation can be solved effectively with limited sample support.

The sparse recovery of clutter spectrum can be formulated as BPDN problem, which is solved by the

l1-norm, and the minimization of l1-norm is given as

γ̂l = arg min ‖γl‖1

subject to ‖xl −Φγl‖2 6 ε,
(11)
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where l1-norm guarantees the sparsity of γl, and the l2-norm restrains the estimation error within ε.

Eq. (11) can also be given as LASSO problem

γ̂l = argmin
γl

{‖xl −Φγl‖2 + κ ‖γl‖1} , (12)

where κ is the regularization parameter. By averaging γl of each training sample, the sparse recovery

of clutter spatial-temporal spectrum can be obtained, and then the space-time covariance matrix R and

the adaptive weighting vectors will be implemented correspondingly.

4 Proposed robust and fast iterative sparse recovery method for STAP

The conventional sparsity-based STAP methods are generally developed by l1-norm optimization, which

has been shown in Section 3. However, the computational burden will become huge with the increase

of the dimension of l1-norm optimization, which restrains extremely the implementation of conventional

sparsity-based STAP methods. FOCUSS method [16] is one of fast approximation algorithms, which has

good sparse recovery performance for STAP based on lp-norm optimization and iterative calculation [11].

However, the mismatch between the space-time overcomplete dictionary and actual clutter distribution

is ignored in FOCUSS method, and the additive noise is also not considered in the iterations, so that the

recovery performance of FOCUSS method will deteriorate significantly in practical complex nonhomoge-

neous environment. Moreover, the matrix inverse calculation is still considerable computational burden

in the iterations.

In actual clutter environment, the clutter component would possibly be located between two grids

rather than the exact gird point of the dictionary, so the mismatch between the space-time overcomplete

and actual clutter distribution cannot be avoided. When the mismatch is considered, the space-time

snapshot of lth range cell can be changed into [6]

xl = xc + xn =

Nd
∑

i=1

Ns
∑

j=1

γ̃i,jv (fd,i, fs,j) + xn = Θγl + xn, (13)

where Θ = Φ+ΛΦ denotes the actual overcomplete dictionary and Λ is the mismatch matrix. Therefore,

a robust and fast iterative sparse recovery method for STAP in practical environment is proposed, and

the main procedures of proposed method are mainly demonstrated in the following.

4.1 Sparse recovery processing

The effect of additive noise is not considered in the basic FOCUSS method [11]. However, the additive

noise is invertible in practical environment, which will increase the recovery error of FOCUSS method.

Therefore, in this paper the regularized processing is employed to reduce the effect of additive noise in

the sparse recovery. So that the spares recovery problem in (11) can be converted as

min
γl

J (γl) =
NsNd
∑

i=1

‖γl,i‖p

subject to: ‖xl −Θγl‖2 6 ε,

(14)

then the cost function is given by Lagrange multiplier method

L (γl) = J (γl) + α ‖xl −Θγl‖2 , (15)

where α is the Lagrange multipliers matching the noise level. By solving the gradient of γl, we can get

∇L (γl) = |p|
∏

(γl)γl + α
(

ΘHΘγl −ΘHxl

)

, (16)

where
∏
(γl) = diag(|γl,1|

p−2, . . . , |γl,NsNd
|p−2), then the appropriate Hessian matrix can be obtained by

∇2L (γl) = |p|
∏

(γl) + αΘHΘ. (17)
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Afterwards by applying the quasi-Newton method, we can get

γ
(k+1)
l = γ

(k)
l −

[

∇2L
(

γ
(k+1)
l

)]−1

· ∇L
(

γ
(k+1)
l

)

. (18)

Then by substituting (16) and (17) into (18), we can get

γ
(k+1)
l =

[

δ
∏

(

γ
(k)
l

)

+ΘHΘ
]−1

ΘHxl, (19)

where δ = 1/α. By defining (W (k))−2 =
∏
(γ

(k)
l ) and Θ(k) = ΘW (k), where

W (k) = diag

(

∣

∣

∣
γ
(k)
l,1

∣

∣

∣

1−p/2

, . . . ,
∣

∣

∣
γ
(k)
l,NsNd

∣

∣

∣

1−p/2
)

is the diagonal weighting matrix at the kth iteration, and then the solution at kth iterative can be

derived as

γ
(k+1)
l = W (k)

