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Abstract Pure greedy algorithm (PGA), orthogonal greedy algorithm (OGA) and relaxed greedy algorithm

(RGA) are three widely used greedy type algorithms in both nonlinear approximation and supervised learning.

In this paper, we apply another variant of greedy-type algorithm, called the truncated greedy algorithm (TGA)

in the realm of supervised learning and study its learning performance. We rigorously prove that TGA is better

than PGA in the sense that TGA possesses the faster learning rate than PGA. Furthermore, in some special

cases, we also prove that TGA outperforms OGA and RGA. All these theoretical assertions are verified by both

toy simulations and real data experiments.
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1 Introduction

Greedy learning or, more specifically, applying greedy-type algorithms in machine learning has triggered

considerable research activities in the past decades [1–7]. Greedy-type algorithms are stepwise inference

processes that follow the problem solving heuristic of making the locally optimal choice at each stage with

the hope of finding a global optimum. Compared with standard coefficient-based regularized methods in

dictionary learning, greedy-type algorithms can greatly reduce the computational burden [1] when the

capacity of the dictionary is large.

The study of greedy-type algorithms could date back to 1906, when Schmidt [8] provided the known

Schmidt expansion for bilinear approximation. It was understood [8] (or [9, Page 306]) that the best

bilinear approximation can be realized by the pure greedy algorithm (PGA). PGA possesses the domi-

nance in computation, but the main defect is that, for a general dictionary, its convergence rate is far

slower than the best nonlinear approximant [9–12] and consequently corrupts its learning performance,

especially when atoms of the dictionary are highly correlated. Under this circumstance, several modified

versions of PGA have been proposed to accelerate the approximation rate and consequently, to improve
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the generalization capability. Typical examples [1] include the orthogonal greedy algorithm (OGA) and

relaxed greedy algorithm (RGA).

OGA [10] improves the approximation capability of PGA via building the best approximant from the

sub-space spanned by all the selected atoms rather than only one atom, which is utilized in PGA. It

can be found in [1] that the approximation rate of PGA can be essentially improved by this method.

Particularly, if the target function satisfies a certain L1-sparsity constraint [10], OGA can reach the

optimal approximation rate. RGA [10] promotes the approximation capability of PGA via introducing

a relaxation operator on the deduced estimator in each greedy iteration. The core idea [13] is that if

the approximation effect of the k-th iteration is not good, then the deduced estimator is regarded to be

too aggressive and therefore needs relaxing within a certain extent. It was also proved in [1, 13] that

RGA can boost convergence rate of PGA to the optimal approximation rate. Both OGA and RGA were

successfully used in machine learning and an O(m−1/2 logm) learning rate was deduced for them, where

m is the number of samples. We refer the readers to [1–3, 5, 7] for more details of the OGA and RGA

learning.

According to the well-known bias and variance balance principle in learning theory [14], the general-

ization error of a learning scheme can be divided into the approximation error (bias) and sample error

(variance). Reducing either the bias or the variance can improve the generalization capability of this

learning scheme. As far as the PGA is concerned, both RGA and OGA focus on reducing its bias and

therefore successfully improve its learning performance. In the present paper, we drive a totally different

direction to improve the learning capability of PGA. To this end, we borrow the idea from the “regu-

larization boosting via truncation” from [4, 15] in statistics and the “coefficient-restriction greedy-type

algorithm” [9, Subsection 6.7] in non-linear approximation to tackle supervised learning problems. For the

sake of brevity, we rename the proposed algorithm as the truncated greedy algorithm, since it truncates

the step size of PGA at a specified value in each greedy itetation to cut down the model complexity. The

main novelty of this paper is to prove TGA can essentially improve the learning performance of PGA.

We present both theoretical analysis and experimental verification to illustrate the learning performance

of TGA. Theoretically, we prove that TGA can cut down the model complexity (L1 norm) of PGA without

sacrificing its approximation capability. Therefore, TGA can reduce the variance and consequently, the

generalization error of the PGA learning. To be detailed, we prove that for some specified learning tasks,

TGA attains a new “record” of greedy learning by omitting the logarithmic factor in the learning rates

of the OGA and RGA learning. This means that, different from the traditional variants RGA and OGA,

TGA provides a new competitive way to modify PGA. Experimentally, we employ both toy simulations

and real data experiments to illustrate the outperformance of TGA. In the toy simulations, we show that

in some standard simulation setting [16], TGA is comparable with the existing popular schemes such as

the OGA, RGA, Lasso [17] and ridge regression [18]. Furthermore, we also find that for some specified

learning tasks, TGA performs much better than PGA. In the real data experiments, we run TGA, RGA,

OGA and PGA on five data sets with two types of dictionaries and show that TGA essentially outperforms

PGA and is comparable with other two algorithms. All the experimental results are consistent with the

theoretical assessments and therefore verify our assertions.

The rest of this paper is organized as follows. In Section 2, we give a brief introduction to PGA and

TGA. In Section 3, we study the theoretical behaviors of TGA. In Section 4, we present a series of toy

simulations and real data experiments to illustrate our theoretical assertions. In Section 5, we provide

the proofs of the main results. In the last section, we draw a simple conclusion.

