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Abstract Because of hydrodynamic model error of the present dynamic model, there is a challenge in controller

design for the underwater snake-like robot. To tackle this challenge, this paper proposes an adaptive control

schemes based on dynamic model for a planar, underwater snake-like robot with model error and time-varying

noise. The adaptive control schemes aim to achieve the adaptive control of joint angles tracking and the direction

of locomotion control. First, through approximation and reducibility using Taylor expansion method, a simplified

dynamics model of a planar amphibious snake-like robot is derived. Then, the L1 adaptive controller based on

piecewise constant adaptive law is applied on the simplified planar, underwater snake-like robot, which can deal

with both matched and unmatched nonlinear uncertainties. Finally, to control the direction of locomotion, an

auxiliary bias signal is used as the control input to regulate the locomotion direction. Simulation results show

that this L1 adaptive controller is valid to deal with different uncertainties and achieve the joint angles tracking

and fast adaptive at the same time. The modified L1 adaptive controller, in which the auxiliary bias item

is added, has the ability to change the direction of locomotion, that is, the orientation angle is periodic with

arbitrarily given constant on average.
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1 Introduction

Snake-like robots have a strong environment adaptiveness, so researchers have shown great interest to

snake-like robot in the last few decades. They make every effort to develop snake robot physical mech-

anisms [1], model, and controller for snake locomotion. Underwater snake-like robot, which is made for

moving in unknown water, has many degrees of freedom and is more complicated than conventional mo-

bile robots in the dependence on environment interaction. In recent years, many underwater snake-like

robot models are proposed [2–6]. These models are complex, highly coupled and not efficient enough.
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The difference between different dynamics models for the underwater snake-like robot is hydrodynam-

ic modeling. The liquid characteristic changes very fast under different Reynolds number. Resistance

model is suitable for low Reynolds number [7], Lighthill reaction model based on the theory of slender is

suitable for high Reynolds number [8], and the improved model based on Jordan method is suitable for

medium Reynolds number [9]. Therein, only the significant hydrodynamic effects were included in all the

above models, in which the less-significant unmodeled hydrodynamics is neglected. Generally speaking,

time-varying of the hydrodynamics coefficient is also not considered in those literatures. Those reasons

cause model error and uncertainties. The full nonlinear dynamic equation, underactuated characteristic

and uncertainties result in some difficulties in the controller design. One of the challenges in underwater

snake-like robot with those uncertainties (matched and unmatched) is adaptive controller design.

Currently, the adaptive control has already been researched in robot area [10–16]. Adaptive control

based on the reference model of underwater snake-like robot has not been investigated in the literature

yet. The major challenges of adaptive control are the high-coupling dynamic equation, many degrees

of freedom and underactuated characteristic. One possible approach would be normal Model Reference

Adaptive Control (MRAC) [17], which is composed of reference system, feedback controller, adaptive

estimator, and plant. This method needs to satisfy the condition that the reference system is time-

invariant. However, it cannot deal with unknown time-varying nonlinearities. Another feasible approach

is a modified MRAC scheme where the basic architecture is based on the internal model principle, named

L1 adaptive controller [18]. It can deal with unknown time-varying nonlinearities and guarantee higher

robustness. L1 adaptive controller, whose adaptation rate can be directly associated with the sampling

rate of the available CPU [19], is a fast estimation scheme and ensures uniform transient response in

addition to steady-state tracking. L1 adaptive controller has been applied on NASA Air STAR Flight

Test Vehicle. Others such as gain scheduling method can cope with the unavoidable nonlinearities and

time-varying dynamics of the practical plant and are compensating for known static nonlinearities [20].

The main disadvantage of gain scheduling is that it is an open loop adaptation scheme, without real

learning taking place. Sliding-mode control approach for systems with mismatched uncertainties via a

nonlinear disturbance observer [21] is also an available choice.

In this paper, we consider adaptive controller design of the planar, underwater snake-like robot in

medium Reynolds number. Firstly, the Newton-Euler method is used to derive the full nonlinear model.

Instead of controller design for a full nonlinear dynamical model of snake-like robot system, we will

first simplify the model through Taylor series and describe function. The skills of simplification are

described for the purpose of analytical studies and controller design. Then, the L1 adaptive controller

is adopted to track the joint angles. We apply the L1 adaptive control based on a piecewise constant

adaptive law on the system of the simplified snake-like robot. The main reasons are as follows: (1) the

controller can be implemented for planar amphibious snake-like robot systems, adjustment or tuning

procedure, (2) the controller is robust to unmodeled dynamics (mainly induced by two-order drag force

form) and parametric model uncertainties (neglect limited items and high-order items of Taylor series)

and hydrodynamic coefficient time-varying property, (3) L1 adaptive controller shows better performance

in the given hardware (CPU and sensor) condition compared with the PD controller or less requirement

for computation for a given performance. Finally, in order to achieve the locomotion direction control, an

auxiliary input is used as control input to stabilize the average orientation. This is the first time that L1

adaptive control based on a piecewise constant adaptive law is applied on underwater snake-like robot.

This adaptive control design method may be viewed as a direction of future actual control of snake-like

robot which also meets the requirement of current research.