(

Θ(k)
)H

[

δI +Θ(k)
(

Θ(k)
)H

]−1

xl. (20)

The low-resolution estimation based on Fourier spectrum is employed as the initial value of γl, i.e.,

γ
(0)
l = ΦHxl, and then the calculation can be executed iteratively as (20). During the iterations,

the prominent components in γ
(k)
l are gradually reinforced, while the remaining small components are

suppressed until they become close to zero. Finally, when the absolute difference of γ
(k)
l is smaller than

the convergence threshold, the spares recovery result is obtained. From (20), it can be found that when

noise level is reduced to 0, i.e., δ → 0 the proposed method will degenerate to the FOCUSS method.

Because the regularized processing is applied in the iteration, the proposed method can effectively improve

the recovery performance under noise.

It is easily found from (20) that the matrix inversion is still needed to calculate complex amplitude,

which will significantly influence the convergence of iteration. Although the adaptive subspace selection

[11] can be applied to reduce the dimension of complex amplitude in the iterations, the direct inverse

calculation still cannot be avoided. However, based on the mathematical analysis, it can be proved

that the matrix T = δI + Θ(k)(Θ(k))H is a Hermitian matrix, therefore the matrix inversion can be

calculated recursively based on the block Hermitian matrix property [17–19]. Assuming that T is the

D × D matrix, Td+1 is the (d + 1)th leading principal minor of T , i.e., Td+1 = T (1 : d + 1, 1 : d + 1),

where d = 1, 2, . . . , D − 1. The inverse matrix of Td+1 can be calculated by the inverse matrix of dth

leading principal minor Td, and defined as Qd+1, which is also a Hermitian matrix

Qd+1 =

[

Qd qd+1

qH
d+1 qd+1

]

, (21)

where qd+1 is the (d+1)th diagonal component ofQd+1, i.e., qd+1 = Qd+1(d+1, d+1). qd+1 is the column

vector consisting of the first d components of Qd+1, i.e., qd+1 = Qd+1(1 : d, 1 : d). Qd = Qd+1(1 : d, 1 : d)

denotes the dth leading principal minors of Qd+1. Based on mutual inverse principle, Td+1Qd+1 can be

calculated as

Td+1Qd+1 =

[

Td td+1

tHd+1 td+1

][

Qd qd+1

qH
d+1 qd+1

]

=

[

Id 0d+1

0H
d+1 1

]

, (22)

where td+1 = Td+1(d+ 1, d+ 1), and 0d+1 is d× 1 zero vector. Thus, the inverse matrix of Td+1 can be

obtained by

T−1
d+1 =

[

T−1
d 0d+1

0H
d+1 0

]

+
1

αd+1

[

bd+1b
H
d+1 bd+1

bHd+1 1

]

, (23)

where bd+1 = −T−1
d td+1, αd+1 = td+1 − tHd+1T

−1
d td+1 = td+1 + tHd+1bd+1. According to (23), it is found

that the inverse matrix can be obtained recursively by the leading principal minor of T , which avoids

calculating the inverse matrix directly in the iteration.
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4.2 Mismatch calibration processing

The mismatch between the space-time overcomplete dictionary and actual clutter distribution is ignored in

conventional sparsity-based STAP methods, which would decrease the performance of clutter suppression.

Therefore, the mismatch calibration processing is investigated in this paper. After γ
(k)
l is obtained at the

kth iteration, the estimation of Λ can be obatined by

Λ(k) = argmin
Λ(k)

J
(

Λ(k)
)

=
∥

∥

∥
Λ(k)Φ

∥

∥

∥

2
+
∥

∥

∥
xl −Θ(k)γ

(k)
l

∥

∥

∥

2
. (24)

By defining e(k) = xl −Φγ
(k)
l , and y(k) = Φγ

(k)
l , the cost function of (24) can be given as

J
(

Λ(k)
)

=
∥

∥

∥
Λ(k)Φ

∥

∥

∥

2
+
∥

∥

∥
e(k) −Λ(k)y(k)

∥

∥

∥

2
. (25)

Then the mismatch can be calculated by solving gradient equation

∂J
(

Λ(k)
)

∂Λ(k)
= Λ(k)

(

ΦΦH + y(k)
(

y(k)
)H

)

− e(k)
(

y(k)
)H

= 0. (26)

Therefore the estimation of Λ can be obtained

Λ(k) = e(k)
(

y(k)
)H

(

y(k)
(

y(k)
)H

+ΘΘH
)−1

. (27)

Afterwards, the space-time overcomplete dictionary is calibrated at the kth iteration byΘ(k) = Φ+Λ(k)Φ.

