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Abstract In this paper, the slant range error introduced by the “stop-and-go” assumption is analyzed in

detail. Owing to the high orbit and long synthetic aperture time of geosynchronous SAR (Geo-SAR), the slant

range error introduced by the “stop-and-go” assumption should be considered. In addition, an accurate signal

propagation delay time equation of Geo-SAR based on circle orbit is presented, and the error of the “stop-and-

go” assumption is demonstrated by simulation. An “equivalent position” model is proposed and validated by

simulation. The error of various powers of “stop-and-go” slant range is analyzed using Legendre orthogonal

series expansion. The limitation of the stop-and-so assumption is proved by point target simulation.
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1 Introduction

Synthetic aperture radar (SAR) can work day and night regardless of weather conditions, and it has been

developed remarkably during the past few decades. Currently, airborne and spaceborne SAR systems have

been widely utilized in civil and military remote sensing missions, providing manifold unique information

that is not available through other methods. The concept of geosynchronous SAR (Geo-SAR) was

proposed in 1978 by Tomiyasu [1], and it soon drew the attention of the whole SAR domain. Compared

to low-orbit SAR (Leo-SAR), Geo-SAR works on a much higher orbit of 36000 km, which reduces the

revisit time of Geo-SAR to 24 h and increases the observation swath significantly. In the future, Geo-SAR

will play an important role in disaster monitoring or even forecasting [2–4]. Despite its advantages, there

are certain difficulties in realizing a feasible SAR system in geosynchronous orbit. In this paper, we focus

on the imaging model analysis.

The “stop-and-go” assumption has been widely applied to the imaging geometry of Leo-SAR and

airborne SAR [5]. Most satellite beam steering methods are based on this assumption [6], and the

problem has been discussed in detail. The assumption is that the satellite transmits and receives the

signal pulse at a stationary point, which means that all movements between and within the signal pulse

are ignored [7, 8]. In Geo-SAR, the orbit height increases by two orders of magnitude compared to that
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Figure 1 Geometry structure of Geo-SAR.

of Leo-SAR. Therefore, the signal propagation delay time also increases by two orders of magnitude,

so the relative movement during the signal propagation delay time should be considered [9]. Because

the satellite velocity decreases notably and the resolution of Geo-SAR is usually at the meter level, the

movements within a signal pulse could be ignored. Moreover, the angular velocity of the satellite is

identical to the earth’s rotational velocity, so the effect of the earth’s rotation should be considered. The

synthetic aperture time of Geo-SAR may reach hundreds of seconds, which means that the error caused

by the “stop-and-go” assumption could be large.

This paper is organized as follows. Geo-SAR geometry structure and the “equivalent position” model

are presented in Section 2. The errors of the conventional “stop-and-go” assumption and simulation

experiment are given in Section 3, followed by the error analysis in Section 4. Section 5 presents the

feasibility of the equivalent position model using point target simulation. Finally, conclusions are drawn in

Section 6.

2 The geometry structure and signal model

The geometry structure of Geo-SAR is shown in Figure 1. The satellite moves a circular orbit with

angular velocity ωs, and the point target moves along its latitude circle as the earth rotates with angular

velocity ωe. Because the satellite is in geosynchronous orbit, we suppose that ωs = ωe. The satellite

transmits a chirp signal at position S0. At the same time, the point target is at position P0. After

the propagation time τt, the transmitted signal impinges on the target at position P1, and the satellite

moves to position S1. The signal reflects from the target immediately and then reaches the satellite

after propagation time τr at position S2. Position Sm represents the midpoint of the satellite trajectory

between S0 and S2, and position Pm represents the midpoint of the point target movement trace between

P0 and P1.

To deduce the accurate propagation delay time, two right-handed coordinate systems are needed. One

is the earth’s inertial coordinate system Eo, and the other is the satellite orbit coordinate system Ev.