The structure of this paper is as follows. In Section 2, we briefly introduce the third generation of our

snake-like robot and give the hydrodynamic model of our underwater snake-like robot, and also provide

an approximate dynamic model. Section 3 introduces L1 adaptive controller design procedure and the

adaptive controller modification by adding an auxiliary bias to the L1 adaptive controller to control

the orientation. Section 4 gives simulation results and demonstrates the performance of L1 adaptive

control system of the underwater snake-like robot to illustrate the effectiveness of the modified adaptive

controller. Finally, Section 5 presents some concluding remarks.



Zhang A F, et al. Sci China Inf Sci May 2016 Vol. 59 052205:3

xglobal

yglobal

ylink,i

xlink,i

(xi,yi)

2l

(x1,y1)

φ1

φ2

θ1

θ2

θ3

θ4

ϕ

φ8

(px,py)

Figure 1 (Color online) The prototype of underwater snake-like robot and its kinematic parameters.

Table 1 Scale parameters of the amphibious snake-like robot

Total weight (kg) Total length (m) Diameter of the trunk (m) Single modules length (m)

6.75 1.17 0.075 0.125

2 Simplified model

Underwater snake-like robot and land snake-like robot move in the water and on the land separately.

Because amphibious snake-like robot can move both in the water and on the land, amphibious snake-like

robot can be used to research the underwater locomotion mechanism. Firstly, our amphibious planar

snake-like robot prototype is presented before modeling, which is waterproof and can move smoothly both

in the water and on the land and mainly is composed of nine modular universal units. The details can

be found in [22, 23]. The scale parameters of the amphibious snake-like robot are listed in Table 1. The

parameters of the prototype will be used in the hydrodynamics coefficient calculation and simulation.

The following is the hydrodynamic model.

2.1 Hydrodynamic modeling

It is worthy and necessary to mention the hydrodynamic modeling because of its complication. Although

Navier-Stokes equations can be a good description of force acting on the liquid dynamic balance, it is

time-consuming to solve the Navier-Stokes equation. Besides, due to coupling and high nonlinearity and

infinite dimensional state of the surrounding fluid, analytic hydrodynamic modeling is necessary for the

convenience of design of the controller. Three most widely used analytical models of hydrodynamics

are proposed by Taylor [7], Lighthill [8] and Morison [24], respectively. Taylor’s model is suitable for

low Reynolds numbers, and Lighthill’model is appropriate for high Reynolds number and slender body.

Marison’s model is suitable for moderate Reynolds number. Most of the literature did not consider

the current and fluid moment. Fluid torque is taken into account but implemented in an numerical

integration method [5, 6]. A solution to this issue was proposed by Kelasidi [4, 25], whose method not

only considers the moment of hydrodynamic force, but also the current and nonlinear viscous drag. His

model is adapted here to suit our needs, and then, let nonlinear drag and moment form act as unmodeled

dynamic to make the simulation as close as possible to the real one.

We will present the hydrodynamics model of the planar snake-like robot consisting of n links of length

2l interconnected by n − 1 active joints. Reynolds number for our snake locomotion is about 104–105,

which is moderate Reynolds number. Assume that the robot is a slender body with a cylindrical trunk.

This approach takes into account both the linear drag forces (resistive fluid forces), the added mass effect

(reactive fluid forces) and the fluid moments. The nonlinear drag forces and nonlinear torque items

are taken into account as unmodeled dynamics uncertainties. The planar snake-like robot is identical

with mass m, moment of inertia 1
3ml2, orientation angle ϕ, vector φ = [φ1, φ2, . . . , φn−1]

T ∈ R
n−1, and

absolute angles in global frame θ = [θ1, . . . , θn]
T. The prototype of underwater snake-like robot and the
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kinematic parameters of the snake robot are defined in terms of the symbols depicted in Figure 1. Snake

robot moves in the horizontal plane. The fluid forces exerted on link i in i body frame are expressed on

the mass center of the link i as

f link,i
r,i =

[

ct 0

0 cn

]

× vlink,ir,i +

[

ct 0

0 cn

]

× |vlink,ir,i |vlink,ir,i +

[

0 0

0 un

]

× v̇link,ir,i ,

where ct = πρCfRl, un = πρCaR
2l, and cn = 2πρCDRl, vlink,ir,i is center of mass velocity in i body frame.

Because of underwater snake-like robots’ slender body shape, in the x-direction, form drag is omitted

and only viscous resistance is to be considered, while in the y-direction, we ignored the viscous resistance

and only considered the form drag. Besides, we ignored the added mass force in x-direction.

The torque applied on link i by the fluid is modeled in the following form:

τi = −λ1θ̈i − λ2θ̇i − λ3|θ̇i|θ̇i.

For a cylinder, the added mass torque reduces to a simple form with the parameter λ1 expressed as [4,25]

λ1 =
1

3
l2 × CM ×madded,

where CM is the added inertia coefficient. Additionally, we derive the parameters λ2 and λ3 by integrating

the drag torque. The drag force on a 2l length of link i due to link rotation produces a drag torque on

the CM of the link, which is given by

τdrag,i = −

∫ l

−l

(sCLdxsθ̇i + sCLdxsgn(sθ̇i)(sθ̇i)
2)ds = −λ2θ̇i − λ3θ̇i|θ̇i|,

where λ2 and λ3 are given by λ2 = 2
3πρCDRl4 and λ3 = 1

2πρCDRl4. The cross section is of circular

shape, so the drag torque coefficient induced by the normal drag force per unit length is given by

CLdx = 1
2ρπRCD.