It can be found that the mismatch of space-time overcomplete dictionary can be calibrated gradually by

minimizing the corresponding cost function, so that the mismatch between the dictionary and actual

clutter distribution has been reduced effectively.

When the following convergence condition is satisfied as
∣

∣

∣

∣

∣

γ
(k+1)
l − γ

(k)
l

γ
(k+1)
l

∣

∣

∣

∣

∣

6 ξ, (28)

the iteration will stop, and then the sparse recovery is achieved. Then the reconstruction of space-

time covariance matrix R and adaptive weighting vector can be calculated correspondingly. The overall

implementation diagram of proposed method is summarized in Figure 3.

5 Computational complexity analysis

In this section, the computational complexity of the proposed method is analyzed and compared with

conventional STAP methods such as the sample matrix inversion (SMI) method, the disciplined convex

programming (CVX) method and the FOCUSS method. It is assumed that the system DoFs is DDoFs,

LSMI is the number of training samples for SMI method, LSP is the number of training samples for CVX

method, FOCUSS method and the proposed method, ρS and ρd are the resolution scale of spatial and

Doppler axis, respectively. KFOCUSS and KPRO are the numbers of iteration of FOCUSS and proposed

method, respectively. Then the computational complexity of SMI, CVX, FOCUSS and proposed methods

is summarized in Table 1.

In order to understand the computational complexity intuitively, the simulations have been carried out

and the corresponding results are shown in Figure 4. In the simulations, the number of DoFs D ranges

from 16 to 256, LSMI is 2DDoFs and LSP is 8, the resolution scale ρS and ρd are 4, respectively, all the

results are averaged over 500 Monte Carlo simulations.

It can be found from Table 1 and Figure 4 that the computational complexity of CVX method is higher

than that of other sparsity-based methods. The computational complexity of FOCUSS and proposed

method are decided by the size of iterations, which can be effectively reduced by adaptive subspace

selection. However, compared with FOCUSS method, the direct matrix inversion is avoided by recursive
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Input:
Space-time over complete dictionary Φ
Training samples xl,l=1,2,...,L

Iteration begin

Initialization:
Low-resolution estimation γ(0)=ΦHxl

Mismatch setting Λ(0)=0

Robust sparse recovery (kth iteration):
Space-time overcomplete dictionary Θ(k)=Φ+Λ(k)Φ

Diagonal weighting matrix W(k)=diag(|γ(k) |1−p/2,...,|γ(k)         |1−p/2)
Sparse recovery solution γ

(k+1)=W(k)(Θ(k))H[δI+Θ(k)(Θ(k))H]−1xl

l,1                     l,NsNd

l

l

Fast recursive calculation (kth iteration):
Sparse recovery solution T=δI+Θ(k)(Θ(k))H

Mismatch calibration (kth iteration):

Relative variable e(k)=xl−Φγ
(k), y(k)=Φγ(k)

Mismatch estimation Λ(k)=e(k)(y(k))H(y(k)(y(k))H+ΘΘH)−1

l                    l

Convergence?

γ(k+1)−γ(k)

γ(k+1)
�ξ

Output:

Sparse recovery solution of lth training sample γl=γ
(k+1) 

Space-time overcomplete dictionary of lth training sample Θl=Φ+Λ
(k+1)Φ 

All training samples
finished?

Reconstruction of space-time covariance matrix:

R=∑ ∑ ∑|γl,i,j|
2vl(fd,i,fs,j)vl(fd,i,fs,j)

H/L+σ2I

Adaptive weighting vector calculation:
w=R−1vt(fs,t,fd,t)

L   Nd   Ns

l=1 i=1 j=1

l

˜

l           l

l

Yes

No

Yes

No

Figure 3 Overall implementation diagram of the proposed method.

calculation in the proposed method. Moreover, owing to the robust sparse recovery, the number of

iteration can also be reduced, so the proposed method can effectively reduce the computational cost.

