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Abstract In this paper, we consider linear system identification with batched binary-valued observations.

We constructed an iterative parameter estimate algorithm to achieve the maximum likelihood (ML) estimate.

The first interesting result was that there exists at most one finite ML solution for this specific maximum

likelihood problem, which was induced by the fact that the Hessian matrix of the log-likelihood function was

negative definite under binary data and Gaussian system noises. The global concave property and local strongly

concave property of the log-likelihood function were obtained. Under mild conditions on the system input, we

proved that the ML function has a unique maximum point. The second main result was that the ML estimate

was consistent under persistent excitation inputs, which infers the effectiveness of ML estimate. Finally, the

proposed iterative estimate algorithm converged to a fixed vector with an exponential rate that was proved

by constructing a Lyapunov function. A more interesting result was that the limit of the iterative algorithm

achieved the maximization of the ML function. Numerical simulations are illustrated to support the theoretical

results obtained in this paper well.
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1 Introduction

System identification with set-valued observations has been shown to have wide applications in different

fields, such as networked control systems, biological networks, and communication systems [1]. The

set-valued sensor poses substantial difficulties since only limited information is available to the system

identification. Hence, the related results are sparse compared with its significance.

To overcome the difficulties caused by the lack of information, some assumptions are usually adopted,

such as the specific periodical form [2], controllable quantization function [3], and so on. Here we consider

the worst scenario where the input signals are totally independent of each other and the quantization

function is fixed with only 1-bit observation.

In most cases, the consistency property of the estimation algorithm is the priority, that is, the conver-

gence rate of the estimated parameters to the real ones when sample size tends to be infinity [3, 4]. The
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consistency problem is very important because it shows us the sample size needed to achieve an accurate

estimation of the parameter. Here, we want to focus on the estimation problem from another view.

With sample size fixed, how to construct an algorithm to obtain the parameter estimation as accurately

as possible. Latest research shows that a set-valued system can result in a natural likelihood function,

and the system identification problem can be converted to a corresponding maximum likelihood (ML)

problem, which can shed light on the study of the set-valued system identification [5, 6]. Under the ML

principle, we need to construct a rational likelihood function and estimate the parameter that maximizes

it. The estimated parameter, which is called ML estimate, usually has many significant properties such

as strong consistency [4]. The detailed advantages and more formal justification for the use of MLE is

provided in [7]. In fact, some proposed estimates in previous work are ML estimate essentially [6].

In the ML field, the expectation maximization (EM) algorithm has obtained immense success [8]. The

earliest reference to literature on an EM-type of algorithm is [9], which considered the estimation of

parameters of a mixture of two univariate normals. And, in the following decades, many studies based on

the EM algorithm were given to handle incomplete data [10–15]. Finally, in 1977, the general formulation

of the EM algorithm was proposed by [16], which accelerated the broad use of the EM algorithm in many

fields, such as mixture density problem [17], confined and censored Normal Data [18], neural network

with hidden units [19] and so on.

As an optimization problem, the solution of the ML problem usually does not have a closed form. Even

limited to the linear system with binary observations, it still cannot be resolved explicitly. To obtain

the ML estimate, the EM algorithm produces a sequence of the iterative estimates {θ̂t, t = 1, 2, ...} to

access the ML estimate. As the iteration step goes on, it is guaranteed that the log-likelihood function

{l(θ̂t)} is non-decreasing, which brings extraordinary robustness compared to other methods such as

Newton-Raphson Method and Quasi-Newton Methods [8]. Coupled with the upper bound of the log-

likelihood function, there exists an l∗, which is the limit of {l(θ̂t)}. But the convergence of the parameter

estimates {θ̂t} cannot be concluded by the convergence of {l(θ̂t)} and l∗ need not necessarily be the

maximum value. Refs. [20, 21] analyzed the general convergence property of the EM algorithm based

on a convergence theorem in point-to-set topology field and showed some counterexamples where EM

algorithm fails to converge, which indicated that the convergence of EM algorithm needed to be analyzed

for a specific model.

For binary-valued systems, the EM algorithm was introduced by [6] to estimate the model parameter

and simulation results showed the convergence property of the iterative procedures. However, there are

still some fundamental questions to be answered such as how to construct a convergent iterative estimate

algorithm? What is the convergence rate? What kind of properties does the limit of the iteration

have? Hence, its theoretical feasibility based on the specific log-likelihood function with binary data and

Gaussian system noises is worth deriving.

This paper constructs an EM-typed iterative algorithm to estimate the system parameter based on

batched binary data to achieve the ML estimate. At first, some properties about the ML function and

ML estimate are analyzed in detail. Under mild conditions on the system input, the ML function is

proved to have unique maximum point, the necessary and sufficient condition for which is given. Then,

the algorithm is proved to be convergent with an exponential rate to a fixed vector, no matter where

the initial value is. Finally, the point of convergence is proven to be exactly the ML estimate under

batched binary-valued observations. The numeric simulations successfully proved the efficiency of our

algorithm.

The rest of the paper is organized as follows: Section 2 introduces the identification problem and its

corresponding ML criterion; and an iteration estimate algorithm is constructed. In Section 3 we analyze

the likelihood function and obtain a sufficient and necessary condition for the existence and uniqueness

of the maximum point of the likelihood function. Section 4 derives the convergence of the algorithm

and obtains an exponential convergence rate. Section 5 briefly introduces how to handle the unknown

threshold and error. Some results are illustrated through extensive numerical simulations in Section 6.

Section 7 concludes the paper and discusses related future work.
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2 Problem formulation

In this section, we introduce the system with batched binary-valued observations and we formulate the

corresponding parameter identification problem. The ML estimate problem is given and an iterative

algorithm is constructed.

2.1 Binary-valued system

We consider the scheme where noise enters between the n-dimensional linear system and a binary sensor.

The system can be described by
{

yk = φT
k θ + ek,

sk = I[yk6C], 1 6 k 6 N,
(1)

where the data length is N , for all k 6 N , φk ∈ R
n is the system input, yk ∈ R is the unobserved

system output and θ ∈ R
n is a constant but unknown parameter vector, sk ∈ {0, 1} is the binary-valued

observation generated by the comparison between the system output and a given sensor threshold C ∈ R,

I is the indicator function. System noise EN = {e1, e2, . . . , eN} is assumed to be independent with a

zero-mean and variance 1 Gaussian distribution.