2.2 The simplified underwater snake-like robot model

We choose the Newton-Euler method to model the underwater snake-like robot and start with the full

nonlinear equations of motion derived in the literature [25,26], which already avoid a singularity issue in

this model presented in [4] by redefining the expression of link accelerations. The reason is that it may

be used for amphibious snake robots moving both on land and in water, and the force and torque balance

equations are in matrix form, which means that it will be easy for simplification. The torque balance

equations and force balance equations for all links are expressed in the form

J0θ̈ + [lSθK,−lCθK]

[

mẌ − fx

mŸ − fy

]

− τ = DTu,

[

p̈x

p̈y

]

=
1

nm
ET

[

fx

fy

]

,

where fx ∈ R
n is the fluid force acting on all links in body x-direction and fy ∈ R

n is the fluid force

acting on all links in body y-direction. The joint torques on all links in vector form are u(t) ∈ R
n−1.

The fluid moments in vector form are τ . px and py are the global coordinates of the center of mass of

the robot. n is the number of the links. For other terms, please refer to Appendix A. Generally, most

of the model can be rewritten in this form ẋ = f(x, u). However, it is difficult to rewrite the above

model. The original equations are too complicated, fully nonlinear and highly coupled. It is hard to

design the controller and gain insights into the locomotion mechanisms, which are the reasons why this

paper simplified the underwater snake-like robot equation.

We adopt Taylor series expansion to reduce the coefficients of the model. That is to say, we use

the main item to approximate the nonlinear equation. This paper treats the truncation of higher order

terms and other remainders as unmodeled dynamics and treats white noise as disturbance. Assuming

that φ, ϕ, ṗx, and ω are small, and choosing a reference velocity in x-direction ṗx0, the definitions for
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the coefficients and details are given in Appendix A. To this end, the underwater snake-like model is

reduced to

φ̈+ µφ̇+Mv1(ṗx0)φ+ σφ = J−1
1 u, (1)

ϕ̈+ µϕ̇+Mv2(ṗx0)φ + σϕ = −J−1
2 J21 × J−1

11 u, (2)
[

p̈x

p̈y

]

=
1

nm
ET

[

fx

fy

]

. (3)

Eq. (1) describes the relationship of the joint torques u(t) ∈ R
n−1 and joint angles. Eq. (2) shows how

the joint torques indirectly control the orientation angle ϕ. Eq. (3) shows that the locomotion velocity is

directly controlled by the shape change φ, only the amplitudes of φ and ϕ are small enough, the model

qualitatively captures the essential dynamics of snake-like robot locomotion and is reasonably accurate

for the range of undulations observed in animals [27]. Accordingly, the full nonlinear dynamics equation

can be reduced to approximate dynamics equations. In this paper, we keep the center mass velocity

equation in the nonlinear equation item, which means the force equation is not simplified.

There inevitably exist the uncertainty and unmodeled dynamics due to the truncation and reduction

of snake-like robot model and as a result of the transformation from coupling hydrodynamic model to

the analytical and closed-form model. However, we can enclose the effect of the disturbances with L1

adaptive controller.

3 Adaptive controller design

3.1 L1 adaptive controller design

The objective of this paper is to find an adaptive controller which can handle the uncertainty and

accomplish the joint control, such that the closed-loop system achieves three properties:

• The simplified snake-like robot system achieves joint angles steady-state tracking and ensures uniform

transient response, and the steady-state error remains a small value.

• The adaptive controller compensates uncertainties caused by the time-varying parameters and un-

modeled dynamics under the condition where the model is not accurate because of the reduction of the

mathematical model.

• The system has the capability to control the snake-like robot movement orientation or make ϕ

periodic with zero (constant value) average.

It is well known that the researchers have proved that any asymptotically stabilizable control law for

a snake robot to an equilibrium point must be time-varying [28]. This conclusion implies the feasibility

of L1 adaptive law method. Asymptotically stabilizing control law based on piecewise constant law for

amphibious snake robots to an equilibrium point must be time-varying. Also, the controller is robust to

unmodeled dynamics. Thus, we use the L1 adaptive law to deal with the simplified underwater snake-

like robot MIMO system with nonlinear unmatched uncertainties. By introducing the state variables

x(t) = [φT, φ̇T]T and initial constant CM velocity in global x-direction ṗx0 (assuming 0.2 m/s), we can

rewrite the above simplified model of the underwater snake-like robot equation (1) compactly in state

space form as

ẋ = Apx(t) + bu+ σ(t), y(t) = cTx(t),

with

Ap =

[

0n−1,n−1 In−1,n−1

−Mv1(ṗx0) − µIn−1,n−1

]

, b =

[

0n−1,n−1

J−1
1

]

, cT =

[

In−1,n−1

0n−1,n−1

]T

.

σ(t) =
[

0n−1,n−1
−σφ

]

+noise is the output and the state vector of internal unmodeled dynamics, and vector

noise contains time-varying noise or random noise. The system state vector x(t) = [φ, φ̇]T is measured

for feedback. u(t) are the control input signals. y(t) = φ(t) ∈ R
n−1 are the outputs of joint angles.
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Figure 2 (Color online) The modified adaptive controller structure.