The origin of Eo is located at the earth’s center with its X axis pointing toward the vernal equinox and

its Y axis pointing toward the north pole. The origin of Ev is located at the earth center with its X axis

pointing toward the perigee and its Z axis vertical to the orbit plane. These two coordinate systems can
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convert between each other through conversion matrix Mov, which can be given as

Mov = U1(θ)U2(η)U3(ς), (1)

U1(θ) =









cos θ − sin θ 0

sin θ cos θ 0

0 0 1









,

U2(η) =









1 0 0

0 cos η − sin η

0 sin η cos η









,

U3(α) =









cosα − sinα 0

sinα cosα 0

0 0 1









,

(2)

where θ is the longitude of the ascending node, η is the orbit inclination angle, and α is the augment of

perigee. The relationship between Eo and Ev can be given as

Eo = MovEv, Ev = M
T
ovEo, (3)

where the superscript T stands for the matrix transpose.

Within the two coordinate systems, we can define the position vectors above as














































SEo

0 = ( sx0 sy0 sz0 )
T,

SEv

1 = ( sx1 sy1 sz1 )
T,

SEv

2 = ( sx2 sy2 sz2 )
T,

PEo

0 = ( px0 py0 pz0 )
T,

PEo

1 = ( px1 py1 pz1 )
T,

(4)

where the superscript of each vector represents the coordinate system it is in. The earth model in Eo can

be given as
x2

R2
e

+
y2

R2
e

+
z2

R2
p

= 1, (5)

where Re = 6378.137 km, Rp = 6356.752 km.

Owing to the uniform circular motion of the satellite in circular orbit and the point target on its

latitude circle, within any coordinate system, we can have














∠S0OS1 = ωsτt,

∠S1OS2 = ωsτr,

∠P0OP1 = ωeτt.

(6)

Within Eo, the point target rotates around the Z axis on its latitude plane, so after propagation delay

τt, we have

PEo

1 =









cos(ωeτt) − sin(ωeτt) 0

sin(ωeτt) cos(ωeτt) 0

0 0 1









PEo

0 . (7)

By substituting (4) into (7), we can get

PEo

1 =









px0 cos(ωeτt)− py0 sin(ωeτt)

px0 sin(ωeτt) + py0 cos(ωeτt)

pz0









. (8)



Tian Y R, et al. Sci China Inf Sci June 2016 Vol. 59 062306:4

By applying cosine law to the triangle S0P0P 1, we can have the equation written as

‖P0S0‖
2 + ‖P0P1‖

2 − 2 〈S0P0, P0P1〉 = ‖S0P1‖
2, (9)

where the operator ‖·‖ stands for norm, and 〈, 〉 stands for inner products. Then the equation of propa-

gation delay τt can be obtained

c2τ2t +K1 sin(ωeτt) +K2 cos(ωeτt) +K3 = 0, (10)

where c is the speed of light, and

K1 = 2(px0sy0 − py0sx0),

K2 = 2[r2t + px0(sx0 − px0) + py0(sy0 − py0)],

K3 = −s2x0 + p2x0 − s2y0 + p2y0 − (sz0 − pz0)
2
− 2r2t ,

rt = ‖P0‖ cos θlat,

(11)

where θlat and rt are the latitude and the semi-diameter of the latitude circle at which the point target is

located. Through (10) and (11), rt can be solved numerically with sufficient precision. Moreover, within

Ev, the satellite rotates around the Z axis on the orbit plane, so we can have

SEv

1 =









cos(ωeτt) − sin(ωeτt) 0

sin(ωeτt) cos(ωeτt) 0

0 0 1









SEv

0 , (12)

SEv

2 =









cos(ωeτr) − sin(ωeτr) 0

sin(ωeτr) cos(ωeτr) 0

0 0 1









SEv

1 . (13)

Using cosine law to the triangle S2S1P 1, we can get equation written as

‖S1P1‖
2 + ‖S1S2‖

2 − 2 〈S1P1, S1S2〉 = ‖P1S2‖
2. (14)

By now, the equation of propagation delay τr can be obtained

c2τ2r + L1 sin(ωeτr) + L2 cos(ωeτr) + L3 = 0, (15)

where
L1 = 2(py1sx1 − px1sy1),

L2 = 2[r2s + sx1(px1 − sx1) + sy1(py1 − sy1)],

K3 = −p2x1 + s2x1 − p2y1 + s2y1 − (pz1 − sz1)
2 − 2r2t ,

rt = ‖S0‖ .

