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Abstract Triangular meshes often contain a few salient features. Traditional deformation algorithms mainly

preserve the local details and volume, thus producing unnatural results. This paper proposes a robust and

effective algorithm to prevent the distortion of salient features. Firstly, the salient features can be automatically

extracted through saliency-based clustering and aggregation. A nonlinear energy function is then minimized to

make the salient features behave rigidly to retain the shape. Finally, for the robustness of the minimization, we

generate a coarse solid subspace around the input mesh, and carry out the energy minimization in this subspace.

Experiments show that our algorithm can preserve the salient features and obtain visual-pleasing results.
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1 Introduction

Following the sound, image and video, the triangular mesh has become the fourth generation of digital

media. In recent years, it is very difficult to robustly and effectively deform complex meshes in computer

graphics. Mesh deformation has been extensively studied and applied to many fields, e.g., network game,

cartoon animation and virtual simulation. Traditional algorithms mainly preserve the local details and

volume, and uniformly distribute the deformation error over the whole model.

In fact, many triangular meshes contain salient features which imply global information. These features

are more vulnerable than other relatively flat regions. Therefore, the deformation error should be non-

uniformly distributed. As shown in Figure 1, the traditional deformation algorithm [1] cannot keep the

important characteristics, and results in apparent visual artifacts. Our algorithm extracts the salient

features and effectively eliminates the artifacts.

This paper aims to preserve the salient features. Guided by the heat kernel signature [2], a saliency-

based clustering and aggregation method is introduced to extract the salient features. During the defor-

mation, these features are constrained to undergo a rigid transformation to strictly preserve the shape.

For the other regions, the differential coordinates deformation algorithm is adopted to preserve the local

details in the least squares sense.
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(a) (b) (c) (d)

Figure 1 Comparison with the deformation algorithm [1]. (a) The CGI mesh; (b) result of algorithm [1]; (c) salient

features (three letters); (d) our result.

Our deformation algorithm is a nonlinear energy minimization problem, which requires an iterative

solver. To improve the convergence and stability, a coarse solid subspace is generated to envelop the

input mesh, and the deformation energies are projected onto this subspace using the modified barycentric

coordinates [3]. Because the subspace is very coarse, it is robust to perform the energy minimization in

this subspace.

The rest of this paper is organized as follows. Section 2 briefly reviews the existing work about mesh

deformation. Section 3 extracts the salient features, and derives the deformation energies. Section 4

generates the solid subspace, and develops a robust numerical solver. Section 5 discusses the experimental

data and evaluates the algorithm performance. Section 6 concludes the paper and gives the future work.

2 Related work

Traditional deformation algorithms can be roughly divided into the following four categories: freeform

deformation algorithms, skinning deformation algorithms, multi-resolution deformation algorithms and

differential coordinates deformation algorithms.

Freeform deformation algorithms [3–11] envelop the input mesh with a coarse cage, and interpolate

the deformation result after the cage is deformed. Skinning deformation algorithms [12–19] manipulate

the input mesh through a skeleton. These algorithms are very intuitive and easy to use.

Multi-resolution deformation algorithms [20–25] construct a hierarchical representation for the input

mesh. The deformation result is obtained by deforming the base mesh and appending the local details.

Differential coordinates deformation algorithms [1,26–34] explicitly preserve the local details, and recon-

struct the deformation result by solving a nonlinear minimization problem. Zhou et al. [29] present a

volumetric graph Laplacian to avoid unnatural volume changes. However, it is hard to handle dense

meshes because the volumetric graph is more complex than the input mesh. Huang et al. [31] propose a

subspace framework for fast computation.

The above algorithms mainly preserve the local details and volume, but neglect the global features,

thus leading to unrealistic results. Kraevoy et al. [35] estimate the vulnerable regions using slippage

analysis and normal curvature, and then perform a non-homogeneous resizing. Xiao et al. [36] further

improve this algorithm by preserving the symmetry. Xu et al. [37] detect multiple types of joints which

are implicit in the mesh model, and give a joint-aware deformation framework. Gal et al. [38] extract a

descriptive set of wires and analyze their mutual relations. Deforming the mesh through these wires can

intuitively maintain the original design intent and object characteristics. Zheng et al. [39] introduce simple

geometric primitives to capture the editing degrees of freedom, and preserve both the characteristics of

each primitive and their mutual relations. Instead of L2 norm, Gao et al. [40] introduce Lp norm. For

smaller p, the deformation error tends to concentrate on a sparse set of vertices.