However, Ap is not Hurwitz (does not satisfy the condition of piecewise constant control law). We

use pole-placement method to get a new closed-loop system (even though the actual system’s pole is

variational, such volatility fluctuates around a constant value). Next, we design state feedback controller

without changing the zero point of single input and single output system. Let u(t) = −Kx(t) + u(t),

where K is state feedback gain matrix, and u presents the external inputs, then we get new state feedback

closed-loop system with nonlinear unmatched uncertainties:

ẋ = Amx(t) + bu(t) + σ(t), y(t) = cTx(t), x(0) = x0,

where Am = Ap − b×K, σ(t) ∈ R
2n−2 is unknown nonlinear function vector. Am is a known (2n− 2)×

(2n− 2) Hurwitz matrix, b ∈ R
(2n−2)×(n−1) is a known constant matrix, (Am, b) is controllable, and cT

is a known full-rank constant matrix, (Am, cT) is observable. The system can be rewritten by the form

ẋ = Amx(t) + bu(t) + bσm + bumσum, y(t) = cTx(t), x(0) = x0, (4)

where bum ∈ R
(2n−2)×(n−1) is a constant matrix such that bT × bum = 0, rank(b, bum) = 2n − 2, and

σm(t) ∈ R
n−1, σum(t) ∈ R

n−1 is unknown nonlinear function vector meeting the requirements that

[σm(t), σum(t)] = B−1σ1(t), where B = [b, bum]. The L1 adaptive controller is extensively described

in reference [29]. This paper adopts L1 adaptive controller based on piecewise constant adaptive law,

see details in [18]. In this section, we present the process of the L1 adaptive controller design based

on piecewise constant adaptive law. The whole closed-loop control system of this paper is illustrated in

Figure 2.

State-predictor: considering the following state predictor here

˙̂x(t) = Amx̂(t) + bu(t) + bσ̂m(t) + bumσ̂um(t), y(t) = cTx̂(t), x̂(0) = x0.

The perturbance is decomposed into bum and b direction, and L1 adaptive controller can compensate

disturbance on the bum direction (unmatched uncertainties). The purpose of using state predictor is to

estimate the derivative of the system states, so as to achieve rapid adaptive.

Adaptive laws: the piecewise constant adaptive laws based on Euler one fixed step size are as follows:
[

σ̂m(iT )

σ̂um(iT )

]

= −
1

T
(I2n−2 +AmT )x̃(iT ),
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where x̃(iT ) = x̂(iT ) − x(iT ) is the prediction error, and the adaptive controller uses fixed step size T

Euler 1 method. In this model, parameters σm, σum are replaced by σ̂m, σ̂um respectively.

Control law: the controller signal u(t) is generated in the frequency domain by

u(s) = Kgr(s) − C1(s)σ̂m(s)− C2(s)H
−1
m (s)Hum(s)σ̂um(s),

where Hm = cT(s × I2n−2 − Am)−1b, Hum = cT(s × I2n−2 − Am)−1bum, r(s) ∈ R
n−1 are the reference

signals, while the prefilter Kg(s) is chosen as the constant matrix Kg = −(cT(Am)−1b)−1 to achieve

decoupling among the signals. Second-order filter is chosen as the low-pass filter C1(s), C2(s), which

will be given in Section 4. The high-frequency components of φ will be suppressed by the low-pass filter,

while the remaining will be the actual control input. However, the L1 adaptive controller can only finish

the first two goals.

3.2 L1 adaptive controller modification

The third control objective is to control the snake-like robot locomotion direction or make orientation

angle ϕ periodic with zero (constant value) average, which cannot be achieved by the above L1 adaptive

controller. We know that

ϑi = Aref sin(ωt+ (i− 1)βref) + γ.

Given γ nonzero constant, we can realize a circular path. The direction of turn (left or right) is determined

by the sign of γ. The greater γ is, the bigger curvature is. The direction of locomotion can be steered

by joint angles [26]. We adopt an auxiliary bias signal ν(t) ∈ R to stabilize the orientation dynamics.

The adaptive adjustment of φ with error βν gives ν directly proportional to ϕ. Refs. [27, 30] used this

method to regulate the orientation and also explained the principle of the method. We will show why

the auxiliary input ν(t) can be used to stabilize locomotion direction. Assume ϕ0 is constant such that

ϕ̄(t) → ϕ0. We choose the control input u so that

φ = ϑ+ βν, (5)

where ϑ = [ϑ1, . . . , ϑi, . . . , ϑn−1] and ϑi is the expected (reference) joint angle of link i. Firstly, we define

the “error” signal ξ by

ξ := qTv (φ− ϑ)− (ϕ− ϕ0), (6)

where qTv := −J−1
2 J21 × J−1

11 × J1. Then, eliminating joint torque from (1) and (2) and substituting (5),

we have

ξ̈ + µξ̇ + bTβν + h = 0, b := Mv1(ṗx0)
Tqv − pTv , h = qT(ϑ̈+ µϑ̇) + bTϑ,

where pv = Mv2(ṗx0). We set ν = κ(s)ξ with linear dynamics κ(s) to meet the condition that the transfer

function from h to ξ is stable. In this paper, the average value of qTσφ−σϕ is 0. Then by lemma (details

in [30]): the linear and stable system has the character that the average value of the output converges

to zeros whenever the input average does so. Since h̄(t) → 0 due to ϑ̄(t) → 0, then ξ̄ → 0. Also, κ(s) is

stable, then we have ϕ̄−ϕ0 → 0. Thus, we can regulate the orientation by choosing the feedback control

u, which satisfies the condition that φ = ϑ+ βν with a stable κ(s) satisfying the transfer function stable

condition s2 + µs+ bTβκ(s) = 0 ⇒ Root(s) < 0. We eliminate ξ from ν = κ(s)ξ and get

ν =
κ(s)

κ(s)qTv β − 1
(ϕ− ϕ0).