When the number of DoFs is 128, the computational complexity of FOCUSS method and the proposed

method are 6.664×104 MFLOPs and 1.319×104 MFLOPs, it is found that the computational complexity

of the proposed method is reduced by 80%. Meanwhile, although SMI method can provide much lower

computational complexity than sparsity-based methods, it should be noticed that SMI method requires

much more number of training samples. If and only if LSMI is at least twice of the DoFs, SMI method can
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Table 1 Computational complexity of SMI, CVX, FOCUSS and proposed method

Method Computational complexity

SMI O
(

LSMI (DDoFs)
2 +D3

DoFs

)

CVX O

(

LSP

KFocuss
∑

i=1

(ρsρdDDoFs)
3 +D3

DoFs

)

FOCUSS O

(

LSP

KFocuss
∑

i=1

(

KFocuss,i

)3
+D3

DoFs

)

Proposed method O

(

LSP

KPRO
∑

i=1

2
(

KFocuss,i

)3
/3 +D3

DoFs

)

50 100 150 200 250

Number of DoFs

 

 

SMI

CVX

FOCUSS

Proposed method

106

104

102

100

10−2

M
F

L
O

P
s

Figure 4 Computational complexity of SMI, CVX, FOCUSS and proposed method, when DDoFs ranges from 16 to 256.

Table 2 Simulation parameters

Parameter Value Parameter Value

Number of spatial elements 8 Number of temporal pulses in a CPI 8

Radar frequency 450 MHz Pulse repetition frequency 1200 Hz

Platform velocity 200 m/s Height of platform 12 km

Main beam look direction side-looking Clutter-to-noise ratio (CNR) 40 dB

Target normalized Doppler frequency 0.15 SNR 5 dB

just obtain the acceptable performance. However, so many training samples are very difficult to collect

in practical complex nonhomogeneous environment. On the other hand, the sparsity-based methods can

provide much better performance than SMI method, even the number of training samples is very small,

such as only 4–8 available training samples.

6 Clutter suppression performance analysis

In this section, simulated data, MCARM data [20] and actual measured airborne phased array radar data

are used to verify the clutter suppression performance of the proposed methods, and compared with SMI,

EFA, CVX, and FOCUSS methods.

6.1 Simulated data

The simulation parameters are listed in Table 2, where ρS and ρd are 4, respectively, and all the results

are averaged over 500 Monte Carlo runs.
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Figure 5 Output SINRs versus number of snapshots.
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Figure 6 Output SINRs of SMI, EFA, CVX, FOCUSS

and proposed method.
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Figure 7 Range detections of SMI, EFA, CVX, FOCUSS

and proposed method.

The output SINRs versus the number of snapshots based on SMI, EFA, CVX, FOCUSS and the

proposed method are investigated and the results are shown in Figure 5. It is found that the sparsity-

based STAP methods can obtain desirable SINR performance with small training sample support, which

exhibits much faster convergence than conventional STAP methods. Meanwhile, the proposed method

can provide better performance than other sparsity-based methods with the same number of training

samples, because the calibration of space-time overcomplete dictionary and the regularization in the

sparse recovery processing are applied in the proposed method.

The output SINRs with 4 training samples are investigated correspondingly and the results are shown in

Figure 6. It is found that SMI and EFA methods cannot obtain desirable SINR with small training sample

support, owing to the insufficient estimation of clutter covariance matrix, so that these two methods

could not provide desirable target detection performance in practical clutter environment. However,

the sparsity-based STAP methods could provide much better performance, because of good estimation

of clutter distribution so that the clutter covariance matrix can be well reconstructed. Moreover, the

proposed method can obtain better sparse recovery performance than conventional sparsity-based STAP

methods because of the calibration of space-time overcomplete dictionary and regularization processing.

The proposed method can effectively improve the SINR performance, especially in low Doppler frequency

region where the target is located.