2 Truncated greedy learning

In this section, we introduce some concrete greedy learning schemes for regression. In a regression

problem [14] with a covariate x on X ⊆ R
d and a real response variable y ∈ Y ⊆ R, we observe m i.i.d.

samples z = {(xi, yi)}mi=1 from an unknown underlying distribution ρ. Without loss of generality, we

always assume Y ⊆ [−M,M ], where M < ∞ is a positive real number. The aim is to find a function to
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minimize the generalization error

E(f) =
∫

(f(x)− y)2dρ.

The known regression function [14]

fρ(x) =

∫

Y

ydρ(y|x)

minimizes the generalization error. In such a setting, we are interested in finding a function fz based on

z such that E(fz)− E(fρ) is small.

Let Dn := {g1, . . . , gn} be the set of atoms (or dictionary) and define

span(Dn) =







n
∑

j=1

ajgj : gj ∈ Dn, aj ∈ R







.

Define the empirical norm and empirical inner product by

‖f‖m =

√

√

√

√

1

m

m
∑

i=1

f(xi)2 and 〈f, g〉m =
1

m

m
∑

i=1

f(xi)g(xi),

respectively. We also define the empirical risk as

Ez(f) =
1

m

m
∑

i=1

(f(xi)− yi)
2.

Then the pure greedy algorithm (PGA) [10] can be described as Algorithm 1.

Algorithm 1 PGA learning

Step 1 (Initialization): Given data z = {(xi, yi) : i = 1, . . . ,m}, dictionary Dn, and k∗ ∈ N, fz,0 = 0, rz,0 = y, k = 1.

Step 2 (Projection of gradient to learner): Find g
z,k ∈ Dn such that

g
z,k = arg max

g∈Dn

|〈r
z,k−1, g〉m|,

where r
z,k−1(·) = y(·) − f

z,k−1(·) is the (k − 1)-th residual, and y(·) satisfies y(xi) = yi.

Step 3 (Linear search): Find a
z,k ∈ R such that

a
z,k = argmin

a∈R

‖r
z,k−1 − ag

z,k‖
2

m.

It is readily seen that a
z,k is given explicitly by

a
z,k = 〈r

z,k−1, gk〉m.

Update f
z,k = f

z,k−1 + a
z,kgz,k.

Step 4 (Iteration): Increase k by one and repeat Step 2 to Step 4 until k = k∗. Output f
z,k∗ .

Remark 1. Suppose the total iteration number is set asK, then the overall complexity of PGA learning

is O(Kmn) and the memory required for the naive approach is O(mn).

Despite that PGA learning was proved to be consistent [1,10], which can be easily deduced by applying

the method in [1] to [12, Theorem 1], a number of studies [10–13] also showed that its approximation

rate is far slower than that of the best nonlinear approximant. The main reason is that the linear search

in Algorithm 1 makes fz,k+1 be not always the greediest one [19]. In particular, as shown in Figure 1,

when fz,k walks along gz,k’s direction to fit the residual rz,k−1, after at
z,kgz,k, there exists at least one

atom gz,k+1 which is more relevant to the updated residual (i.e., the angle α 6 β) than gz,k. Thus,

after at
z,kgz,k, continuing to walk along gz,k is no more the greediest choice (i.e., the truncated (k+1)-th

residual rt
z,k+1 is less than the original residual rz,k+1). Under this circumstance, we suppose that if we

truncate the linear search between at
z,kgz,k and az,kgz,k, then the approximation capability of PGA at

least does not degrade. This motivates our study of the truncated greedy algorithm (TGA).
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Figure 1 The drawback of PGA.

The core idea of TGA is to truncate the linear search in a bounded interval instead of the real axis in

each iteration. That is, TGA introduces a restriction to the step size of linear search and consequently

cuts down the model complexity. The following Algorithm 2 depicts the scenario of TGA.

Algorithm 2 TGA learning

Step 1 (Initialization): Given data z = {(xi, yi) : i = 1, . . . ,m}, dictionary Dn, a set of closed subsets Λk = [−hk, hk],

k = 1, 2, . . . , and k∗ ∈ N, f t
z,0 = 0, rt

z,0 = y, k = 1.

Step 2 (Projection of gradient to learner): Find gt
z,k

∈ Dn such that

gt
z,k = arg max

g∈Dn

|〈rt
z,k−1

, g〉m|,

where rt
z,k−1

(·) = y(x) − f t
z,k−1

(x) is the (k − 1)-th residual.

Step 3 (Linear search): Find a
z,k ∈ R such that

at
z,k = arg min

a∈Λk

‖rt
z,k−1

− agt
z,k‖

2

m.

That is,

at
z,k = sign(〈rt

z,k−1
, gtk〉m)min{|〈rt

z,k−1
, gt

z,k〉m|, hk},

where y(·) satisfies y(xi) = yi. Update f t
z,k

= f t
z,k−1

+ at
z,k

gt
z,k

.

Step 4 (Iteration): Increase k by one and repeat Step 2 to Step 4 until k = k∗. Output f t
z,k∗ .

Remark 2. In the Step 1 of Algorithm 2, hk is referred as the truncated parameter, which is chosen

via some parameter-selection methods generally. In the present paper, we just set hk ∼ k−2/3 and verify

its feasiblity.

Remark 3. If the truncated parameter is fixed (i.e., hk = k−2/3), then the overall complexity of TGA

learning is O(Kmn), which is the same as that of PGA.