We will show how to choose u to make the system hold steady state. The signal φ− βν converges to ϑ,

and we rewrite (1) as

(φ̈ − βν̈) + µ(φ̇+ βν̇) +Mv1(ṗx0)× (φ − βν) = J−1
1 u− β(ν̈ + µν̇)−Mv1(ṗx0)βν. (7)

The control input unew is given by

unew = u+ J1(β(ν̈ + µν̇) +Mv1(ṗx0)βν), (8)
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where unew is the control input of (7) and u is the control input of (1). If the signals ν, ν̇ change very

slowly, then ν̇ ≈ 0, ν̈ ≈ 0. We have approximately

unew = u+ J1 × (Mv1(ṗx0)βν). (9)

In order to achieve this goal, we introduce dynamics equation about ν in [30], where ν is generated from

ϕ through the following dynamics:

qTv β(ν̈ + µ× ν̇) + bTβν + η1 × (ϕ̂− ϕ0) = 0, (ϕ̂− ϕ0) + η2 ˙̂ϕ = (ϕ− ϕ0),

where µ2 > η1 > 0, β ∈ R
n−1 is a constant vector [30]. We have approximately

ν(t) = −
η1

(qTv Mv1(ṗx0)−Mv2(ṗx0))β
(ϕ− ϕ0). (10)

Ultimately, the controller is

unew(s) = Kgr(s) + J1 ×Mv1(ṗx0)βν(s) − C1(s)σ̂1(s)− C2(s)H
−1
m (s)Hum(s)σ̂2(s), (11)

where C2(s)H
−1
m (s)Hum(s)σ̂2(s) compensates the mismatched uncertainties, and C1(s)σ̂1(s) eliminates

the matched uncertainties and smooth control signals. Kgr(s) is used to produce the expected joint

angles item. J1 × Mv1(ṗx0)βν(s) regulates the motion direction by adjusting each joint angle. Using

this controller, we can achieve the goal of steady-state tracking of joint angles (approximate natural

oscillation) and let the average orientation converge to the expected value. Of course, the response of

the system will be fast. This controller can effectively eliminate the uncertainties and maintain smooth

control signals.

4 Simulation results and discussion

4.1 Simulation results

This section shows the simulation results of underwater snake-like robot and demonstrates performance

of the proposed controller. In this paper, we consider the underwater snake-like robot with links n = 9,

single modular length 2l = 0.125, mass m = 6.75/9, and radius R = 0.075/2, which is identical with

the physical robot presented in Section 2. We focus on serpentine locomotion, where the joint angle is

given by

ϑi = Aref sin(ωt+ (i− 1)βref) + γ.

In order to make the closed-loop system stable, we choose the closed systems poles using pole place

method. The pole value must be larger than ω. Because if we choose lower poles values, the reference

signals will be suppressed by the system. By choosing desired and reasonable closed-loop poles, we

obtain the feedback gain matrix K. The related hydrodynamic coefficients are as follows [4–6,25]: Cf =

0.03, CD = 1, Ca = 1, CM = 1, the normal drag coefficient for the environmental force is set to cn =

9.3750, and the tangential drag coefficient is set to ct = 0.2209, and the added mass coefficients are set to

un = 0.5522, ut = 0. Choosing ṗx0 = 0.2 m/s as the reference velocity in x-direction, we get the desired

closed-loop system. The sampling time is T = 0.01 s, and two-order filter is set to

C(s) =
75

(s+ 5)(s+ 15)
.

The vector β = e, e := [1, . . . , 1], the closed-loop system is then simulated with arbitrarily initial condition,

and parameters are selected as φ(0) = zeros(n− 1), ϕ(0) = 0. The remaining states are 0.

For the first time, the L1 adaptive controller is applied onto the snake-like robot model. The perfor-

mance of the L1 adaptive controller (not the modified adaptive controller) is investigated in a tracking

problem. Firstly, we consider the ideal controller signal for the system in (4) in frequency domain as

uid(s) = −(δm(s) +H−1
m (s)Hum(s)δum(s)−Kg(s)r(s)), (12)
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Figure 3 L1 adaptive controller for serpentine locomotion: all joint with unmodeled dynamics. (a) Snake-like robot joint

angles; (b) snake-like robot joint torques.

which means the uncertainties can be full compensated by uid, and the desired system output response

in frequency domain is

yid = Hm(s)Kg(s)r(s).

In practical application, there are more or less various kinds of noise because of change in the envi-

ronment and the characteristics of the snake-like robot system itself, such as unmodeled dynamics from

model error, random disturbance from system of the input, sensor measurement noise, high-frequency

disturbances from high-order items of Taylor series and flow disturbance and so on. In order to illustrate

the L1 adaptive controller has the ability to deal with model error and various kinds of noise, simu-

lation results about tracking error between y(t) and yid as well as u(t) and uid under three different

disturbances will be presented for the same tracking purposes: Aref = π/10, ω = π, βref = π/4, γ = 0.