In the following, the range detections with 4 training samples are also investigated correspondingly

and the results are shown in Figure 7. It is also found that SMI and EFA methods cannot suppress

the clutter effectively with small training sample support, owing to the insufficient estimation of clutter

covariance matrix, so that these two methods could not provide desirable target detection performance

in practical clutter environment. However, the sparsity-based STAP methods can effectively suppress the
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Figure 8 Output SINRs of SMI, CVX, FOCUSS and pro-

posed method based on MCARM data.
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Figure 9 Range detections of SMI, EFA, CVX, FOCUSS

and proposed method based on MCARM data.

clutter, because of good reconstruction of clutter covariance matrix. Moreover, the proposed method can

obtain better range detection performance than conventional sparsity-based STAP methods, because the

proposed method can produce the larger difference of output power between tested range cell and adjacent

range cells than FOCUSS and CVX methods, which is in accordance with results shown in Figure 6.

The proposed method will be very useful for target detection in practical complex nonhomogeneous

environment.

6.2 MCARM data

The MCARM data [20] is used to verify the STAP methods in this section, the selected data is from

acquisition 575 on flight 5 (file RL050575). The array was an L-band phased array antenna using

22 elements arranged as 2 × 11 configuration. The PRF of the radar is 1984 Hz, 128 pulses are con-

tained in one CPI, the platform velocity is 100 m/s, and the height of the platform is 3078 m. ρS and ρd
are set to 6 respectively. 12 pulses and 8 elements data of MCARM are used, the target is located at the

299th range cell with −0.15 Doppler frequency, 4 range cell data around the 299th range cell are selected

as the training samples.

The output SINRs are investigated and the results are shown in Figure 8. It is similar with the previous

simulated results that SMI and EFA methods cannot obtain desirable SINR with small training sample

support. Moreover, the proposed method can obtain better SINR performance in both main-lobe and

side-lobe regions than conventional sparsity-based STAP methods.

The range detections are also investigated and the results are shown in Figure 9. It is similar with

the previous simulated results that SMI and EFA methods cannot detect target effectively, while the

sparsity-based STAP methods can provide desirable detection. The proposed method can also obtain

larger difference of the output power between tested range cell and adjacent range cells than FOCUSS

and CVX methods, so that the target can be detected correctly.

6.3 Actual measured airborne radar data

Some actual measured airborne radar data is also applied to verify the proposed method compared with

SMI, EFA, CVX, FOCUSS methods in the section. The actual measured airborne radar data consists

of 16 spatial channels and 128 temporal pulses in a CPI. ρS and ρd are set to 6, respectively and 100

range snapshots of the first 8 channels and the first 12 pulses are used, a strong target is located in the

231st range cell with the normalized Doppler about 0.07, 4 range cell data around the 231st range cell

are selected as the training samples.

The output SINRs are also investigated and the results are shown in Figure 10. It is similar with the

previous results based on simulated data and MCARM data that SMI and EFA methods cannot obtain
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Figure 10 Output SINRs of SMI, CVX, FOCUSS and

proposed method based on actual measured airborne radar

data.
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Figure 11 Range detections of SMI, EFA, CVX, FO-

CUSS and proposed method based on actual measured air-

borne radar data.

desirable SINR, while the sparsity-based STAP methods provide better performance with limited training

samples, and the proposed method can obtain better performance especially in main-lobe region.

The range detection results are shown in Figure 11. It is also similar with the previous results based

on simulated data and MCARM data that SMI and EFA methods cannot detect target effectively, while

the sparsity-based STAP methods can provide desirable detection, and the proposed method can obtain

larger difference of the output power between tested range cell and adjacent range cells than FOCUSS

and CVX methods.

7 Conclusion

In this paper, a robust and fast iterative sparse recovery method for STAP has been proposed for prac-

tical complex nonhomogeneous environment. In the proposed method, the sparse recovery of clutter

spatial-temporal spectrum and the calibration of space-time overcomplete dictionary are achieved itera-

tively. Firstly by regularized processing, the robust solution of sparse recovery is derived and calculated

recursively based on the block Hermitian matrix property, afterwards the mismatch of space-time over-

complete dictionary is calibrated by minimizing the cost function. The proposed method can not only

alleviate the effect of noise and dictionary mismatch, but also reduce the computational cost caused by

direct matrix inversion. Based on the simulated and the actual airborne phased array radar data, it has

been verified that the proposed method is suitable for practical complex nonhomogeneous environment

and provide better performance compared with conventional STAP methods.
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