Assumption 1. Matrix A =
∑N

k=1 φkφ
T
k is positive definite.

Remark 1. Assumption 1 is the mathematical description of persistent excitation condition under

batched data environment, which is a common assumption in the research of system identification [22].

The problem of interest is to estimate the parameter θ using the binary-valued observations ON =

{s1, s2, . . . , sN} and input data IN = {φ1, φ2, . . . , φN}.

2.2 Maximum likelihood criterion

We consider the system (1), for any k 6 N , assuming that the input data φk and the parameter θ is

known, then corresponding probabilities of observation sk = 1 and sk = 0 are as follows.

P{sk = 1|φk, θ} = P{yk 6 C|φk, θ}

= P{ek 6 C − φT
k θ|φk, θ}

= F (C − φT
k θ),

P{sk = 0|φk, θ} = 1− P{sk = 1|φk, θ}

= 1− F (C − φT
k θ),

where F (x) are the cumulative distribution function (CDF) of the standard normal distribution.

With the above conditional probability, we can construct a likelihood function to represent the overall

probability of observation data ON given the input data IN and parameter θ,

L(θ) = P{ON |IN , θ}

=

N∏

k=1

P{sk|φk, θ}

=
∏

{k:sk=1}

P{sk = 1|φk, θ} ·
∏

{k:sk=0}

P{sk = 0|φk, θ}

=
∏

{k:sk=1}

F (C − φT
k θ) ·

∏

{k:sk=0}

(
1− F (C − φT

k θ)
)
.

In practical applications, we prefer log-likelihood function l(θ) which is the logarithmic transformation

of the likelihood function L(θ),

l(θ) = log(L(θ))
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=
∑

{k:sk=1}

log[F (C − φT
k θ)] +

∑

{k:sk=0}

log[1− F (C − φT
k θ)]

=

N∑

k=1

[

log[F (C − φT
k θ)]I[sk=1] + log[1− F (C − φT

k θ)]I[sk=0]

]

. (2)

The corresponding ML estimate is the parameter that maximizes the log-likelihood function:

θ̂ = argmax
θ

l(θ). (3)

Remark 2. Since log-likelihood function and related ML estimate are relevant to N observations, lN (θ)

and θ̂N are more accurate representations. In this paper, for the convenience of description, symbols l(θ)

and θ̂ are employed in the case of no conflict.

2.3 Explicit solution of the ML problem

As for some specific binary-valued systems, the explicit solution of ML problem (3) exists. For example,

Ref. [2] considered a case where the input data IN = {φ1, φ2, . . . , φN} has periodical form shown in

Eq. (4):






{φk, k > 1} is n-periodic, i.e. φk = φk+n;

N is divisible by n, and N/n = N̄ ;

Φ1 = (φ1, φ2, . . . , φn)
T is reversible.

(4)

In this case, the log-likelihood function is converted to

l(θ) =

n∑

i=1

{
Ni1 log[F (C − φT

i θ)] +Ni0 log[1− F (C − φT
i θ)]

}
,

where, Ni1 =
∑L−1

j=0 si+nj represents the number of observations whose φk = φi and sk = 1, and

Ni0 =
∑L−1

j=0 (1 − si+nj) represents the number of observations whose φk = φi and sk = 0. Hence,

∀i 6 n,Ni1 +Ni0 = N̄ . The corresponding gradient vector is

∇l(θ) =

n∑

i=1

{[ −Ni1

F (C − φT
i θ)

+
Ni0

1− F (C − φT
i θ)

]

f(C − φT
i θ)φi

}

.

Define

R =
(
C − F−1(N11/N̄), C − F−1(N21/N̄), . . . , C − F−1(Nn1/N̄)

)T
,

the explicit solution of ML problem ∇l(θ̂) = 0 is

θ̂ = Φ−1
1 R. (5)

Remark 3. The algorithm of [2] is essentially the ML estimate (5).

2.4 Iterative estimate algorithm

If we relax restrictions on the input data IN , the explicit solution of ML problem usually does not exist.

In this section, we propose an iterative estimate algorithm to obtain the ML estimate.

The proposed iterative algorithm employs the basic idea of the EM algorithm. Hence, we first briefly

introduce the EM algorithm. Given the estimate at the t-th iteration θ̂t, EM algorithm is able to construct

function l(θ|θ̂t) based on specific conditional expectations. And, function l(θ|θ̂t) satisfies the following

two properties:

(i) l(θ|θ̂t) 6 l(θ) holds for all θ,
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(ii) l(θ̂t|θ̂t) = l(θ̂t).

Then, calculate θ̂t+1 that maximize the function l(θ|θ̂t) as the estimate of (t + 1)-th iteration. We can

see that

l(θ̂t+1) > l(θ̂t+1|θ̂t) = max l(θ|θ̂t) > l(θ̂t|θ̂t) = l(θ̂t).

This guarantees the non-decreasing property of iterative algorithm for log-likelihood function, which

provides extraordinary robustness. The construction process of function l(θ|θ̂t) is the E-step and maxi-

mization process is the M-step.

Back to the binary-valued model, the E-step provides the following l(θ|θ̂t) with the quadratic form:

l(θ|θ̂t) = −
1

2
θT

( N∑

k=1

φkφ
T
k

)

θ +

[( N∑

k=1

φkφ
T
k

)

θ̂t −

( N∑

k=1

φk · f(C − φT
k θ̂t)

×

[
I[sk=1]

F (C − φT
k θ̂t)

−
I[sk=0]

1− F (C − φT
k θ̂t)

])]T

θ + l1(θ̂t),

where l1(θ̂t) is the part independent from θ.