3 Theoretical behaviors of TGA

Before giving the main result, we need to introduce a few notations. Let s ∈ (0, 1], and φ(x∗, x) be a

continuous function on X ×X such that for all x∗, x, x′ ∈ X , there holds

|φ(x∗, x)− φ(x∗, x′)| 6 Cs|x− x′|s, max |φ(x∗, x)| 6 1. (1)

Here Cs is a positive constant depending only on s. We remark that the first inequality in (1) is simply the

Lipchitz continuity of φ with respect to x, and that the second inequality is essentially the boundedness

of φ with respect to both x and x∗. The examples of such functions are abundant [20]. For instance, the

widely used Gausssian kernel G(x, y) = exp{− |x−y|2

a } with a > 0 fulfills the assumption (1) with s = 1.

For a given set of n distinct points t1, . . . , tn ∈ X , let

Dn = {g1, . . . , gn} := {φ(ti, ·), i = 1, 2, . . . , n} , (2)

and D := {φ(x, ·) : x ∈ X}.
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Let

L1(D) :=

{

f : f =
∑

g∈D

agg, ‖f‖L1(D) < ∞
}

endowed with the norm

‖f‖L1(D) := inf







∑

g∈D

|ag| : f =
∑

g∈D

agg







.

According to (1), we have ‖g‖ 6 1 for all g ∈ D, where ‖ · ‖ denotes the uniform norm for the continuous

function space C(X). For r > 0, the space Lr
Dn

is defined to be the set of all functions f such that, there

exists h ∈ span{Dn} such that

‖h‖L1(D) 6 B and ‖f − h‖ 6 Bn−r. (3)

The infimum of all B defines a norm for f on Lr
Dn

. It follows from [1] that Eq. (3) defines an interpolation

space which has been widely used in nonlinear approximation and greedy learning [1, 5, 7, 13].

Let πM t denote the clipped value of t at ±M , that is, πM t := min{M, |t|}sgn(t). Then it is obvious [21]

that, for all y ∈ [−M,M ], there holds

E(πMf)− E(fρ) 6 E(f)− E(fρ).

Actually, the clipped technique has been widely used in the greedy learning [1,7]. The following theorem

is the main result of this section, whose proof will be postponed to Section 5.

Theorem 1. Let δ ∈ (0, 1), Dn and f t
z,k be defined in (2) and Algorithm 2 with hk ∼ k−2/3, respectively.

If fρ ∈ Lr
Dn

and (1) holds, then with confidence at least 1− δ,

E(πMf t
z,k)− E(fρ) 6 CB2

(

log
2

δ
k

d
3d+3sm− 2s+d

2d+2s + k−
1
3 + n−2r

)

,

where C is a constant depending only on φ, d and M .

Let us give some remarks of Theorem 1. If the size of dictionary, n, is sufficiently large and k ∼ m
6s+3d
4d+2s ,

then we can deduce a learning rate of f t
z,k asymptotically as O(m− 2s+d

4d+2s ). Especially, when s = d = 1

(i.e., for fitting one dimension data), we deduce a learning rate of f t
z,k asymptotically as O(m−1/2), which

is the new “record” of greedy learning by omitting the logarithmic factor in the learning rate of the OGA

and RGA learning [1, Corollary 3.7]. For more general cases, the learning rate O(m− 2s+d
4d+2s ) is better than

O(m−1/4) for arbitrary d and s, which is the existing optimal learning rate for the PGA learning 1).

We should also present the fact that the L1 norm of the estimate f t
z,k deduced from TGA is smaller

than that of PGA. This is the main reason why TGA can improve the learning capability of PGA. It can

be found in Algorithm 2 that in each step, the step size of TGA is not greater than hk ∼ k−2/3. Thus,

the L1 norm of the final estimate of TGA is at most O(k1/3). For PGA, as there is no restriction to

the step size, we can deduce the L1 norm of its estimate fz,k by the Hölder inequality and the following

inequality [12, Theorem 1]:

‖f − fz,k‖2m 6 ‖f − h‖2m +
27

2
‖h‖2L1(Dn)

k−1/3+ε, k = 1, 2, . . . , (4)

with ε ∈ (0, 1/6). Due to (1) and the triangle inequality, we can derive

|az,k| = |〈rz,k−1, gk〉m| 6 ‖f − fz,k−1‖m.

It then follows from (4) that

|az,k| 6 ‖f − fz,k−1‖m 6 ‖f − h‖m +
3
√
6

2
‖h‖L1(Dn)k

−1/6.

1) This rate can be deduced directly by combining the methods in the proof of Theorem 3.1 in [1] and Theorem 1 in [12].
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Hence, the best case in PGA is that the L1 norm of the final estimate satisfies
∑k

i=1 |az,k| = O(k5/6),

which is larger than that of TGA. Although, the estimate of the L1 norm of PGA can be possibly

reduced within a certain extent by using a tight approximation error as O(k−0.182) [9], to the best of our

knowledge, its value can not achieve O(k1/3).

It can be found in [1, 7] that both OGA and RGA can reach the learning rate as O(m−1/2) (up to a

logarithmic factor), but the learning rate built in Theorem 1 is slower than O(m−1/2), expect for some

special cases. We conjecture that via suitably selected hk (may be smaller than the specified condition:

hk = O(k−2/3), TGA can also reach this bound. This may depend on some more delicate tools in

statistics and approximation theory.

4 Numerical results

In this section, a series of toy simulations and real data experiments are carried out to verify our theoretical

assertions. All numerical studies are implemented by using MATLAB R2014a on a Windows personal

computer with Core(TM) i7-3770 3.40 GHz CPUs and RAM 4.00 GB, and the output results are averaged

based on 20 independent trails for each simulation.