Case 1: White noise and unmodeled dynamics as disturbance, noise = rand(2n − 2, 1). Case 2: Con-

stant noise mix with high-frequency sinusoidal disturbance and unmodeled dynamics as disturbance,

noise = [zeros(n − 1, 1); ones(n − 1, 1) × sin(5πt + π

4 + ones(n − 1, 1) × 3.7]. Case 3: Only unmodeled

dynamics as disturbance, noise = zeros(2n − 2, 1). We employ three cases to verify the performance

of L1 adaptive controller, use white noise to simulate the random disturbance, and use high-frequency

sinusoidal disturbance to simulate high-frequency disturbances. Subscript bar stands for actual system,

and subscript 2 stands for joint 2.

All joint output signals and all control input of snake-like robot with unmodeled dynamics are shown in

Figure 3 (a) and (b), respectively. We only give the joint 2 simulation results for concise illustration, and

other joint angle inputs have the similar characteristics. Figure 4(a) shows the second joint angle output

signal. The difference between the actual joint angle and the desired joint angle output (uncertainties

are full compensated) is not obvious, which means the performance of the joint tracking is good; the

corresponding control input is also shown in Figure 4(b). This figure illustrates that the control input

signal is almost the same as the expected control input. Controller has the capability to compensate

the white noise and deals with model error, but would lead to the jitter problem of the control torque

input. Figure 5 (a) and (b) show the second joint angle output and the control input of the snake-like

system with disturbance which contains constant and high-frequency sinusoidal. This figure shows that

L1 controller can near-complete compensate this type of disturbance.

The output (the second joint angle) signal and the control torque input signal (the second joint angle)

are shown in Figure 6 (a) and (b), respectively. In this case, only the nonlinear unmodeled dynamics

is to be considered. Comparing Figure 6 with the other two figures, the actual output joint angle

and the expected output joint angle are almost overlapping on each case in the presence of different

disturbances, and the tracking error between φ(t) and ϑ(t) as well as u(t) and uideal(t) can achieve

arbitrary closeness by reducing T . The input signals can track the reference signals and compensate for

the different uncertainties (admissible). We can see that the L1 architecture achieves the fast estimation.

It is worth mentioning that only Case 1 contains nonzero unmatched uncertainties. So, Figure 4(a) shows
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Figure 4 (Color online) L1 adaptive controller for serpentine locomotion: joint 2 with white noise. (a) Profile of joint

angle of joint 2 with white noise; (b) profile of control input of joint 2 with white noise.
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Figure 5 (Color online) L1 adaptive controller for serpentine locomotion: joint 2 with constant noise mix with high-

frequency sinusoidal disturbance. (a) Profile of joint angle of joint 2 with constant noise mix with high-frequency sinusoidal

disturbance; (b) profile of control input of joint 2 with constant noise mix with high-frequency sinusoidal disturbance.
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Figure 6 (Color online) L1 adaptive controller for serpentine locomotion: joint 2 with unmodeled dynamics. (a) Profile

of joint angle of joint 2 with unmodeled dynamics; (b) profile of control input of joint 2 with unmodeled dynamics.

that L1 adaptive controller can deal with unmatched uncertainties (induced by white noise). Without

auxiliary bias being added in the adaptive controller, locomotion direction is uncontrolled. While with

auxiliary signals, the orientation gives constant ϕ0 regardless of the initial state.
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Figure 7 (Color online) The modified adaptive controller for serpentine locomotion: the change in the position and

orientation. (a) The blue line represents center of mass trajectory of snake-like robot and the green line represents the

instantaneous motion of snake robot per 23 s (the red line stands for the head of snake-like robot); (b) the change in the

orientation angle ϕ of snake-like robot. 0 s 6 Time < 40 s, ϕ0 = 0, 40 s 6 Time < 80 s, ϕ0 = π

6
, Time > 80 s, ϕ0 = 0.
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Figure 8 (Color online) The modified adaptive controller for serpentine locomotion: the CM velocity of snake-like robot

in the global coordinates. (a) The CM velocity ṗx; (b) the CM velocity ṗy.

Next, in order to illustrate the validity of the modified adaptive controller, we set ϕ0 = 0, t <

40 s; ϕ0 = π

6 , 40 s 6 t < 80 s; ϕ0 = 0, t > 80 s. The parameters of reference joint angles are selected

as Aref = π/8, ω = 0.3π, βref = π/4, γ = 0. The orientation angle and the center mass motion are

expressed in Figure 7. This figure also shows the motion of the snake. This figure shows that this method

can steer the direction of locomotion. What is more, reducing the sampling time T can further reduce the

steady-state error. Figure 8 (a) and (b) show the CM velocity of the snake robot in the global x-direction

and y-direction, respectively. The average velocity in the x-direction is up to about 0.1 m/s. We can

see that the system output is able to converge to the desired reference signal quickly even there exists a

large initial tracking error. We can observe that the tracking performance under different disturbances

is better. As a result, we can conclude that the controller’s design is reasonable and available. However,

the method tends to consume a relatively long time, and the dimension of state variable in the inverse

system is large. Steady-state error is x̃(t) = σ(t)T , and transient and steady-state error can achieve

arbitrarily close tracking (joint angle). The difference between the actual disturbances and the estimated

disturbances is very small. This method cannot achieve zero steady-state error, but can be systematically

improved by reducing sampling time. This filter may eliminate the noise signal if the frequency of the

disturbance is known.
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4.2 Discussion