Under Assumption 1, the iterative algorithm is as follows:

θ̂t+1 = argmax
θ

l(θ|θ̂t)

= θ̂t −

( N∑

k=1

φkφ
T
k

)−1( N∑

k=1

φk · f(C − φT
k θ̂t)

[
I[sk=1]

F (C − φT
k θ̂t)

−
I[sk=0]

1− F (C − φT
k θ̂t)

])

. (6)

The above algorithm can be proved to converge to the ML estimate (3) with an exponential rate in

the rest of this paper. As the initial issue, the existence and uniqueness of the solution of (3) is needed

to be checked, which assures that the iterative algorithm based on MLE is effective.

3 Existence and uniqueness of the ML estimate

In this section, we explore the properties of ML estimate by analyzing the log-likelihood function (2)

and prove the existence and uniqueness of ML estimate. The main reason is that the special likelihood

function with binary-valued observations is concave.

Denote f(x) = F ′(x) as the probability dense function (PDF) of the standard normal distribution.

Then, we can see that

Lemma 1. Function

p(x) = −
d2 log[F (x)]

dx2
=

f(x)xF (x) + f2(x)

F 2(x)

is a strictly decreasing function and 0 < p(x) < 1 for x ∈ (−∞,∞).

Proof. The detailed proof is in Appendix A.1.

Remark 4. The result of Lemma 1 is not always valid for other distributions. Given below are two

examples: (1) If Fσ(x) is the CDF of normal distribution with mean 0 and variance σ2, then pσ(x) =

−d2log[Fσ(x)]
dx2 ∈ (0, 1/σ2). (2) If Ft,d(x) is the CDF of t distribution with degrees of freedom d, then

pt,d(x) = −
d2log[Ft,d(x)]

dx2 > 0 does not always hold. In Appendix A.1, the examples (2) are illustrated in

a graph.

Remark 5. The symmetrical properties of normal distribution is widely used in this paper, that is,

f(−x) = f(x), F (−x) = 1− F (x).

The non-negative property of p(x) induces the concaveness of the log-likelihood function, which is

described in the following lemma.

Lemma 2. Under Assumption 1, log-likelihood function l(θ) given in (2) is a concave function on R
n.

Furthermore, given any r > 0, l(θ) is a strongly concave function on the set S = {θ : ‖θ‖ 6 r}.
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Proof. Based on Assumption 1, A =
∑N

k=1 φkφ
T
k > 0. Hence, there exists a minimal eigen value

λ1 = λmin(A) such that A > λ1I.

Calculate the gradient vector and Hessian matrix of the log-likelihood function:

∇l(θ) =

N∑

k=1

[(
−f(C − φT

k θ)

F (C − φT
k θ)

I[sk=1] +
f(C − φT

k θ)

1− F (C − φT
k θ)

I[sk=0]

)

φk

]

,

∇2l(θ) = −

N∑

k=1

[(
f(x)xF (x) + f2(x)

F 2(x)

∣
∣
∣
x=C−φT

k
θ
· I[sk=1]

+
f(x)xF (x) + f2(x)

F 2(x)

∣
∣
∣
x=φT

k
θ−C

· I[sk=0]

)

φkφ
T
k

]

.

Denote p(x) = f(x)xF (x)+f2(x)
F 2(x) and rewrite the Hessian matrix as follows:

∇2l(θ) = −

N∑

k=1

[(
p(C − φT

k θ) · I[sk=1] + p(φT
k θ − C) · I[sk=0]

)
φkφ

T
k

]

.

Lemma 1 presents the monotonicity and boundedness of function p(x). Hence, ∇2l(θ) 6 0 can be

directly concluded through p(x) > 0, which infers the concave property of l(θ). If limited on the set

S = {θ : ‖θ‖ 6 r}, the boundedness of θ guarantees that ∀k 6 N , there exists ǫr,Φ,k > 0 such that

(
p(C − φT

k θ)I[sk=1] + p(φT
k θ − C)I[sk=0]

)
> ǫr,Φ,k.

Denote ǫr,Φ = mink6N{ǫr,Φ,k}, then ∇2l(θ) 6 −ǫr,Φ
∑N

k=1 φkφ
T
k = −ǫr,ΦA. Coupled with A > λ1I, we

can see that ∇2l(θ) 6 −λ1ǫr,ΦI, which infers the strongly concave property of the function l(θ) on the

set S .

Remark 6. Based on Remark 4, binary-valued system with t distribution error does not have the

concave log-likelihood function. Hence, the property is not general for binary-valued model.

According to the concave property of the log-likelihood function, we can prove the uniqueness of ML

estimate first.

Theorem 1. Under Assumption 1, log-likelihood function l(θ) given in (2) has at most one maximum

point.

Proof. Assume there exist two maximum points θ1 and θ2. Let r1 = max(‖θ1‖, ‖θ2‖), Lemma 2 proves

the strongly concave property of l(θ) on the set S = {θ, ‖θ‖ 6 r1}, which makes it impossible to come up

two different maximum points on the set S . The contradiction shows that there is at most one maximum

point for l(θ).

To reveal the condition that ML estimate exists. Some novel conditions are given.

Definition 1. Denote

Ψ =
(
φ1(I[s1=0] − I[s1=1]), . . . , φN (I[sN=0] − I[sN=1])

)

as the integrated matrix that combines the information of both input data IN = {φ1, φ2, . . . , φN} and

binary-valued observation ON = {s1, s2, . . . , sN}.

Definition 2. Given input IN and binary-valued observations ON , if there exists non-zero vector

γ ∈ R
n such that ΨTγ > 0, then the data (IN ,ON ) is called ineffective, otherwise it is called effective.

Lemma 3. Under Assumption 1, if data (IN ,ON ) is effective, then ∀ b ∈ R, the set Sb = {θ : l(θ) > b}

is a bounded set.

Proof. The detailed proof is in Appendix A.2.

Based on the previous discussion, we can give an explicit description for the existence and uniqueness

of ML estimate.
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Theorem 2. Under Assumption 1, the log-likelihood function l(θ) given in (2) has a unique maximum

point if and only if that data (IN ,ON ) is effective.

Proof. We prove the theorem from two directions.

Sufficiency. Given any θ1, the global maximum point of l(θ) is on the set Sl(θ1) = {θ : l(θ) > l(θ1)}.