4.1 Simulation experiments

In this part, three groups of toy simulations are carried out. In the first two groups, we compare TGA

with other popular schemes such as PGA, RGA, OGA, LASSO, and ridge regression (RR) in the same

supervised learning problems. In the third group, we only compare the performance of TGA with that of

PGA to highlight the outperformance of TGA over PGA. We generate the data sets from the following

model [16]:

y = m(x) + ε,

where ε is the Gaussian noise N(0, σ2) and independent of x and x is uniformly distributed on [−2, 2]d

with d ∈ {1, 10}. Three typical regression functions are considered

m1(x) = 0.1e−‖x−t1‖
2

+ 0.2e−‖x−t2‖
2

+ 0.3e−‖x−t3‖
2

+ 0.4e−‖x−t4‖
2

with ti being drawn according to the uniform distribution in [−2, 2],

m2(x) = cos(x) + 2 cos(17× x) + 0.7 cos(101× x),

and

m3(x1, . . . , x10) =

10
∑

j=1

(−1)j−1xj sin(xj
2).

For each regression function, we first generate a training set of size m = 1000 and an independent test

set, including m′ = 1000 noiseless observations, and then evaluate the generalization capability of each

algorithm in terms of the root mean squared error (RMSE). We adopt three different types of function

sets to build the dictionaries. For regression function m1, we use the dictionary as the set of functions of

the form D1
n = (1, cos(πx), cos(2πx), . . . , cos(nπx)) with n = 500. As far as m2 is concerned, we employ

D2
n = e−‖x−ξi‖

2

, n = 1000 to be the dictionary, where the centers ξi are 1000 points drawn according

to the uniform distribution in [−2, 2]. Turning to the regression function m3, we utilize the CART [22]

(with the number of splits J = 4) to build up the dictionary.

It is known that the greedy-type algorithm requires specification of the number of iterations. A

suitable value of the number of iterations can range from a few dozen to several thousand, depending

on the algorithm itself and which data set we used. Since we mainly focus on the comparisons of the

learning performances among the aforementioned algorithms, a preferable way is to select the theoretically

optimal number of iterations via the test data set. More precisely, we select the number of iterations,

k∗ ∈ [0, 10000], as the best one according to the test data set directly. Furthermore, for the additional
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Figure 2 (Color online) Relations between the test error, L0, L1, L2 norms of the PGA (dotted line), TGA (septal line),

RGA (solid line) estimates and the number of iterations for m1 and m2, where (a), (b), (c) and (d) are the empirical results

of m1 and (e), (f), (g) and (h) are the results of m2.

introduced parameter, we set the relaxation parameter in RGA to be αk = 1 − 1/k as in [1], and the

truncated parameter in TGA to be hk = k−2/3. Concerning the regularized parameter in RR and LASSO,

we logarithmically draw 20 equally spaced values of λ between 10−5 to 103.

For m1 and m2, Figure 2 illustrates how the test error ((a) and (e)), L0 norm of the estimate ((b)

and (f)), L1 norm of the estimate ((c) and (g)) and L2 norm of the estimate ((d) and (h)) vary with

the number of iterations in PGA, TGA and RGA. The results imply that for arbitrary iteration number,

both the test error and L1 norm of the TGA estimate are slightly smaller than those of PGA and RGA2).

The aim to introduce such simulations with such a weak implication is to clarify that in the general case,

TGA is a reliable choice as other popular learning schemes.

Table 1 summarizes the expected performance based on 20 independent simulations of the TGA, PGA,

RGA, OGA, RR and LASSO for m1 and m2. OptRMSETest denotes the theoretically optimal mean

rooted square test error (the standard errors of the OptRMSETest are also recorded in the parentheses)

and OptParameter denotes the theoretically optimal parameter such as the number of iterations, k∗, for

greedy-type algorithms TGA, PGA, RGA, OGA and the regularized parameter λ∗ for RR and LASSO.

L0 norm (or sparsity) depicts the average number of atoms in the dictionary used to construct the final

estimate. L1 norm and L2 norm show the corresponding average magnitudes of the coefficient used

to construct the final estimate. Time represents the average training time (in seconds) of running one

simulation.

From the above simulations, we can summarize the following conclusion. Firstly, just as Table 1 de-

scribed, greedy learning algorithms (TGA, PGA, RGA, OGA) possess charming generalization capability

with less computation time than coefficient-based regularized method (RR, LASSO), especially in large

capacity (n = 1000) dictionary learning. Secondly, there also exists distinct difference among TGA, PGA,

RGA and OGA. At first, OGA can finish the learning with a small number of iterations. However, the

generalization capability of OGA is very sensitive and the computational complexity of OGA in each

iteration is much more than other greedy-type algorithms. This inevitably leads to a relatively high

computational burden of OGA. Secondly, compared with PGA and RGA, TGA always possesses a good

structure. To be detailed, all the L0 norm, L1 norm and L2 norm of TGA are relatively small, which

is not witnessed in PGA (with a large L0 norm) and RGA (with a large L1 norm). Summarily, if we

2) As OGA is sensitive to iteration k, we cannot plot its curve in the scale of Figure 2 and thus omit it.
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Table 1 Comparisons of TGA, PGA, RGA, OGA, RR and LASSO on simulated regression data sets for m1 and m2