3 Deformation algorithm with salient features preservation

In this paper, the triangular mesh is denoted as M = {P,E}, where P is the set of mesh vertices, and E

is the connectivity information of mesh vertices. The 1-ring neighborhood of mesh vertex pi is denoted

as N(i). All deformed vertex positions {p′
i} can be arranged as a vector p′.
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(a) (b)

Figure 2 Demonstration of salient features extraction. (a) The mesh with four spikes; (b) the extracted salient features.

3.1 Salient features extraction

Because the triangular mesh may contain noises, the bilateral filtering [41] is first applied to remove the

noises, which can improve the robustness of the feature extraction. We then automatically extract the

salient features through clustering and aggregation. The extraction process consists of three steps:

Step1: The heat kernel signature (HKS) [2] is adopted to capture the local saliency of each vertex.

HKS reflects the intrinsic information of the shape, and can be computed efficiently and stably.

Step2: According to the local saliency, the region-growing scheme is employed to cluster the triangular

mesh in an incremental manner. Selecting the vertex with maximal saliency as the seed point, a cluster

is built by successively adding the neighboring vertices until the size of the cluster or the saliency of the

cluster reaches the threshold, where the saliency of the cluster is defined as the average saliency of its

vertices. All the vertices of the current cluster are then excluded, and the above manner continues to

build the next cluster.

Step3: The salient feature is extracted by aggregating together a collection of clusters if they are

connected and have a high saliency.

In our examples, each salient feature is rendered with a random color. As shown in Figure 2, the four

spikes are extracted as the salient features. Moreover, our algorithm allows interactively specifying the

salient features, or grouping two features into one.

3.2 Salient features preservation

Suppose {Fi}
n
i=1 is the set of n extracted salient features. During the deformation, each salient feature

should deform rigidly to strictly preserve its shape. Therefore, a salient feature preservation energy is

introduced for Fi (1 6 i 6 n):

EFi
(p′) =

∑

pj∈Fi

‖(p′
j − c′i)−RFi

(pj − ci)‖
2, (1)

where pj is a vertex of Fi, p
′
j is its deformed position, RFi

is a rotation matrix, and ci, c
′
i are respectively

the original and deformed centroids of Fi.

Considering all salient features, the salient features preservation energy can be formulated as a weighted

sum:

Esfp(p
′) =

n∑

i=1

wiEFi
(p′), (2)

where wi is the weight for Fi, and we simply take its size into account.

Now we briefly describe the computation for these rotation matrices {RFi
}ni=1, which is actually a

shape matching problem. According to Müller et al. [42], we first estimate a linear transformation AFi

that satisfies minAFi

∑
pj∈Fi

‖(p′
j − c′i) − AFi

(pj − ci)‖
2, and then derive RFi

from the singular value

decomposition of AFi
. Suppose AFi

= UFi
DFi

V T
Fi
, thus

RFi
= UFi

V T
Fi
,

where UFi
, VFi

are orthogonal matrices, and DFi
is a diagonal matrix.
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3.3 Local details preservation

For the rest of the regions of M , the differential coordinates deformation algorithm is adopted to preserve

the geometric details. In this paper, we use the Laplacian coordinates. The Laplacian coordinate δi at

vertex pi is defined as the weighted sum of its 1-ring edges:

δi = LM (pi) =
∑

j∈N(i)

wij(pi − pj),

where LM (·) is the Laplacian operator, and wij is the cotangent form weight [43] for vertex pj .

Because the Laplacian coordinate is not rotation-invariant, a rotation matrix should be computed to

adjust δi to correctly reflect the local detail of the deformed mesh. Therefore, the local details preservation

energy can be formulated as follows:

Eldp(p
′) =

∑

pi∈M\{F1,...,Fn}

‖LM (p′
i)−Riδi‖

2, (3)

where p′
i and Ri are respectively the deformed position and rotation matrix of pi. Similar to Subsec-

tion 3.2, Ri is computed by shape matching within N(i) [42].