To deal with hydrodynamics model error and uncertainties because of environmental interaction and

model simplification, we introduced the adaptive controller. In order to gain the insights into locomotion

mechanisms and control design, we simplified the nonlinear equation. Although the uncertainties will

increase because of model simplification, the uncertainties can be transformed into linear time-varying

problem that the L1 adaptive controller can deal with. The snake robot is multilink system, in which

multiple degrees of freedom make them difficult to control. Normal MRAC integral controller obviously

loses its phase margin and even causes high-frequency oscillation in the presence of fast adaptation.

L1 adaptive controller can make up for it with low-pass filter. The simulation results in Figures 4–6

supported this viewpoint and also showed that control signals were smooth. This is because the low-pass

filter eliminates the high-frequency signals caused by high gain feedback ( 1
T
). Besides, tracking joint

angle output signals is fast because of high gain feedback 1
T
. Compared with sliding-model control which

is applied on an anguilliform robotic fish to deal with parameter uncertainties [31], the joint tracking

performance of the modified adaptive control is better. Besides, the modified control scheme can steer

the direction of locomotion.

So far, input-output linearization was commonly adopted to finish tracking control for snake robot

joints [32], which has shortcoming with poor robustness. On the other hand, joint offset is used to

control the direction of the motion, which makes a worse result of path following. Thus, the modified

adaptive control schemes proposed in this paper, which integrate the advantages of L1 controller, can

solve the above problems. The results of this paper show that the presented adaptive control scheme can

provide high performance in terms of speed and accuracy in the presence of uncertainties. An integral

LOS path following controller was proposed for an underwater snake robot [25], and the proposed path

following controller contains the heading controller component

γ = Kϕ(ϕ− ϕref),

where Kϕ > 0 is a control gain and ϕref is the mean value of the reference orientational angle of the

snake-like robot ϕref. Compared with the modified adaptive controller, the heading control law belongs to

P controller andKϕ > 0 cannot be chosen arbitrarily. Orientation control law in this paper is complicated

than heading control law. Actually, if we choose κ(s) = 1, orientation control law is the same as heading

control law.

5 Conclusion

In this paper, we have derived the full nonlinear dynamic equation for planar, underwater snake-like robot

in medium Reynolds number by Newton-Euler modeling method. This paper simplified the nonlinear

dynamics equations by Taylor expansion method to derive the approximate dynamics equation for the

purpose of controller design. L1 adaptive controller based on piecewise constant law for the simplified

planar snake system with unmatched uncertainties was therefore proposed to track the expected joint

angle. Since the considered mechanical system is underactuated for lack of direct control over the position

and orientation angle, the auxiliary bias signals were thus added in the adaptive control law to regulate

the orientation. The L1 adaptive controller was applied to the simplified snake-like robot system for the

first time. The simulation demonstrated that the actual joint angle can track the reference joint angles

quickly and accurately even suffering different disturbances, and also proved that L1 adaptive controller is

effective for the approximate model. Furthermore, performance bounds can be systematically improved

by reducing the sampling time. Besides, this paper added an auxiliary signal to achieve the goal of

controlling the direction of locomotion. The full nonlinear center of mass motion equation illustrated the

fact that locomotion direction control is valid. In the future research, this adaptive control method will

be applied on the underwater snake-like robot as an experimental verification of the modified adaptive

controller.
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Appendix A The simplified model

We start with the fully nonlinear equations of motion derived in the literature [26] and [25], which already avoid a singularity

issue of this model presented in [4] by redefining the expression of link accelerations, and we will show how to approximate

and simplify the nonlinear equation. The torque balance equations and force balance equations for all links are expressed

in the form as

J0θ̈ + [lSθK,−lCθK]

[

mẌ − fx

mŸ − fy

]

− τ = DTu,

[

p̈x

p̈y

]

=
1

nm
ET

[

fx

fy

]

,

with
[

mẌ − fx

mŸ − fy

]

=

[

m + unS
2
θ

−unSθCθ

−unSθCθ m+ unC
2
θ

][

Ẍ

Ÿ

]

+

[

ctC
2
θ
+ cn × S2

θ
(ct − cn)SθCθ

(ct − cn)SθCθ ctS
2
θ
+ cn × C2

θ

][

Ẋ

Ẏ

]

+

[

ctCθ −cnSθ

ctSθ cnCθ

][

v2rx

v2ry

]

sign

([

vrx

vry

])

,

where θ ∈ R
n, [X, Y ]′ ∈ R

2×n , and J0 is moment of inertia of all links written in matrix form. [X,Y ]′ are global coordinates

of the center of mass of all links written in matrix form. The torque applied on each link by the fluid can be modeled by

τ = −λ1θ̈ − λ2θ̇ − λ3|θ̇|θ̇,

where λ1 = l2

3
CMma, λ2 = 2

3
l2 × cn, and λ3 = 1

2
l4 × cn. In this paper, the added-mass coefficient of cylinder in y-direction

is ma = ρπR2 × 2l,CM = 1, so λ1 can be rewritten in this form: λ1 = l2

3
× un.