From Lemma 3, that data (IN ,ON ) is effective to conclude that Sl(θ1) is a bounded set, which infers the

existence of maximum point of l(θ). Coupled with the result of Theorem 1, there is exactly one maximum

point for l(θ).

Necessity. If (IN ,ON ) is ineffective, there is a non-zero vector γ ∈ R
n such that ΨTγ > 0. Because

ΨΨT =
∑N

k=1 φkφ
T
k , Assumption 1 rejects that ΨTγ = 0. Hence, there is at least one positive component

for vector ΨTγ.

Given any parameter θ, we define a scalar function hθ,γ(r) as follows:

hθ,γ(r) = l(θ + rγ)

=

N∑

k=1

[

log[F (C − φT
k (θ + rγ))]I[sk=1] + log[F (−C + φT

k (θ + rγ))]I[sk=0]

]

=

N∑

k=1

[

log[F (−φT
k γr + C − φT

k θ)]I[sk=1] + log[F (φT
k γr + C + φT

k θ)]I[sk=0]

]

.

Note that the k-th component of ΨTγ is

(ΨTγ)k = −φT
k γI[sk=1] + φT

k γI[sk=0],

which is consistent with the coefficient of r in hθ,γ(r). The property of ΨTγ, which is described before, and

the strictly increasing property of functions F (.) and log(.) conclude that hθ,γ(r) is a strictly increasing

function.

Suppose θ∗ is a maximum value point, hθ∗,γ(r) = l(θ∗ + rγ) should be non-increasing at r = 0, which

is contradictory with the strictly increasing property of hθ∗,γ(r). So, there does not exist any finite

maximum point for l(θ).

Below are some examples to illustrate how to prove the effectiveness and ineffectiveness of data.

Example 1. Assuming the model dimension n = 1, all the input data {φk, k 6 N} are positive. The

observation sk = 0 holds for any k 6 N . Then the integrated matrix is

Ψ = (φ1(I[s1=0] − I[s1=1]), . . . , φN (I[sN=0] − I[sN=1]))

= (φ1, φ2, . . . , φN ).

The data obviously is ineffective because there exists γ = 1, such that ΨTγ > 0.

Example 2. Assuming the model dimension n = 1, all the input data {φk, k 6 N} are positive. There

exists k1 6= k2 such that observation sk1
= 0 and sk2

= 1. Then the integrate matrix is as follows:

Ψ = (φ1(I[s1=0] − I[s1=1]), . . . , φk1
, . . . ,−φk2

, . . . , φN (I[sN=0] − I[sN=1])).

Given any γ 6= 0, (ΨTγ)k1
= φk1

γ, (ΨTγ)k2
= −φk2

γ. That φk1
, φk2

> 0 infers that (ΨTγ)k1
and (ΨTγ)k2

have opposite sign, which rejects the case that ΨTγ > 0.

Remark 7. If the model dimension n is large, the effective property of data is not easy to verify

through Definition 2. Here we construct a new criterion, which only needs the existence of one point at

N -dimensional space.

Criterion 1. If there exists ρ ∈ R
N > 0, s.t. Ψρ = 0, then data (IN ,ON ) is effective.

Proof. Suppose there exists ρ ∈ R
N > 0, s.t. Ψρ = 0. Then, if the data (IN ,ON ) is ineffective, there is

a non-zero vector γ ∈ R
n such that ΨTγ > 0. Coupled with ρ > 0, we can conclude that ρT(ΨTγ) > 0.

While because Ψρ = 0, ρTΨT = 0 infers ρT(ΨTγ) = 0, which concludes the contradiction. Hence, data

(IN ,ON ) is effective.
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Example 3. We give an example to illustrate the use of Criterion 1, which also shows the wide existence

of effective data. Assume N input signals have m possible options φ1, φ2, . . . , φm. For any i 6 m, there

are Ni input signals φi, including Ni0 signals with observation 0 and Ni1 signals with observation 1.

Then, the integrate matrix Ψ given in Definition 1 is

Ψ = (φ1, . . . , φ1
︸ ︷︷ ︸

N10

,−φ1, . . . ,−φ1
︸ ︷︷ ︸

N11

, . . . , φm, . . . , φm
︸ ︷︷ ︸

Nm0

,−φm, . . . ,−φm
︸ ︷︷ ︸

Nm1

).

Select an N -dimensional vector

ρ = (N11, . . . , N11
︸ ︷︷ ︸

N10

, N10, . . . , N10
︸ ︷︷ ︸

N11

, . . . , Nm1, . . . , Nm1
︸ ︷︷ ︸

Nm0

, Nm0, . . . , Nm0
︸ ︷︷ ︸

Nm1

)T.

It is easy to prove that

Ψρ =

m∑

i=1

(Ni1Ni0φi −Ni1Ni0φi) = 0.

If data length N is large enough, then there are great chances that Ni1 > 0, Ni2 > 0. Based on

Criterion 1, the data is effective.

4 Convergence of the iterative estimate

The former two sections demonstrated that MLE is valid for the parameter estimation of a binary-valued

system. In this section, we will prove the proposed iterative algorithm (6) converging to the ML estimate

with an exponential rate by using a Lyapunov method.

Assumption 2. Data (IN ,ON ) is effective.

Remark 8. As Theorem 2 shows, if data (IN ,ON ) is ineffective, the log-likelihood function does not

have any finite maximum point. Hence, Assumption 2 is necessary for us to analyze the convergence to

the ML estimate.

The following main result infers that if the ML estimate exists, then the iterative estimate {θ̂t} con-

structed by (6) certainly converges to the ML estimate with exponential convergence rate.

Theorem 3. Under Assumptions 1 and 2, there exists 1 > ǫ > 0 such that the iteration {θ̂t} generated

by (6) satisfies

‖θ̂t − θ̂‖ 6

√

Q1

λmin(A)
·

√

(1− ǫ)
t

1−
√

(1− ǫ)
,

where θ̂ is the ML estimate given in (3); A =
∑N

k=1 φkφ
T
k , λmin(A) is the minimal eigen value of A;

Q1 = (1− ǫ)−1(θ̂2 − θ̂1)
TA(θ̂2 − θ̂1); and ‖ · ‖ is the Euclidean norm.