3.4 Nonlinear energy minimization

To guide the deformation, we select some mesh vertices {ph1
, . . . ,phk

} as the handle whose deformed

positions are directly given. The position energy can be formulated as follows:

Ep(p
′) =

k∑

i=1

‖p′
hi

− phi
‖2, (4)

where p′
hi
, phi

are respectively the deformed position and position constraint of phi
.

Therefore, the deformation result can be achieved by solving the following energy minimization prob-

lem:

min
p′

{Esfp(p
′) + αEldp(p

′) + βEp(p
′)}, (5)

where α and β are the weights balancing the three energies.

Since the rotation computation depends on the unknown deformed mesh [42], it is a nonlinear energy

minimization problem. According to previous work [30, 34], this problem can be iteratively minimized.

At each iteration, a sparse linear system is solved in the least squares sense:

Ap′ = b, (6)

where matrix A and vector b are derived from the quadratic energies Esfp(p
′), Eldp(p

′) and Ep(p
′).

During the iteration, A is a constant matrix, whereas b is a variable vector depending on those rotation

matrices. However, this iterative method suffers from slow convergence and numerical instability under

dense meshes with poor sampling or complex shape.

4 Robust subspace solver

To address this issue, Huang et al. [31] give a subspace solver that embeds the input mesh into a coarse

triangular mesh and projects the deformation energies onto the coarse mesh by the mean value coordinates

[5]. The energy minimization is then performed in this subspace to enable stable computation and fast

response.

Unfortunately, the mean value coordinates are globally supported and have negative values, thus

leading to unrealistic deformation results. To improve this idea, we generate a coarse tetrahedral mesh

as the solid subspace and adopt the modified barycentric coordinates [3] which are locally supported and

unconditionally positive. Our solid subspace solver is more robust than that of Huang et al. [31].
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Table 1 Algorithm performance measured in seconds. Precomputation: run time for the derivation of linear system (11)

and cholesky decomposition. Deformation: run time for the rotation computation, back-substitutions and interpolation

Mesh
Number Number of vertices in

Precomputation Deformationof vertices the solid subspace

CGI 25796 51 0.407553 0.142902

Bunny-iH 34834 98 0.487147 0.276528

Dragon 101108 200 1.503765 0.712807

Octopus 149671 227 2.394237 1.192586

Asian Dragon 249934 184 3.662829 1.947541

(a) (b) (c)

Figure 3 Deformation of Dragon. (a) The Dragon mesh; (b) the solid subspace; (c) our result.

4.1 Solid subspace generation

The input mesh is first simplified to a desired number of vertices. These simplified vertices are then offset

along the outer normal direction to guarantee that the simplified mesh can completely contain the input

mesh. At last, the simplified mesh is tetrahedralized to generate a tetrahedral mesh [44], i.e., the solid

subspace. The resolution of the solid subspace is controlled by prescribing its local edge length. As shown

in Table 1, these solid subspaces are very coarse in our examples. Figure 3 gives the solid subspace and

the large deformation result of a Dragon.

4.2 Modified barycentric coordinates

The solid subspace ofM is denoted as T . For a point u inside T , the modified barycentric interpolation [3]

is defined as follows:

x(u) =
∑

i

φi(u)(xi +Mi(u − ui)), (7)

where φi(·) is the barycentric coordinate basis function, ui is a vertex of T , and xi, Mi are respectively

the deformed position and linear transformation of ui.

The linear transformations are introduced to tune the deformation gradient to be as close as possible

to each other at the tetrahedron boundaries. All deformed subspace vertex positions {xi} and linear

transformations {Mi} can be respectively arranged as vector x and vector m. During the deformation,

they should satisfy two linear energies: discontinuity energyEdisc(x,m) and vibration energyEvibr(x,m).

Please refer [3] for more details.

Minimizing the two linear energies leads to solving a constant linear system:

B

(
x

m

)
= b̂, (8)

where matrix B and vector b̂ are derived from Edisc(x,m) and Evibr(x,m).

To obtain the deformation result of M , the interpolation function (7) can be rewritten in the matrix

form:

p′ = C

(
x

m

)
, (9)

where C is a constant matrix which is related to φi(·), M and T .
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(a) (b) (c)

Figure 4 Deformation of Bunny-iH. (a) The Bunny-iH mesh and extracted salient features; (b) the solid subspace; (c) our

result.