Methods OptRMSETest OptParameter L0 norm (Sparsity) L1 norm L2 norm Time

Regression function m1, dictionary D1
n, noise level σ2 = 0.1

TGA 0.1661(0.0031) 5790 13.3 23.1 19.6 19.5

PGA 0.1694(0.0036) 8631 23 24.8 19.6 19.7

RGA 0.1910(0.0051) 10000 2 564.8 17.9 19.9

OGA 0.1609(0.0039) 2 2 23.6 20.2 64.3

RR 0.3509(0.0014) 0.1624 500 175.4 17.6 20.1

LASSO 0.2610(0.0063) 0.1593 350.4 128.0 21.5 22.1

Regression function m2, dictionary D2
n, noise level σ2 = 0.1

TGA 1.5000(0.0171) 7325 180 33.5 16.9 50.5

PGA 1.5005(0.0189) 9998 364.6 37.3 11.6 61.3

RGA 1.5182(0.0214) 10000 55 423.8 15.6 69.1

OGA 1.5023(0.0159) 7 7 49.8 21.2 167.8

RR 1.5235(0.0121) 1e−5 1000 1.1e+04 467.9 170.1

LASSO 1.5011(0.0152) 0.0121 372 1.0e+03 364.3 338.3

Table 2 Expected performance comparison of TGA and PGA on simulated regression data sets for m3 (10-dimension

cases and multiple noise level)

Methods OptRMSETest L1 norm L2 norm

Regression function m3, dictionary CART

Noise level σ2 = 0

TGA 1.8388(0.1102) 16.0 1.3

PGA 2.3393(0.1112) 299.1 17.2

Noise level σ2 = 0.3

TGA 1.8380(0.0830) 16.1 1.3

PGA 2.4051(0.1112) 298.9 17.3

Noise level σ2 = 0.6

TGA 1.9628(0.0853) 16.0 1.3

PGA 2.4350(0.0836) 299.0 17.3

Noise level σ2 = 1

TGA 2.1575(0.0891) 16.0 1.3

PGA 2.6583(0.1103) 298.6 17.3

consider the computational burden, structures and test error, simultaneously, TGA is a preferable choice

among all the aforementioned schemes.

In the previous simulations, we do not highlight the outperformance of TGA over PGA in terms of the

generalization capability, as shown in Theorem 1. And in the third toy simulation, we only compare PGA

with TGA to illustrate that TGA can bring a significant performance improvement for some specified

learning tasks. Table 2 records the comparison of the TGA and PGA on simulated data sets m3. From

the results, we can distinctly detect that, the performance of TGA surpasses that of PGA with a large

extent. Here we do not compare the performance of TGA with other greedy learning schemes including

RGA and OGA, because the main purpose of this simulation is to highlight the outperformance of the

proposed TGA over the PGA for more general cases (i.e., for fitting 10-dimension data).

4.2 Real data experiments

We have verified that TGA outperforms PGA on the 2+4 = 6 different distributions in the previous toy

simulations. We now further empirically compare the learning performances of TGA, PGA, RGA and

OGA on five real data sets.

The first dataset is the Diabetes data set [19]. This data set contains 442 diabetes patients that were

measured on ten independent variables, i.e., age, sex, body mass index, etc., and one response variable,

i.e., a measure of disease progression. The second one is the Prostate cancer data set derived from a
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Table 3 Performance comparison results of TGA and PGA on aforementioned five real data sets

Datasets
Methods Diabetes Prostate Housing CCS Abalone

Decision stumps

TGA 56.5549(1.0703) 0.2643(0.0417) 4.2565(0.4629) 5.9421(0.2456) 2.2589(0.0419)

PGA 60.2129(1.7172) 0.3517(0.0823) 4.4683(0.3715) 6.2140(0.2651) 2.3691(0.0399)

RGA 55.4940(1.1551) 0.2449(0.0555) 4.1887(0.4344) 5.5895(0.2038) 2.1982(0.0502)

OGA 59.6912(1.4950) 0.3567(0.0541) 4.6887(0.3132) 5.6407(0.1572) 2.2720(0.0632)

Vanilla neural networks

TGA 57.8423(2.2464) 0.5403(0.1479) 4.3866(0.8436) 6.6445(0.2740) 2.1119(0.0826)

PGA 62.1425(2.2133) 0.6715(0.1176) 5.1566(0.7436) 6.7522(0.2750) 2.2119(0.0626)

RGA 58.0272(2.3606) 0.5576(0.1204) 4.2174(0.3211) 6.5948(0.3903) 2.1190(0.0466)

OGA 59.1272(3.1780) 0.6742(0.1162) 5.1483(0.6048) 6.5454(0.3231) 2.1391(0.0414)

study of prostate cancer by Blake et al. [23]. The data set consists of the medical records of 97 patients

who were about to receive a radical prostatectomy. The predictors are eight clinical measures, i.e., cancer

volume, prostate weight, age, etc., and one response variable, i.e., the logarithm of prostate-specific

antigen. The third one is the Boston Housing data set created from a housing values survey in suburbs

of Boston by Harrison [24]. This data set contains 506 instances which include thirteen attributions,

i.e., per capita crime rate by town, proportion of non-retail business acres per town, average number of

rooms per dwelling, etc., and one response variable, i.e., median value of owner-occupied homes. The

fourth one is the concrete compressive strength (CCS) data set created from [25]. The data set contains

1030 instances including eight quantitative independent variables, i.e., age and ingredients, etc., and one

dependent variable, i.e., quantitative concrete compressive strength. The fifth one is the Abalone data set,

which comes from an original study in [26] for predicting the age of abalone from physical measurements.