(16)

Also, whereby (15), (16) can be solved numerically with sufficient precision. The overall propagation

delay τd can be easily calculated as τd = τt + τr.

3 Error introduced by the “stop-and-go” assumption

The “stop-and-go” model assumes that the satellite and the point target are both at stationary points,

which means that the model uses the slant rang between S0 and P0 to calculate the propagation delay.

The movement between the signal transmission and reception is ignored. Let the angular velocity of both

the satellite and the earth be 0. Eqs. (14) and (15) can be rewritten as

{

c2τ2t +K2 +K3 = 0,

c2τ2r + L2 + L3 = 0,
(17)
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Table 1 Parameters of the simulation

Specifications Value Unit

Orbit semimajor axis 42164 km

Orbit eccentricity 0

Orbit inclination 56 ◦

Perigee argument 0 ◦

PRF 204 Hz

Wavelength 0.24 m

Look angle 4.5 ◦

and we have
{

SEo

0 = SEo

1 = SEo

2 ,

PEo

0 = PEo

1 .
(18)

As a result, Eq. (17) can be solved as























τt =

√

(sx0 − px0)
2
+ (sy0 − py0)

2
+ (sz0 − pz0)

2

c
,

τr =

√

(sx0 − px0)
2 + (sy0 − py0)

2 + (sz0 − pz0)
2

c
.

(19)

Now we can see that the “stop-and-go” model is just a degradation form of the accurate propagation

delay equation.

The simulation parameters are listed in Table 1. In the simulation, we use yaw steering method given

by (20) to make sure the doppler center under “stop-and-go” assumption to be 0. The yaw angle θy can

be written as

θy = − arctan

(

sin i cos(f + w)

ωs/ωe − cos i

)

, (20)

where f stands for true anomaly, w stands for argument of perigee, ws is the satellite angular velocity,

we is the earth’s rotational angular velocity, and i is the orbit inclination. Considering the long synthetic

aperture time, the coupling of range/azimuth in the two-dimensional (2-D) signal will be so serious that

small errors in Doppler parameters can lead to huge slant range errors. Attitude steering is an efficient

technology to reduce the coupling of range/azimuth.

Through numerical calculation of the propagation delay for every position on the orbit, we can obtain

the slant range difference between the accurate model and “stop-and-go” model. Here, we use a maximum

synthetic aperture time of 1000 s.

Seen from Figure 2, we can find that “stop-and-go” assumption error (double way) reaches 4 m and

increases with the synthetic aperture time. Hence, we must consider the error of the “stop-and-go”

assumption in the image processing of Geo-SAR, when high resolution is required.

However, we can not distinguish the linear and nonlinear ingredients of the overall error. To determine

the nonlinear error inside the overall error, equations must be found to fit the numerical range history

under both “stop-and-go” and under accurate geometry. Here we use the polynomial fitting based on the

Doppler parameters proposed in [10]. To ensure accuracy, we deploy six orders of Doppler parameters.