Proof. Since EM algorithm increases the log-likelihood function value as the iteration goes on, {θ̂t : t >

1} ⊂ {θ : l(θ) > l(θ̂1)} is bounded according to Lemma 3. Assuming there is an upper bound r such that

for all t > 1, ‖θ̂t‖ 6 r.

Eq. (6) can be transformed to

θ̂t+1 = θ̂t +

( N∑

k=1

φkφ
T
k

)−1

∇l(θ̂t) = θ̂t +A−1(∇l(θ̂t)),

where ∇l(θ̂) is the gradient vector of the log-likelihood function. Its accurate form can be seen in

Lemma 2.

Furthermore, based on mean value theorem, we can see that

θ̂t+1 − θ̂t = θ̂t − θ̂t−1 +A−1
(

∇l(θ̂t)−∇l(θ̂t−1)
)
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= θ̂t − θ̂t−1 +A−1
(

∇2l(θ̌t,t−1)(θ̂t − θ̂t−1)
)

=
(

I +A−1
(
∇2l(θ̌t,t−1)

))

(θ̂t − θ̂t−1), (7)

where θ̌t,t−1 is between θ̂t and θ̂t−1, to be more accurate, there exists λt,t−1 ∈ (0, 1) such that θ̌t,t−1 =

λt,t−1θ̂t + (1− λt,t−1)θ̂t−1.

The boundedness of {θt, t > 1} indicates that ‖θ̌t,t−1‖ 6 r. Furthermore, based on Lemma 2, there

exists ǫ > 0 such that for all t,

−A < ∇2l(θ̌t,t−1) 6 −ǫ
∑N

k=1 φkφ
T
k = −ǫA.

For the simplicity, for all t > 1, we define

Bt = −∇2l(θ̌t,t−1), xt = θ̂t+1 − θ̂t.

Hence, ∀t > 1, A > Bt > ǫA > 0. Eq. (7) can be translated to the following form:

xt = (In −A−1Bt)xt−1. (8)

We prove the convergence of {θ̂t} by analyzing the property of a Lyapunov function Qt = (1−ǫ)−txT
t Axt,

Qt = (1− ǫ)−txT
t Axt

= (1− ǫ)−txT
t−1(In −A−1Bt)

TA(In −A−1Bt)xt−1

= Qt−1 + (1− ǫ)−txT
t−1

[
(In −A−1Bt)

TA(In −A−1Bt)− (1− ǫ)A
]
xt−1

= Qt−1 + (1− ǫ)−txT
t−1

[
A− 2Bt +BtA

−1Bt − (1− ǫ)A
]
xt−1

= Qt−1 + (1− ǫ)−txT
t−1

[
BtA

−1Bt −Bt + ǫA−Bt

]
xt−1.

For all t > 1, A > Bt > 0, so that A−1 < B−1
t , and furthermore, BtA

−1Bt < BtB
−1
t Bt = Bt. Coupled

with ǫA < Bt, we can see that

BtA
−1Bt −Bt + ǫA−Bt < 0 ⇒ Qt 6 Qt−1.

For all t > 1,

Qt 6 Q1 ⇒ (1− ǫ)−txT
t Axt 6 Q1 ⇒ ‖xt‖

2
6

Q1

λmin(A)
(1− ǫ)t,

where λmin(A) is the minimal eigen value of matrix A. Hence,

‖θ̂t+r − θ̂t‖ = ‖xt + xt+1 + · · ·+ xt+r−1‖

6 ‖xt‖+ ‖xt+1‖+ · · ·+ ‖xt+r−1‖

6

√

Q1

λmin(A)

[√

(1 − ǫ)
t
+
√

(1 − ǫ)
t+1

+ · · ·+
√

(1 − ǫ)
t+r−1

]

=

√

Q1

λmin(A)
·

√

(1 − ǫ)
t
(1−

√

(1− ǫ)
r
)

1−
√

(1− ǫ)

→ 0 as t → ∞, r → ∞.

Based on Cauchy criterion, {θ̂t} convergent to some point θ̂0. Additionally, fix t and let r → ∞,

‖θ̂0 − θ̂t‖ 6

√

Q1

λmin(A)
·

√

(1 − ǫ)
t

1−
√

(1− ǫ)
.
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We can see that convergence rate is of the same order with the exponential rate
√

(1− ǫ)
t
.

Recall that θ̂t+1 = θ̂t +A−1∇l(θ̂t). As t → ∞,

θ̂0 = θ̂0 +A−1∇l(θ̂0) ⇒ ∇l(θ̂0) = 0.

This concludes that θ̂0 is an ML estimate θ̂. In addition, by Theorem 2, θ̂ is the unique maximum value

of log-likelihood function.

Remark 9. Theorem 3 proves the convergence property of iterative algorithm and obtains the con-

vergence rate at the same time. The introduction of Lyapunov function simplifies the analysis and the

whole proof process is very concise. We hope the analysis and method could bring inspiration into related

researches.

5 Discussion about the threshold and error variance

Recall the binary-valued model (1),

{

yk = φT
k θ + ek,

sk = I[yk6C], 1 6 k 6 N.

Here, we assume the threshold C known and variance of error {ek} fixed to be 1. These assumptions

seem a little debatable. In this section, we give a brief description to show that these assumptions are

not the nature of the problem.

5.1 Threshold detect

Even if we assume that the threshold is unknown, we can still detect it by a simple transformation process.

Denote y∗k = yk − C, model (1) can be transformed as

{

y∗k = φT
k θ − C + ek,

sk = I[y∗

k
60], 1 6 k 6 N,

where the new threshold is fixed at 0, and C is converted to a new parameter to be estimated. The

corresponding “input data” related to “parameter” C are all −1.

5.2 Influence of the error variance

The assumption that error {ek} is independent and identically distributed is very general and acceptable.

