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Dear editor,

In recent years, steganography and steganalysis [1]
of empirical covers have been developing rapidly.
Empirical cover, such as image and other multi-
media, is one of the most commonly used content
in daily life, however, the model of images is still
unknown. Therefore, the combat against image
steganography and steganalysis would be challeng-
ing yet beneficial.

Cover selection refers to the technology for
steganographers to distribute payloads among a
set of images. Therefore, it is significant to de-
sign a metric (i.e. distortion) to indicate the
detection error when cover objects are used in
steganography. It is widely accepted that the de-
tection accuracy of steganalysis can be influenced
by many factors. Böhme [1] proposed that var-
ious moderating factors are particularly relevant
to the detection accuracy of steganalytic methods,
however, the precise relations remained opaque.
Kouider et al. [2] designed an adaptive stegano-
graphic method by building the detectability map
of a classifier as an oracle (also called ASO) to se-
lect covers. Nonetheless, this closed-loop design
is time-consuming. Researchers [3] listed a few
important questions when moving steganography
and steganalysis from the laboratory into the real

world; one of these is listed under Open Problems
9 as investigating approaches to “perform cover
selection, if at all”.

In this letter, we propose a novel cover selec-
tion criterion for spatial steganography by using
linear pixel prediction error. We update Böhme’s
work [1] by raising a criterion that is more accu-
rate to indicate the detection rate and is compat-
ible with highly undetectable modern steganog-
raphy [4–6]. The linear prediction error (LPE)
model can be utilized for modeling the relation-
ship among image pixels in the spatial domain. Its
prediction error, i.e., the linear pixel prediction er-
ror, is used as a “sum-of-cost” measure to predict
the detection accuracy of a detector. Experimen-
tal results show that, images with high LPE always
turn out to have a low detection accuracy. More-
over, the Spearman’s correlation coefficient of LPE
and detection accuracy is, on average, greater than
main criteria (entropy, and local variances), by a
value of 0.05. Therefore, our proposed method is
superior to the main criteria in most cases. The
contribution of this study is as follows: (a) a novel
cover selection criterion LPE by modeling the lin-
ear relationship among image pixels is proposed;
(b) our procedure is open-loop because no feature
extraction or classifiers is required; (c) it is effec-
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tive in most of spatial steganography.
Linear pixel prediction error. The statistical dis-
tribution of pixel values in natural images is not
statistically independent. However, thus far the
description of the exact model of natural images
is unavailable in literature. Such uncertainty per-
taining pixel values stem from the variety in na-
ture of images and the noise generated in image
acquisition and encoding.

Pixels of natural images always have dependen-
cies on adjacent pixels and have limited relevance
with the pixels in distant regions. Therefore, the
strict definition of neighbouring pixels refers to the
pixels directly next to the pixel in eight directions,
i.e. two vertical, two horizontal, and four diagonal
neighbours, given by

N (Iu,v) = {Iu+∆u,v+∆v, |∆u| 6 1, |∆v| 6 1} ,

where Iu,v ∈ {0, 1, . . . , 255} denotes the grey scale
at the position (u, v). We can extend the definition
to the k-layer neighbouring pixels, and is given by

N (Iu,v, k) = {Iu+∆u,v+∆v, |∆u| 6 k, |∆v| 6 k} ,

where k = 1, 2, . . . ,min (M,N) and k + 1 6 u 6

M − k, k + 1 6 v 6 N − k.
A pixel value Ii,j is somewhat related to its

neighbouring pixels N (Ii,j , k). Keeping this in
mind, we construct a predictor to estimate the
pixel values. For the sake of convenience in com-
putation, the pixel matrix is reshaped to a vector
y = {y1, . . . , yn}. Each element in y is viewed as
the sum of two components, the predictable and
the unpredictable, i.e., yi = ŷi+εi = f (xi,β)+εi,
where the dependent variable yi is the true value of
predicted values ŷi, the independent variable xi is
the vector of the neighbouring pixel values of yi, f
is prediction model with β as its parameters, and
εi is the random error. For computational con-
venience, we select the multiple linear regression
model yi = β0+β1xi,1+β2xi,2+ · · ·+βnxi,m+ εi,
which can be expressed in the matrix form

y = Xβ + ε (1)

with the dependent value y = {y1, y2, . . . , yn}
T
,

the regression coefficient β = {β0, β1, β2, . . . , βm}T,

the random error ε = {ε1, ε2, . . . , εn}
T
, and the

independent value

X =
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=













1 x1,1 x1,2 · · · x1,m

1 x2,1 x2,2 · · · x2,m
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.