Thus, the numerical range history can be replaced by a polynomial expressed as

R(η) = Rc +
6

∑

n=1

kn(η − ηc)
n, (21)

where η is the azimuth time, Rc is the slant range of the beam center crossing time ηc, and we have










k1 = Vc, k2 =
1

2
Ac, k3 =

1

6
Bc,

k3 =
1

24
Cc, k5 =

1

100
Dc, k6 =

1

120
Ec,

(22)
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Figure 2 (Color online) “Stop-and-go” error of the point targets in beam center all over the orbit.

where Vc, Ac, Bc, Cc, Dc, Ec, Fc represent the relative velocity and the first to fourth order relative accel-

eration rates. These movement parameters can be expressed as











Vc = −
λ

2
fdc, Ac = −

λ

2
f1r, Bc = −

λ

2
f2r,

Cc = −
λ

2
f3r, Dc = −

λ

2
f4r, Ec = −

λ

2
f5r,

(23)

here, all the Doppler parameters can be evaluated according to the equation proposed in [10]. The

expression of the echo in the 2-D frequency domain can be written as

S (ft, fr) = A1Wr (ft)Wa (fη − fηc
) exp {jϕ (ft, fη)} , (24)

where A1 is a complex constant, Wr (ft) is the range frequency envelope, and Wa (fη) is the azimuth

frequency envelope. According to [11,12], we can have

ϕ(ft, fη) = −
πf2

t

Kr

−
4π(f0 + ft)

c
Rc

5
∑

n=1

An

n+ 1
Mn+1, (25)

where f0 is Doppler center frequency, and



















































M = −

(

cfη
2(f0 + fη)

)

− Vc,

A1 =
1

k2
, A2 = −

k3
k32

, A3 =
2k23 − k3k5

k52
,

A4 =
1

k72
(k2k3k4 − k22k5 − 5k33),

A5 =
1

k92
(6k22k3k5 + 3k22k

2
4 + 14k43 − k32k6 − 21k2k

2
3k4).

(26)

Again, in Figure 1, if we assume that at time ηc the satellite is at position S0 and the point target on

the earth’s surface is at position P0, then all orders of the Doppler parameters needed by range history

under “stop-and-go” can be calculated at positions S0 and P0.

The difference between the numerical and polynomial forms of the range history can be seen in

Figure 3.

As shown in Figure 3(a), the polynomial fitting is efficient in 1000 s, so we can use it as the range

history equation in the discussion below.

Because the numerical range history derived from the “equivalent position” model is sufficiently ac-

curate, all we must do is to calculate the parameters required for the polynomial fitting of the range

history under the equivalent position model. To achieve this, we can use satellite position Sm and target
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Figure 3 (Color online) Sixth-order polynomial fitting error of the numerical range history under (a) “stop-and-go”

assumption, and (b) accurate geometry.

position Pm. The difference between accurate numerical range history and the polynomial equation of

the “equivalent position” model is shown in Figure 3(b).

From Figure 3(b), we can safely draw the conclusion that the accurate slant range history can be well

represented by the sixth-order polynomial equation.

According to the geometry relationship in Figure 1, we can obtain the following expressions based on

the cosine theorem







































‖S0P0‖ =
√

H2
s +R2

t − 2HsRt cos∠S0OP0,

‖S0P1‖ =
√

H2
s +R2

t − 2HsRt cos∠S0OP1,

‖S2P1‖ =
√

H2
s +R2

t − 2HsRt cos∠S2OP1,

‖SmPm‖ =
√

H2
s +R2

t − 2HsRt cos∠SmOPm,

(27)

where Hs is the satellite height, and Rt denotes the distance between the point target and the earth’s

core. Hs and Rt are two constants. It is obvious that ∠S0OP0 increases with the synthetic aperture

time without any constraints. When ∠S0OP0 6 min (S0OP1, S2OP ) or ∠S0OP0 > max (S0OP1, S2OP ),

the “stop-and-go” model will lose its effect. However, the inequity min (S0OP1, S2OP ) 6 ∠SmOPm 6

max (S0OP1, S2OP ) is always satisfied, which means that the error of “equivalent position” model will

never be too large.