The data set contains 4177 instances which were measured on eight independent variables, i.e., length,

sex, height, etc., and one response variable, i.e., the number of rings.

Similarly, we randomly divide all the real data sets into two disjoint equal parts. The first half serves

as the training set and the second half serves as the test set. We also utilize the Z-score standardization

method [27] to normalize the data sets, in order to avoid the error caused by considerable magnitude

difference among data dimensions. For each real data experiment, dictionary (or the set of atoms) is firstly

changed to the decision stumps (specifying one split of each tree, J = 1) corresponding to an additive

model with only main effects. And then, the dictionary is changed to the Vanilla neural networks to

further show that the proposed approach also can boost the performance of neural networks. The neural

networks are set with one sigmoid hidden layer, where the input units equal to the dimension of samples,

the hidden units are set to 5 and the output units (with affine transformation) are the same as the

dimension of the labels. Back-propagation (BP) algorithm is employed to train each neural network.

Table 3 documents the empirical performance comparison results of TGA, PGA, RGA and OGA on

five real data sets, respectively. It can be easily observed that, except OGA, which is sensitive to noise,

TGA and RGA outperform the PGA to a large extent. Furthermore, TGA at least performs as the

second best algorithm among all the greedy learning schemes. Thus, the results of real data coincide with

the toy simulations and therefore, experimentally verify our theoretical assertions.

5 Proof of Theorem 1

In this section, we provide the proof of Theorem 1. The proof is divided into five parts, which contains

the error decomposition strategy, approximation error estimate, sample error estimate, hypothesis error

estimate and learning rate analysis. The methodology of our proof is the same as that of [5] and the

main tool is borrowed from [15].

Error decomposition. In order to give an error decomposition strategy for E(f t
z,k)−E(fρ), we need to

construct a function f∗
k ∈ span(Dn) as follows. Since fρ ∈ Lr

Dn
, there exists a hρ :=

∑n
i=1 aigi ∈ Span(Dn)
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such that

‖hρ‖L1(D) 6 B and ‖fρ − hρ‖ 6 Bn−r. (5)

Define f∗
0 = 0, and

f∗
k =

(

1− 1

k

)

f∗
k−1 + sign

(

〈

hρ −
(

1− 1

k

)

f∗
k−1, g

∗
k

〉

ρ

)

min

{∣

∣

∣

∣

∣

〈

hρ −
(

1− 1

k

)

f∗
k−1, g

∗
k

〉

ρ

∣

∣

∣

∣

∣

,
B
k

}

g∗k,

(6)

where

g∗k := arg max
g∈Dn

〈

hρ −
(

1− 1

k

)

f∗
k−1, g

〉

ρ

.

Let f t
z,k and f∗

k be defined as in Algorithm 2 and (6), respectively, then we have

E(πMf t
z,k)− E(fρ) 6 E(f∗

k )− E(fρ) + Ez(πMf t
z,k)− Ez(f∗

k ) + Ez(f∗
k )− E(f∗

k ) + E(πMf t
z,k)− Ez(πMf t

z,k).

Upon making the short hand notations

D(k) := E(f∗
k )− E(fρ),

S(z, k, δ) := Ez(f∗
k )− E(f∗

k ) + E(πMf t
z,k)− Ez(πMf t

z,k),

and

P(z, k, δ) := Ez(πMf t
z,k)− Ez(f∗

k )

respectively for the approximation error, the sample error and the hypothesis error, we have

E(πMf t
z,k)− E(fρ) = D(k) + S(z, k, δ) + P(z, k, δ). (7)

At first, we give an upper bound estimate for D(k), which can be easily deduced from [5, Proposi-

tion 1] and [13, Theorem 1.2].

Lemma 1. Let f∗
k be defined in (6). If fρ ∈ Lr

Dn
, then

D(k) 6 B2(k−1/2 + n−r)2. (8)

Now we turn to bound the sample error. Upon using the short hand notations

S1(z, k) := {Ez(f∗
k )− Ez(fρ)} − {E(f∗

k )− E(fρ)}

and

S2(z, k) := {E(πMf t
z,k)− E(fρ)} − {Ez(πMf t

z,k)− Ez(fρ)},
we write

S(z, k) = S1(z, k) + S2(z, k). (9)

To bound S1(z, k), we only need to use the [5, Proposition 2] by noticing ‖f∗
k‖L1(D) 6 B.

Lemma 2. For any 0 < δ < 1, with confidence 1− δ
2 ,

S1(z, k) 6
7(3M + B log 4

δ )

3m
+

1

2
D(k).

In order to bound S2(z, k), we need the concept of an empirical covering number.

Definition 1. Let (M, d) be a pseudo-metric space and T ⊂ M a subset. For every ε > 0, the covering

number N (T, ε, d) of T with respect to ε and d is defined as the minimal number of balls of radius ε

whose union covers T , that is,

N (T, ε, d) := min







l ∈ N : T ⊂
l
⋃

j=1

B(tj , ε)







for some {tj}lj=1 ⊂ M, where B(tj , ε) = {t ∈ M : d(t, tj) 6 ε}.
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The l2-empirical covering number of a function set is defined by means of the normalized l2-metric

d2 on the Euclidean space R
m given in [28] with d2(a, b) =

(

1
m

∑m
i=1 |ai − bi|2

)
1
2 for a = (ai)

m
i=1, b =

(bi)
m
i=1 ∈ R

m.