The first column of the matrix X is 1n which
is comprised of 1’s. In each row xi, except

the first element is one, the remaining elements
(x1,1, x1,2, . . . , x1,m) are the k-layer neighbouring

pixels of yi with m = (2k + 1)2 − 1. Then, the
regression coefficients β can be solved using the
least squares principle:

b = argmin
β

[

(y −Xβ)
T
(y −Xβ)

]

,

and b is the least square estimation of β. Proved
by Theorems 3.12 and 3.13 in [7], the unbiased
least squares estimation of β for the multiple lin-
ear regression model (1) is given by

b =
(

XTX
)−1

XTy.

Here, we assume XTX to be a non-singular ma-
trix, which means that column vectors of X are
independent.

While random error ε is not observable, the
residual ei = yi − ŷi can be directly calculated as
the distance from the calculated response ŷi = xiβ

to the observed value yi. Now, we define the linear
pixel prediction error (LPE), as the mean squared
error (MSE) E = 1

n

∑n

i=1 e
2
i of the linear pixel

predictor we have described. Figure 1(a) shows
the flow chart of the process for calculating LPE.

In essence, the prediction error of the linear
pixel predictor indicates the extent to which the
image pixels follow a certain pattern. Pixel val-
ues in complicated texture area gain more diver-
sity than those in simple texture area. Therefore,
the possibility of detecting a modification or dis-
turbance in simple texture area is relatively higher
than that in a complicated texture area.

The proposed scheme can also be viewed from
the aspect of image processing. The matrix b is the
filter in which bi is the ith filter coefficient. These
filter coefficients are obtained using regression on
the source image and this process can be viewed as
a filter of the image with least squared error. The
prediction error is the differential image between
a filtered image and its source.

In principle, the criteria for two approaches—
entropy and local variances are limited to adjacent
pixels. The entropy metric calculates the entropy
using the first-ordered TPM of adjacent pixel val-
ues. LPE uses a more powerful model than LV
as well as entropy. LV can be viewed as a special
case of LPE when y = x + ε is adopted as the
model. Unlike LV, LPE uses a linear model which
has more parameters to choose from, and in this
model each pixel relies on more neighboring pixels
(e.g. 8 pixels if k = 1). Hence, LPE has a better
modeling ability to select noisy images for spatial
steganography.
Experiments. We conduct our experiment using
BOSS v0.92 [6] and BOWS2 image databases,
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Figure 1 (a) Flow chart for implementation of the proposed scheme; (b) detection accuracy vs. LPE with HUGO 0.4 bpp;
(c) detection accuracy vs. LPE with HUGO, WOW, and S-UNIWARD.

which contains 512× 512 grey-scale images. Stego
sets are generated by embedding randomly gener-
ated bytes using different steganographic schemes
(HUGO [6], WOW [4], S-UNIWARD [5], etc.)
with different embedding rates (0.05–0.60 bpp).
They are classified by the ensemble Fisher linear
discriminant (FLD) classifiers [8] with HOLMES
features.

To demonstrate the stability of the correlations
between LPE and accuracy, we randomly select
images and divide them into small subsets by LPE
interval through a set of thresholds. For the sake
of convenience, we used error bars to indicate the
deviation along the LPE-Accuracy curve to verify
the consistencies in the tendencies under different
conditions. The results are plotted graphically as
shown in Figure 1(b). The graph indicates that
the accuracy declines steadily as LPE rises, with
small standard deviation ranges.

Spearman’s rank correlation coefficient, which
can be calculated using both the criterion and ac-
curacy, is used to evaluate the monotonicity. The
result with different steganography and embedding
rates (Figure 1(c) and Table S1) shows that the
detection accuracy declines as LPE is raised and
the prediction curve decreases monotonically. In
most of the cases, the LPE index is more relative
than local variances and entropy, and using LPE
in cover selection can achieve better precision in
terms of choosing images that are difficult to an-
alyze accurately. Similar effectiveness is also evi-
dent in the test of traditional steganography (LSB,
QIM, etc.) and different image sizes (Table S2).
Conclusions. Inspired from content-adaptive
steganographic design, this study proposed linear
prediction error (LPE) as an evaluation criterion of
image texture, and used it to select the most unde-
tectable cover images. Experiments show that, in
most of the cases, the proposed measure achieves
a higher correlation than the local variance and

entropy metrics. In our future work, we will focus
our attention on quantised DCT domain.
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