4 Error analysis

The slant range equation discussed above is based on a finite Taylor series. Hence, every power Taylor

series error can be expressed by






































Te0 = (Rcm −Rcsg), Te1 = (Vcm − Vcsg)η,

Te2 =
1

2
(Acm −Acsg)η

2, Te3 =
1

6
(Bcm −Bcsg)η

3,

Te4 =
1

24
(Ccm − Ccsg)η

4, Te5 =
1

120
(Dcm −Dcsg)η

5,

Te6 =
1

720
(Ecm − Ecsg)η

6,

(28)

where subscript csg denotes the fitting parameters under the “stop-and-go” assumption, and subscript

cm denotes the fitting parameters of the “equivalent position” model.

Overall error can be expressed as

Tet(η) = Rm(η)−Rsg(η), (29)
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Figure 4 (Color online) Power error based on Taylor series. (a) Constant error; (b) linear error; (c) quadratic error; (d)

cubic error; (e) quartic error; (f) quintic error; (g) sextic error.

and each power error all over the orbit period is shown in Figure 4.

Figure 4 shows that there are constant errors produced by the difference of the slant range at the

beam center crossing time of the point targets, linear error produced by the Doppler center error, and

higher-order error produced by the error of other Doppler parameters. Among these errors, linear error

is the most prominent. At the same time, nonlinear error will rise continuously with increasing synthetic

aperture time. When synthetic aperture time reaches 1000 s, quadratic Taylor series error is up to 0.1 m,

and the cubic Taylor series error arrives at 10−3 m. However, besides these errors, others can be ignored.

However, we must note that the above error analysis based on Taylor series cannot accurately reflect

the impact of slant range error on point target focusing. When slant range error that is more than

quadratic cannot be neglected, the error analysis based on the Taylor series expansion will bring about

significant disadvantages. We cannot accurately analyze the impact of power error on the azimuth pulse

compression, owing to the coupling among both odd powers and even powers. Taylor series are not

orthogonal. For example, the cubic and quantic Taylor series errors will also contribute to the Doppler

center error, and the quantic and sextic Taylor series errors will also add to Doppler frequency rate error.

To exclude the possible coupling introduced by Taylor series, it is necessary to analyze the effect of

each power error on the point target focus independently. Thus, we apply the Legendre orthogonal series

to the orthogonal slant range equation.

Because the quantic and quantic Taylor series errors are rather small, we deploy only the Legendre

series up to the fourth degree, which can be expressed as
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Figure 5 (Color online) Power error based on Legendre series. (a) Linear error; (b) quadratic error; (c) cubic error; (d)

quartic error, and Coupling within Taylor series error; (e) quadratic error within quartic error; (f) linear error within cubic

error.











































































P0(η) =

√

1

Ta
,

P1(η) =

√

3

Ta

(

2

Ta
η

)

,

P2(η) =

√

5

Ta

(

6

Ta
2 η

2 −
1

2

)

, −
Ta

2
6 η 6

Ta

2
,

P3(η) =

√

7

Ta

(

20

Ta
3 η

3 −
3

Ta
η

)

,

P4(η) =

√

9

Ta

(

70

Ta
4 η

4 −
15

Ta
2 η

2 +
3

8

)

,

(30)

where Ta stands for synthetic aperture time. And we have

∫
Ta

2

−
Ta

2

Pi(η)Pj(η)dη =







0 i 6= j;

1 i = j.
(31)

Consequently, Tet can be divided by

Tet(η)=K0P0(η) +K1P1(η) +K2P2(η) +K3P3(η) +K4P4(η), (32)

where

Ki=

∫
Ta

2

−
Ta

2

Tet(η)Pi(η)dη (i = 0, 1, 2, 3, 4). (33)

Because the constant error has no effect on azimuth focusing, double-way slant range error from linear

to quantic based on Legendre series is shown in Figure 5.