But it is a little questionable whether the error variance should be fixed at 1. Relax the restriction and

assume the error {ek} obeys normal distribution with mean 0 and variance σ2. By transformation

y⋆k = yk/σ, θ⋆ = θ/σ, e⋆k = ek/σ, C⋆ = C/σ,

The model (1) actually can be converted to the following equivalent model:

{

y⋆k = φT
k θ

⋆ + e⋆k,

sk = I[y⋆
k
6C⋆], 1 6 k 6 N,

where e⋆k follows normal distribution with mean 0 and variance 1. Hence, the algorithm (with assumption

that error variance is 1) obtains a group of estimated parameters and thresholds which are θ⋆, C⋆ rather

than the actual ones θ, C. But is it not enough to obtain a group of parameters that share a constant

multiple? To answer the question, we briefly give an example where the model describes the whole healthy

condition of individual. For the detail of the example, see [23].
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Example 4. Suppose input data φk represents the major different aspects for individual k such as

smoking frequency, sleeping time per day, genotype of some important loci and so on; yk represents the

latent healthy index, which is unobservable; if the healthy index is high enough to exceed the threshold

C, then the individual is healthy, denoted as sk = 0, otherwise sk = 1 indicates a poor condition. We

are interested in two questions:

(1) Which aspect influences the healthy condition?

(2) Can we deduce whether the individual is healthy with the knowledge of every aspect information?

The answer to (1) can be roughly concluded by the abstract value of corresponding parameter. The

parameter more close to zero is less sensitive for yk with change in corresponding input, which indicates

less effect. And obviously, the relative relationship among parameters is unaffected by the common

multiple.

To resolve the problem (2), we can make use of the estimated parameter and known input to generate

an estimated ŷk. Furthermore, by comparing the relative relationship between the ŷk and threshold C

to deduce the ŝk. If the threshold and parameters vary proportionally, the deduction results will not be

influenced totally.

The example shows that sometimes only the ratios of estimated parameters are necessary for the

practical problem. Thus, we can fix the variance of error as 1 and ignore the proportional change of

estimated parameters.

6 Numerical simulations

In this section, we illustrate the main results through extensive simulations.

6.1 Log-likelihood function curve

To illustrate the log-likelihood function intuitively, we limit the model dimension to n = 1. In this case,

Assumption 1 degenerates
∑N

k=1 φ
2
k > 0. If the assumption is not satisfied, then ∀k, φk = 0, means we

cannot obtain any useful input information.

Examples 1 and 2 give two examples of ineffective data case and effective case respectively. Actually,

that data {IN ,ON} is ineffective is equivalent one of (A1) and (A2) is true,

(A1). For all k that input φk > 0, observation sk = 1;

For all k that input φk 6 0, observation sk = 0.

(A2). For all k that input φk 6 0, observation sk = 1;

For all k that input φk > 0, observation sk = 0.

If we generate the data based on the model (1), cases (A1) and (A2) hardly emerge. To illustrate the

necessity of “effective property”, we adopt a kind of data generation process, which has nothing to do

with the model.

Fix data length N = 10, generate the observations ON with the following Matlab codes:

(B1). s = [ones(N/2, 1); zeros(N/2, 1)];

(B2). s = [ones(N, 1)].

Command ones(a, 1) generates an a-dimensional vector with elements all 1, and command zeros(a, 1)

generates an a-dimensional vector with elements all 0. The procedure can generate (B1) and (B2) as

Table 1.

As for input data IN , two cases are considered. The matlab codes are below.

(C1). input = [rand(N/2, 1);−rand(N/2, 1)];

(C2). input = [−rand(N, 1)].
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Table 1 Observations generated by (B1) and (B2)

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

B1 1 1 1 1 1 0 0 0 0 0

B2 1 1 1 1 1 1 1 1 1 1

Table 2 Signs of input generated by (C1) and (C2)

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10

C1 + + + + + − − − − −
C2 − − − − − − − − − −

Command rand(a, 1) can generate an a-dimensional vector with elements uniformly distributed at random

numbers, which are positive. The signs of input in two cases are shown in Table 2.

Hence, (B1)+(C1) corresponds to the ineffective case (A1), and (B2)+(C2) corresponds to the inef-

fective case (A2). The other two combinations (B1)+(C2) and (B2)+(C1) correspond to the effective

cases.

Log-likelihood function l(θ), where θ ∈ (−10, 10) is shown in Figure 1. We can see that “effective

property” indeed provides the existence and uniqueness of finite ML estimate.

6.2 Convergence of the proposed iterative algorithm

In this section, the convergence of the proposed iterative algorithm (6) is illustrated by numerical simu-

lations. The brief simulation process is as follows:

Step 1. Data generate. Fix the data length N = 500, the model dimension n = 7, the sensor threshold

C = 0, and the model parameter θ = (−3,−2,−1, 0, 1, 2, 3)T. Error EN and input data IN are generated

based on standard normal distribution. Matlab codes are below:

error = [randn(N, 1)]; input = [randn(N, 7)].

The binary-valued observations ON is generated according to model (1).

Step 2. Initial vector select. To prove that EM algorithm can converge to the unique ML estimate,

under the same effective data {IN ,ON}, we adopt a random vector as the iterative initial vector θ̂1. All

components of θ̂1 are generated by normal distribution with mean 0 and standard deviation 3.

initial = randn(7, 1)× 3.

Step 3. Parameter estimate. Based on the initial value θ̂1 and iteration process (6), we can generate

the iteration estimates {θ̂t, t > 1}.

The simulation results of iteration estimates are shown in Figure 2. Under various initial vectors,

all components of estimates {θ̂t} converge to the unique ML estimate, which is quite close to the true

parameter. In addition, the curves of Figure 2 indicate the exponential convergence rate.

6.3 Consistency of the ML estimate

In this section, we illustrate the consistency of the ML estimate by numerical simulations. In other words,

we identify whether the ML estimate converges to the actual parameter with the increase of data length.

Select data length N = 500, 100, 2000, 10000, respectively. In each case, we repeat the data generation

and parameter estimate to obtain the estimated parameter for 100 times.

Figure 3 shows the distribution of each component of the ML estimates. We can see that with the

increase of data length, the ML estimate converges to the actual parameter.