Definition 2. Let G be a set of functions on X , x = (xi)
m
i=1 ⊂ Xm, and let

G|x := {(f(xi))
m
i=1 : f ∈ G} ⊂ Rm.

Set N2,x(G, ε) = N (G|x, ε, d2). The l2-empirical covering number of G is defined by

N2(G, ε) := sup
m∈N

sup
x∈Xm

N2,x(G, ε), ε > 0.

The following two lemmas can be found, respectively, in [28, Theorem 2] and [29].

Lemma 3. If φ satisfies (1), then for arbitrary ε > 0,

logN2(B1, ε) 6 C1ε
− 2d

d+2s ,

where BR is the ball in L1(D) with radius R, and C1 is a constant depending only on s, Cs and X .

Lemma 4. Let F be a class of measurable functions on Z. Assume that there are constants B, c > 0

and α ∈ [0, 1] such that ‖f‖∞ 6 B and Ef2 6 c(Ef)α for every f ∈ F , where E represents expectation.

If for some a > 0 and p ∈ (0, 2),

logN2(F , ε) 6 aε−p, ∀ε > 0, (10)

then there exists a constant c′p depending only on p such that for any t > 0, with probability at least

1− e−t, there holds

Ef − 1

m

m
∑

i=1

f(zi) 6
1

2
η1−α(Ef)α + cp′η + 2

(

ct

m

)
1

2−α

+
18Bt

m
, ∀f ∈ F , (11)

where

η := max

{

c
2−p

4−2α+pα

( a

m

)
2

4−2α+pα

, B
2−p

2+p

( a

m

)
2

2+p

}

.

We are now in a position to establish an upper bound estimate for S2(z, k).

Lemma 5. Let f t
z,k be defined as in Algorithm 2 and 0 < δ < 1, then with confidence 1− δ

2 , there holds

S2(z, k) 6
1

2
{E(πMf t

z,k)− E(fρ)} + C3 log
4

δ
s

d
d+s

k m− 2s+d
2d+2s ,

where C3 is a constant depending only on d, X , φ and M .

Proof. We apply Lemma 4 to the set of functions FR, where

FR :=
{

(y − πMf(x))2 − (y − fρ(x))
2 : f ∈ BR

}

. (12)

Each function g ∈ FR has the form

g(z) = (y − πMf(x))2 − (y − fρ(x))
2, f ∈ BR,

and is automatically a function on Z. Hence

Eg = E(f)− E(fρ) = ‖πMf − fρ‖2ρ

and
1

m

m
∑

i=1

g(zi) = Ez(πMf)− Ez(fρ).

Observe that

g(z) = (πMf(x)− fρ(x))((πM f(x)− y) + (fρ(x) − y)).
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Using the obvious inequalities ‖f‖∞ 6 M a.e. and |fρ| 6 M a.e., we get the inequalities

|g(z)| 6 (M +M)(M + 3M) 6 8M2

and

Eg2 =

∫

Z

(2y − πMf(x)− fρ(x))
2(πMf(x)− fρ(x))

2dρ 6 (4M)2Eg.

For g1, g2 ∈ FR, we have

|g1(z)− g2(z)| = |(y − πMf1(x))
2 − (y − πMf2(x))

2| 6 4M |f1(x)− f2(x)|.

It follows that

N2,z(FR, ε) 6 N2,x

(

BR,
ε

4M

)

6 N2,x

(

B1,
ε

4MR

)

.

Using the above inequality and Lemma 3, we have

logN2,z(FR, ε) 6 C1(4MR)
2d

d+2s ε−
2d

d+2s .

By Lemma 4 with B = c = 16M2, α = 1 and a = C1(4MR)
2d

d+2s , we know that for any δ ∈ (0, 1), with

confidence 1− δ
2 , there exists a constant C depending only on d, X , and φ such that for all g ∈ FR,

Eg − 1

m

m
∑

i=1

g(zi) 6
1

2
Eg + Cη + C(M + 1)2

log(4/δ)

m
.

Here

η = {16M2} s
s+d

(

(4MR)
2d

d+2s

m

)
d+2s
2d+2s

.

Therefore, there exists a constant C2 depending only on d, X , φ and M such that

η 6 C2R
d

d+sm− d+2s
2d+2s ,

which implies

Eg − 1

m

m
∑

i=1

g(zi) 6
1

2
Eg + CC2R

d
d+s log

4

δ
m− d+2s

2d+2s .

Due to the definition of f t
z,k, it is easy to see that ‖f t

z,k‖L1
6 sk :=

∑k
i=0 hk. It follows that there exists

a constant C3 depending only on d, X , φ and M such that

S2(z, k) 6
1

2
{E(πMf t

z,k)− E(fρ)} + C3 log
4

δ
s

d
d+s

k m− 2s+d
2d+2s .

Then, we turn to bound the hypothesis error P(z, k).

Lemma 6. If f t
z,k, f

∗
k and Λk are defined in Algorithm 2 and (6), then we have

P(z, k) 6
M2B
B + sk

+
k
∑

l=0

h2
l .