According to Figure 5(a)∼(d), we note that there is coupling between quadratic and quartic error in

original Taylor series. After orthogonal decomposition, the quartic error decreases, and quadratic error

increases. In addition, there is also coupling between linear and cubic error in the original Taylor series.
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Table 2 Parameters of simulation

Doppler bandwidth (Hz) Beam footprint velocity (m/s) Theoretical resolution (m)

PT2 170.77 384.63 1.995

PT0 168.26 381.53 2.009

PT1 165.68 378.30 2.023

Figure 6 (Color online) PT0 focusing result. (a) “Stop-and-go” model focusing result; (b) range slice of “stop-and-

go” model; (c) azimuth slice of “stop-and-go” model; (d) “equivalent position ” model focusing result; (e) range slice of

“equivalent position” model; (f) azimuth slice of “equivalent position” model.

After orthogonal decomposition, the cubic power error degrades and the linear error increases. Through

orthogonalization, we can also find that couplings between each power series are miniscule as shown in

Figure 5(e) and (f).

After Legendre orthogonal series expansion, we can exclude the possible coupling of different power

error. As a result, we can analyze the effect of each power errors on point targets focus.

5 Point target simulation

The error of the “stop-and-go” assumption and the feasibility of the equivalent position model were tested

by point target focusing. Without the loss of generality, we chose the point target in the beam center

when the true anomaly of the satellite was 5◦ and the three targets with an interval of 100 km in range

direction were located in the scene, in which PT0 was at the center of the scene and PT1 was at the far

end of the scene and PT2 is at the near end. The specifications of point targets are shown in Table 2.

The echo was created based on (10) and (15) then processed respectively by the parameters of the

“stop-and-go” model and the equivalent position model. Using the imaging algorithm proposed in [13],

the imaging results of the “stop-and-go” model and the equivalent position model are shown in Figure

6. Without losing generality, we also gave the 2-D spectrum image of the point target. The spectrum

image is shown in Figure 7, which shows that the coupling of the range/azimuth is not serious owing to

the attitude steering technique.

From Figure 6, we can conclude that when the synthetic aperture time reached 1000 s, the “stop-and-

go” assumption lost its effect, mainly because of the quadratic slant range error.
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Figure 7 (Color online) 2-dimensional spectrum of the

PT0 point target.

Figure 8 (Color online) Imaging results of multi-targets

with different heights.

Table 3 Analysis on point targets

Range Azimuth

IRW (m) PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB)

PT2 2.661 −13.35 −10.12 2.002 −13.27 −10.17

PT0 2.661 −13.33 −10.16 2.031 −13.26 −10.18

PT1 2.661 −13.30 −10.14 2.056 −13.23 −10.20

In order to demonstrate that our model is tolerant to the height fluctuation of the earth’s surface, we

tested it with three targets of various heights. With accurate numerical calculation using the simulation

parameters of Table 3, we placed targets A, B, and C on the earth with the heights of 8000 m, 4000 m,

and 0 m, respectively, and the targets were in the swath of the Geo-SAR near the equator. We assumed

that target A was in the center of the scene, target B was 20 m away from A, and target C was 40 m

away from A and that there were no occlusions among these targets. The imaging results are shown in

Figure 8. As we can see from the imaging results, the targets are well focused, which means that the

height fluctuation cannot degrade the performance of our model.

6 Conclusion

Geo-SAR works in an orbit approximately 36000 km high, making it possible for shorter revisit times

and wider swaths. However, a new imaging model and algorithm are needed to address the side effects

of the increased orbit height. The “stop-and-go” assumption has been long entrenched in SAR image

processing. However, owing to the unique character of Geo-SAR, the limitation of the “stop-and-go”

assumption becomes obvious. As a result, it cannot be directly applied to Geo-SAR image processing

when high resolution is required. In this paper, we deduce the accurate propagation delay equation of a

circular orbit without any approximation. The error of the “stop-and-go” assumption and the feasibility

of the equivalent position model are validated through accurate numerical calculation. Finally, a point

target focusing experiment is also provided to support the above conclusion.
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