6.4 Comparisons with other methods

In this section we compare the proposed EM-typed algorithm with the traditional Newton-Raphson (NR)

method by numerical simulations. The theoretical results show that these two methods have their own



Zhao Y L, et al. Sci China Inf Sci May 2016 Vol. 59 052201:13

−10 −5 0 5 10
−250

−200

−150

−100

−50

0
(a)

Parameter θ Parameter θ

Parameter θ Parameter θ

L
o
g
−

li
k
el

ih
o
o
d
 f

u
n
ct

io
n
 l

 (
  
) 

 
θ

L
o
g
−

li
k
el

ih
o
o
d
 f

u
n
ct

io
n
 l

 (
  
) 

 
θ

L
o
g
−

li
k
el

ih
o
o
d
 f

u
n
ct

io
n
 l

 (
  
) 

 
θ

L
o
g
−

li
k
el

ih
o
o
d
 f

u
n
ct

io
n
 l

 (
  
) 

 
θ

−10 −5 0 5 10
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
(b)

−10 −5 0 5 10
−140

−120

−100

−80

−60

−40

−20

0
(c)

−10 −5 0 5 10
−140

−120

−100

−80

−60

−40

−20

0
(d)

Figure 1 Curve of the log-likelihood function l(θ) under different cases with (a) (B1)+(C1), (b) (B1)+(C2), (c) (B2)+(C1),

and (d) (B2)+(C2).
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Figure 2 The solid lines are the curves of all 7 components of estimated parameter θ̂t. The dotted lines correspond to

the actual parameter. Estimates with (a) initial vector 1; (b) initial vector 2; (c) initial vector 3; (d) initial vector 4.
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Figure 3 The corresponding component of the ML estimates of 100 times sampling. ML estimates with data length (a)

N = 500; (b) N = 1000; (c) N = 2000; and (d) N = 10000.

Table 3 The computing time per iteration: the data length N is fixed as 1000 and the model dimension n ranges from 5

to 35

n=5 n=10 n=15 n=20 n=25 n=30 n=35

EM 4.3×10−4 4.9×10−4 5.5×10−4 5.2×10−4 5.3×10−4 5.3×10−4 8.1×10−4

NR 0.0087 0.0102 0.0104 0.0100 0.0113 0.0125 0.0136

Table 4 The comparison of computing time per iteration: the model dimension is fixed at n = 10 and data length n

ranges from 5 to 35

N=500 N=1000 N=1500 N=2000 N=2500 N=3000 N=3500

EM 3.6×10−4 4.7×10−4 7.5×10−4 7.3×10−4 0.0012 0.0011 0.0016

NR 0.0032 0.0108 0.0222 0.0372 0.0611 0.0811 0.1180

advantages. EM-typed algorithm is robust, easy to programme, fast within each iteration, and does not

need much storage space. While the NR method has a much more fast convergence rate if the starting

value is close to the true one. Here limited to the specific binary-valued model and proposed algorithm,

the respective features are illustrated by simulations. The whole process is operated on an ordinary

personal computer.

6.4.1 Computing time per iteration

First, we compare the computing time per iteration. Extensive simulations show that model dimension

n and data length N are two major factors that influence. We first fix the data length N = 1000 and

change the model dimension n from 5 to 35. The related result can be seen in Table 3. At the increase

of n, the computing time per iteration increases slightly. The EM algorithm is always obviously faster

than the NR method.

On the other hand, we fixed the model dimension n = 10 and altered the data length N from 500

to 3500, the related results can be seen in Table 4. As the increase of N , the computing time of both
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Figure 4 The iteration process of EM and NR methods with data length N = 1000 and model dimension n = 10. The

solid line represents the EM algorithm and dotted line represents the NR method.
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Figure 5 The iteration process of EM and NR methods with data length N = 1000 and model dimension n = 20. The

solid line represents the EM algorithm and the dotted line represents the NR method.

methods increases significantly. The rate advantage of EM algorithm is still very obvious.

6.4.2 Convergence rate comparison

From the previous section, we can see that the proposed EM-typed algorithm needs much less time

than NR method to carry out an iteration. But whether NR method needs much less iteration steps to

complete the parameter estimation? Which one is faster comparing the whole computing time?

In this section, we compare the convergence rate, in short, we identify which one takes less iteration

steps to complete the identification process. The actual parameter, input data and error terms are

randomly selected based on standard normal distribution, the initial iterative parameter is fixed at zero

point. The data length is fixed as 1000, Figure 4 shows the iteration process when model dimension is

10 and Figure 5 shows the case where model dimension is 20.

Figure 4 illustrates that if model dimension is relatively few, the EM algorithm needs less iteration

steps to achieve the ML estimate than the NR method, which is very inspiring. We know that EM needs

much less computing time per iteration than NR, hence, EM algorithm is much more competitive in the

total computing time.

As the model dimension increases, the disadvantage of EM algorithm emerges. As is shown in Figure 5,

when model dimension is 20, the EM algorithm needs more steps to complete the iteration (about twice

steps). Considering the advantages in computing time per iteration, in this case, the EM algorithm is still

faster than the NR method. But if the model dimension n increases to 50 or larger, the low convergence

rate of EM-typed algorithm makes it almost unavailable.
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6.4.3 Robustness of the algorithm

In our test procedure, we find that the EM-typed proposed algorithm indeed has extraordinary robustness.

Whatever the data length N and model dimension n are, the procedure never messages error or warning.

For the NR method, if n is larger than 40, in some cases the procedure begins to fail, maybe because

the condition number of Hessian matrix under specific parameter is excessively large. And if N is larger

than 10000, the NR method always fails because the personal computer cannot provide enough storage

space. Of course, many NR-updated algorithms are proposed to overcome these disadvantages. For

example, the NR method or quasi-NR method with unfixed iteration step size is a good alternative but

the step size calculation process is hard to programme and waste a lot of computing time.

7 Summary and discussion

In this paper, we considered system identification with batched binary data through the ML criterion.

The local and global concave properties of log-likelihood function has been obtained by the negativeness

of the Hessian matrix, which demonstrates that there is at most one finite ML estimate. Furthermore,

a necessary and sufficient condition that there is a unique finite solution for the ML problem has been

given. The ML estimate is proved to be a consistent estimate, which guarantees the rationality. An

iterative algorithm is constructed to estimate the parameter and the convergence of the algorithm has

been obtained, the limit of which is exactly the ML estimate. Surprisingly, the convergence has an

exponential rate.