Next, assuming ‖θ‖ is small, we suppose that S2
θ
≈ 0, C2

θ
≈ 1, sin θi ≈ θi, and we find that Ke = 0, De = 0. Therefore,

some of the components of the equation can be approximated as

[lSθK,−lCθK]

[

m + unS
2
θ

−unSθCθ

−unSθCθ m+ unC
2
θ

][

Ẍ

Ÿ

]

= (m + un)l
2KKTθ̈ + unlKSθep̈x,

[lSθK,−lCθK]

[

ctC
2
θ
+ cn × S2

θ
(ct − cn)SθCθ

(ct − cn)SθCθ ctS
2
θ
+ cn × C2

θ

][

Ẋ

Ẏ

]

= (ct + cn)l
2KKTθ̇ + (cn − ct)ṗxlθK,

ζ1(t) = [lSθK,−lCθK]

[

ctCθ −cnSθ

ctSθ cnCθ

][

v2rx

v2ry

]

× sign

([

vrx

vry

])

.

Among those equations, omitted items as disturbances. For control design purposes, we model the hydrodynamic phenomena

in the form of analytical expression and meanwhile taking into account significant hydrodynamic effects, and let remainder

function ζ1(t) as unmodeled dynamics item. We get the approximate equations of motion of the first row

Jθ̈ + µJθ +Mvθ + σ1 = DTu,

where

J = (m + un)l
2(

1

3
In +KKT), µ =

(ct + cn)

m+ un
, Mv = (cn − ct)ṗxlK,

σ1 = ζ1(t) +
1

3
l2(cn − ct)θ̇ + unp̈xlKθ +

1

2
l4θ̇.

Then, we continue simplification and define the joint angle φ ∈ R
n−1, orientation angle ϕ ∈ R as follows:

[

φ

ϕ

]

=

[

D

eT

(n−1)

]

θ,

[T, e] := W =

[

D

eT

(n−1)

]−1

. Multiply by WT from the left and let WTJW =

[

J11 J12

J11 J22

]

. Consider the matrix U :=

[

I −J−1
12 J22

−J−1
21 J11 1

]

. Multiply by U from the left. This item reduced to UWTJW =

[

J1 0

0 J2

]

, where J1, J2 is the

remainder. The above motion equation is reduced to

φ̈+ µφ̇+Mv1φ+ J−1
1 σφ1 = J−1

1 u. (A1)

The orientation joint dynamics is reduced to

ϕ̈+ µϕ̇ +Mv2φ+ J−1
2 σϕ1 = −J−1

2 J21 × J−1
11 u, (A2)

where remainder

[

σφ1

σϕ1

]

:= UWTσ1(t) is the corresponding force unmodeled dynamics item. Corresponding coefficients are

defined by

Mv1 = ṗx(cn − ct)J
−1
1 (TTT − J12J

−1
22 eTKT ), Mv2 = ṗx(cn − ct)J

−1
2 (eTKT − J21J

−1
11 TTKT ).
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Note that θ = Tφ+ eϕ,eTT = 0, DT = In−1. To this end, we choose an reference velocity in x-direction ṗx = ṗx0. we get

this form:

φ̈+ µφ̇+Mv1(ṗx0)φ+ σφ = J−1
1 u, ϕ̈+ µϕ̇+Mv2(ṗx0)φ+ σϕ = −J−1

2 J21 × J−1
11 u,

where remainder is defined as σφ = Mv1φ −Mv1(ṗx0)φ + J−1
1 σφ1,and σϕ = Mv2φ−Mv2(ṗx0)φ+ +J−1

2 σϕ1 is defined as

unmodeled dynamics, where

[

σφ1

σϕ1

]

is completely eliminated by control input u(t). We will have

φ̈+ µφ̇+Mv1(ṗx0)φ = J−1
1 uref, ϕ̈+ µϕ̇+Mv2(ṗx0)φ = −J−1

2 J21 × J−1
11 uref.

The force balance equation keep the nonlinear equation form and will be used in orientation controller simulation to declare

the effectiveness of the modified adaptive controller.

Other coefficients are defined by

[

vrx

vry

]

=

[

Cθ Sθ

−Sθ Cθ

][

Ẋ

Ẏ

]

, A := [In−1, 0n−1] + [0n−1, In−1], D := [In−1, 0n−1] −

[0n−1, In−1], e := [1 . . . 1]T, cos θ := [cos θ1, . . . , cos θn]T, sin θ := [sin θ1, . . . , sin θn]T, K := AT(DDT)−1D, Sθ :=

diag(sin θ), Cθ := diag(cos θ), E :=

[

e 0n×1

0n×1 e

]

, and subscript n− 1 stands for n− 1 dimensions.

Generally speaking, the full nonlinear dynamics equations are reduced to approximate dynamics equations by supposing
[

φ

ϕ

]

is small. If ϕ is not small, we can use a new variable ϕnew := ϕ − ϕ0, which means a new global coordinates of the

center of mass of the snake-like robot. ϕ0 is a constant value. Anyways, only if the amplitudes of φ and ϕ are small enough,

the full nonlinear dynamics equations can be reduced to approximate dynamics equations.
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