Proof. Write f∗
k =

∑n
j=1 wjgj and f t

z,k =
∑n

j=1 ajgj. Then, we have from ‖f∗
k‖L1(D) 6 B that

∆Wk :=

n
∑

j=1

|wj − aj| 6
n
∑

j=1

|wj |+
n
∑

j=1

|aj | 6
n
∑

j=1

|wj |+ sk 6 B + sk,

where sk :=
∑n

j=1 hj . As Λk = [−hk, hk] is symmetric, then it follows from the definition of f t
z,k that

Ez(f t
z,k+1) 6 Ez(f t

z,k + hkbjgj)
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with bj = sign(wj − aj). Thus,

∆WkEz(f t
z,k+1) 6

n
∑

j=1

|wj − aj |
1

m

m
∑

i=1

(

f t
z,k(xi) + hkbjgj(xi)− yi

)2

=

n
∑

j=1

|wj − aj |
1

m

m
∑

i=1

(

(f t
z,k(xi)− yi)

2 + 2(f t
z,k(xi)− yi)hkbjgj(xi) + h2

kg
2
j (xi)

)

6 ∆WkEz(f t
z,k) + 2hk

1

m

m
∑

i=1

(f t
z,k(xi)− yi)(f

∗
k (xi)− f t

z,k(xi)) + ∆Wkh
2
k‖gj‖2∞

6 ∆WkEz(f t
z,k) + hk(Ez(f∗

k )− Ez(f t
z,k)) + C∆Wkh

2
k,

where we use the fact that

1

m

m
∑

i=1

(f t
z,k(xi)− yi)(f

∗
k (xi)− f t

z,k(xi)) =
1

m

m
∑

i=1

(f t
z,k(xi)− yi)(f

∗
k (xi)− yi + yi − f t

z,k(xi))

=
1

m

m
∑

i=1

(f t
z,k(xi)− yi)(f

∗
k (xi)− yi)− Ez(f t

z,k),

and

2
1

m

m
∑

i=1

(f t
z,k(xi)− yi)(f

∗
k (xi)− yi) 6

1

m

m
∑

i=1

(f t
z,k(xi)− yi)

2 +
1

m

m
∑

i=1

(f∗
k (xi)− yi)

2.

Hence, we have

Ez(f t
z,k+1) 6 Ez(f t

z,k) +
hk

∆Wk
(Ez(f∗

k )− Ez(f t
z,k)) + Ch2

k.

That is,

Ez(f t
z,k+1)− Ez(f∗

k ) 6

(

1− hk

B + sk

)

(

Ez(f t
z,k)− Ez(f∗

k )
)

+ Ch2
k.

Note that for arbitrary a > 0,

j
∏

l=0

(

1− hl

sl + a

)

= exp

(

k
∑

l=0

ln

(

1− sl+1 − sl
sl + a

)

)

6 exp

(

k
∑

l=0

−sl+1 − sl
sl + a

)

6 exp

(

−
∫ sk+1

s0

1

v + a
dv

)

=
s0 + a

sk+1 + a
.

Then we have

Ez(f t
z,k+1)− Ez(f∗

k ) 6

k
∏

l=0

(

1− hl

B + sl

)

Ez(f0) + C

k
∑

l=0

h2
l 6

M2B
B + sk

+ C

k
∑

l=0

h2
l .

Then the inequality Ez(πMf t
z,k) 6 Ez(f t

z,k) yields the final estimate of the hypothesis error.

With the help of the above lemmas, we are in a position to prove Theorem 1.

Proof. (Proof of Theorem 1) Let hk ∼ k−2/3. Then it is easy to deduce that sk ∼ k1/3. We assemble

the results in Lemma 1 through (6) and (7) to write

E(πMf t
z,k)− E(fρ) 6 D(k) + S1(z, k) + S2(z, k) + P(z, k)

6 B2(k−1/2 + n−r)2 +
7(3M + B log 4

δ )

3m

+
1

2
{E(πMf t

z,k)− E(fρ)}+ C3 log
4

δ
k

d
3d+3sm− d+2s

2d+2s + C4Bk−1/3
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holding with confidence at least 1− δ. Therefore

E(πMf t
z,k)− E(fρ) 6 CB2

(

log
4

δ
k

d
3d+3sm− 2s+d

2d+2s + k−
1
3 + n−2r

)

holds with confidence at least 1 − δ, where C is a constant depending only on φ, d, X and M . This

completes the proof of Theorem 1.

6 Conclusion

In this paper, we applied another variant of greedy-type algorithms, called the truncated greedy algorithm

(TGA), to improve the learning performance of the pure greedy algorithm (PGA). The contributions can

be concluded as follows. Firstly, we applied the idea of truncation based on the bias and variance balance

principle to modify PGA. To be detailed, different from other variants of PGA, such as the OGA and

RGA, that devote to reduce the bias, TGA focuses on cutting down the variance. We rigorously prove that

TGA is better than PGA in the sense that TGA possesses the faster learning rate than PGA. Secondly,

we derived a relatively tight generalization error bound for the TGA learning. For some specified learning

tasks, we theoretically proved that TGA can reach a learning rate as O(m−1/2), which was better than

all the existing results concerning greedy learning. This theoretical guidance implies that under a certain

special circumstance, TGA may perform better than all the existing greedy-type algorithms such as

OGA, RGA and PGA. Finally, we verified the above assertion by both toy simulations and real data

experiments.

The idea of truncation in greedy learning paves a new road to modify greedy-type algorithms. We guess

that this idea can be successfully used in both OGA and RGA to improve their performances further.

We will keep on with this study and report our new findings in future.
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