In this paper, we considered the binary-valued model, which is a common case in practical field.

The single threshold brings much convenience for the analysis. If there are multiple thresholds, some

techniques need to be updated, for example, the threshold detection problem will not be trivial any more.

How to construct an algorithm to estimate the parameter and threshold simultaneously is an attractive

question. The development from finite impulse response models to general linear and even nonlinear

models is also promising.
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Appendix A Proofs of Lemmas 1 and 3

Appendix A.1 Proof of Lemma 1

Proof. To prove the strictly decreasing property of the function p(x), the derivation p′(x) of p(x) is needed:

p′(x) =
−f(x)(F (x) + 2f(x))

F 3(x)
(F (x)x+ f(x)) .

Define h(x) = F (x)x+ f(x), then h(x) has an opposite sign to p′(x). In addition, h′(x) = F (x) > 0, and

lim
x→−∞

h(x) = lim
x→−∞

F (x)

1/x
= lim

x→−∞
− f(x)

1/x2
= lim

x→−∞

(

−f(x)x2
)

= lim
x→−∞

(

− 1√
2π

e−
x2

2 x2

)

= 0.

We can see that h(x) > 0 holds for all x ∈ R, which shows the strict decrease of p(x).

To obtain the infimum value and supremum value of p(x), we calculate the limit value of p(x) at +∞ and −∞, which

can be obtained by repeated use of L’Hôpital’s rule, see, e.g. 1),

lim
x→+∞

p(x) = lim
x→+∞

(

f(x)x+ f2(x)
)

= 0,

lim
x→−∞

p(x) = lim
x→−∞

−f(x)x2F (x) + f(x)F (x) − f2(x)x

2F (x)f(x)
=

1

2
− lim

x→−∞

x2F (x) + f(x)x

2F (x)

=
1

2
− lim

x→−∞

2xF (x) + x2f(x) + f(x)− f(x)x2

2f(x)
= − lim

x→−∞

xF (x)

f(x)

= − lim
x→−∞

F (x) + xf(x)

−xf(x)
= 1 + lim

x→−∞

F (x)

xf(x)
= 1 + lim

x→−∞

f(x)

f(x) − f(x)x2
= 1.

Until now, the proof is completed.

As for example (2) of Remark 4, we give a graph to illustrate that pt,d(x) = − d2log[Ft,d(x)]

dx2
> 0 does not always hold.

It is trivial that pt,d(x) = − d2log[Ft,d(x)]

dx2 > 0 is equivalent and that
dlog[Ft,d(x)]

dx
strictly decreases. Figure A1 is the graph

of function
dlog[Ft,d(x)]

dx
under degree of freedom d = 1. We can see that function does not satisfy the strictly decreasing

condition.

Appendix A.2 Proof of Lemma 3

Proof. The lemma is equivalent that for all b < 0, there exists an upper bound r(b) > 0, if ‖θ‖ > r(b), l(θ) < b. The below

proof is to construct the upper bound r(b).

For the simplicity, some definitions are given in advance,

fα,k(x) = log[F (C − φT
k αx)]I[sk=1] + log[F (φT

k αx− C)]I[sk=0],

xb,k(α) =
C − F−1(eb)

φT
k
α

I[sk=1] +
C + F−1(eb)

φT
k
α

I[sk=0],

where α ∈ R
n, b, x ∈ R, k = 1, 2, . . . , N . Additionally, fα,k(x) < 0 because the CDF has an upper bound 1.

1) Apostol T M. Mathematical Analysis. 2nd ed. Boston: Addison Wesley Publishing Company, 1974.
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x

Figure A1 The function
dlog[Ft,d(x)]

dx
under degree of freedom d = 1.

Arbitrarily select an unit vector α, Definition 2 tells that there exists a k1 such that φT
k1

α(I[sk1=0] − I[sk1=1]) < 0.

Suppose sk1
= 1 (sk1

= 0 is a similar case), then φT
k1

α > 0, furthermore, function fα,k1
(x) = log[F (C−φT

k
αx)] is a strictly

decreasing function and tends to −∞ as x → ∞. Hence, for any given b < 0,

x > xb,k1
(α) ⇒ x >

C − F−1(eb)

φT
k
α

⇒ C − φT
k αx 6 F−1(eb)

⇒ log(F (C − φT
k αx)) 6 b ⇒ fα,k1

(x) 6 b.

For all x > xb,k1
(α), l(xα) =

∑N
k=1 fα,k(x) < fα,k1

(x) 6 b. This is equivalent that for any vector θ whose corresponding

unit vector is α, if ‖θ‖ > xb,k1
(α), l(θ) < b. That is, the set {θ, l(θ) > b, θ

‖θ‖
= α} is bounded by xb,k1

(α).

Because φT
k1

α(I[sk1=0] − I[sk1=1]) < 0, there exists an ǫ > 0 and a set Aα(ǫ) = {α0 : ‖α0‖ = 1, ‖α0 − α‖ 6 ǫ} such

that for any β ∈ Aα(ǫ), φT
k1

β(I[sk1=0] − I[sk1=1]) < 0. This means for any β ∈ Aα(ǫ), there exists xb,k1
(β) as the bound of

{θ, l(θ) > b, θ
‖θ‖

= β}. The continuity of function xb,k1
(α0) and compactness of Aα(ǫ) infers that maxα0∈Aα(ǫ) xb,k1

(α0) <

∞. Define an open subset Bα = {α0 : ‖α0‖ = 1, ‖α0 − α‖ < ǫ/2} and r(α) = maxα0∈Bα(ǫ) xb,k1
(α0) < ∞. We can see

that for all θ whose corresponding unit vector is within an open set Bα, if ‖θ‖ > r(α), l(θ) < r.

Let S = {α : ‖α‖ = 1} denote N-dimensional sphere whose radius is 1. {Bα, α ∈ S} is an open cover of S. Coupled with

the compactness of S, there is a finite subcover {Bαi
, i 6 m} of S. Let r denote max16i6m r(αi), we can see that for all θ,

if ‖θ‖ > r, l(θ) < b.
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