4.3 Robust energy minimization

With the help of formula (9), the above energies Esfp(p
′), Eldp(p

′) and Ep(p
′) can be projected onto the

coarse solid subspace. Taking Edisc(x,m) and Evibr(x,m) into account, the new energy minimization

problem can be expressed as follows:

min
{x,m}

{
Esfp

(
C

(
x

m

))
+ αEldp

(
C

(
x

m

))
+ βEp

(
C

(
x

m

))
+ γEdisc(x,m) + λEvibr(x,m)

}
, (10)

where α, β, γ and λ are the weights balancing the five energies. Their default values are respectively

α = 1.0, β = 2.0, γ = 1.0 and λ = 1.0. Furthermore, the user can manually reset these weights for

different examples.

The energies Esfp(p
′), Eldp(p

′) and Ep(p
′) lead to the linear system (6) at each iteration. After

projection, it becomes

AC

(
x

m

)
= b.

Besides, the energies Edisc(x,m) and Evibr(x,m) lead to the linear system (8). Therefore, the new linear

system to be solved at each iteration becomes

(
AC

B

)(
x

m

)
=

(
b

b̂

)
. (11)

Because the solid subspace is much coarser than the input mesh, the size of linear system at each iteration

is greatly reduced, thus even complex meshes can be easily dealt with. When the iteration converges in

the solid subspace, the derived solution is passed to the input mesh to obtain the final deformation result

through the modified barycentric interpolation (formula (9)).

5 Results and discussion

Our algorithm is implemented on a computer with Intel Core i7-3770 3.4G CPU, 3.45G RAM, and

AMD Radeon HD 7450 graphics card. Figure 1 gives a comparison with the deformation algorithm [1]

on a poorly-sampled mesh. Employing the uniform surface Laplacian, algorithm [1] produces obvious

distortions around the features. Our algorithm achieves a visual-pleasing result due to salient features

preservation.

A coarse solid subspace is generated to obtain a robust numerical solver and efficiently handle complex

meshes. As shown in Figure 3, the solid subspace should compactly enclose the input mesh. In Figure 4,

the two letters are extracted as salient features and deformed rigidly to avoid serious artifacts. Figure 5

extracts the suckers as salient features, and then edits the tentacles of Octopus. The shapes of these

suckers are well preserved during the deformation.
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(a) (b) (c)

Figure 5 Deformation of Octopus. (a) The Octopus mesh and extracted salient features; (b) the solid subspace; (c) our

result.

(a) (b) (c)

Figure 6 Comparison with the subspace deformation algorithm [31]. (a) The Rectangle-holes mesh; (b) the result of

algorithm [31]; (c) our result. Note that our algorithm keeps the holes which reflect the design intent.

(a) (b) (c)

Figure 7 Comparison with the deformation algorithm [34]. (a) The Asian Dragon mesh; (b) the result of algorithm [34];

(c) our result.

Figure 6 compares our algorithm with the subspace deformation algorithm [31], which preserves the

low-level properties (e.g., the local details and volume). The holes on the mesh are designed by the

modeller. During the deformation, algorithm [31] stretches these holes, thus destroying the original

design intent. Our algorithm extracts the holes as salient features, and effectively preserves the high-level

characteristics.

Figure 7 gives a comparison with the deformation algorithm [34], which retains the rigidity of local

regions. Because the mesh is densely-sampled, algorithm [34] needs to solve a sequence of large linear

system and fails to converge. Apparent degenerations exhibit in the front claws and the tail of Asian

Dragon. Our algorithm carries out the energy minimization in a coarse solid subspace and obtains a

satisfactory result.

Table 1 lists the geometry information and the performance for some deformation examples. With the

help of the coarse solid subspace, the size of linear system solved at each iteration becomes very small,

thus greatly reducing the time and memory cost of our algorithm. As the linear system (11) has a constant
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coefficient matrix, we precompute its cholesky decomposition and perform only back-substitutions during

the deformation. In these examples, three to five iterations are enough for convergence. Generally

speaking, our algorithm is two times faster than the subspace algorithm [31].

6 Conclusion and future work

In this paper, a novel deformation algorithm is proposed to achieve the preservation of salient features.

The salient features are automatically extracted, and constrained to undergo a rigid deformation to

maintain the shape. To robustly deal with complex meshes, the energy minimization is performed in a

coarse solid subspace. In the future, we will introduce a more effective feature extraction method, and

consider the deformation of time-varying mesh sequences.
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