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Abstract More and more evolutionary operators have been integrated and manually configured together to
solve a wider range of problems. Considering the very limited progress made on the automatic configuration of
evolutionary algorithms (EAs), a rotated neighbor learning-based auto-configured evolutionary algorithm (RNL-
ACEA) is presented. In this framework, multiple EAs are combined as candidates and automatically screened for
different scenarios with a rotated neighbor structure. According to a ranking record and a group of constraints,
the algorithms can be better scheduled to improve the searching efficiency and accelerate the searching pace.
Experimental studies based on 14 classical EAs and 22 typical benchmark problems demonstrate that RNL-
ACEA outperforms other six representative auto-adaptive EAs and has high scalability and robustness in solving
different kinds of numerical optimization problems.
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1 Introduction

Evolutionary algorithm (EA) [1-3], which takes advantage of bio-inspired operators to do population-
based iterative evolution within reasonable time, has been proved to be one of the most efficient algorithms
for solving non-deterministic Polynomial-time hard (NP-hard) problems [4-6]. With frequently changing
environment, hundreds of improved and hybrid EAs have been presented [7-9]. However, according to “no
free lunch” theory, when the nature of optimization problem varies, an particularly designed algorithm
will easily become inefficient or even fail and a cumbersome redesign work is then required. To settle this
issue, hyper-heuristic has been presented to collect under-layer heuristics and dynamically select them
for solving more problems [10]. The main focus is the design of high-level rule [11,12]. Tt tries to choose
or combine several heuristics in a specific stage to solve a problem [13]. The objects to be selected by
hyper-heuristic are generally problem-dependent priori knowledge.

Similarly, memetic algorithm is also established as a framework, especially for integrating several local
search strategies (also called as memes) in evolutionary iteration. In the early stage, single local search
and genetic updating operators are hybridized for specific problems [14]. After years of development, the
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idea of multi-memes is presented [15,16]. In each generation, local search strategy (i.e., meme) is selected
by Meta-Lamarckian learning strategy to update individuals.

Clearly, only local search strategies and simple priori knowledge are selected as candidates in the
above frameworks. For extending the selection framework to evolutionary operators, multi-method search
[17,18] and dynamic configuration method [19] are proposed with general evolutionary procedure. In
multi-method search, the whole EA is adopted as candidates. In dynamic configuration method, both
algorithms and their operators are flexibly combined as modules. Except that, for solving conflicts
existing in many engineering circumstances, we may require multiple decision makers in different aspects.
In this aspect, some negotiation and preference schemes are also proposed to handle complex optimization
[20,21].

However, unfortunately, few mechanisms have been well designed for choosing suitable EAs in both
multi-method search and dynamic configuration framework. Also, the complexity of such multiple EAs
scheme is decided by both the upper-layer selection mechanism and the candidates with the largest com-
plexity. With the growth of problem solution space and the additional algorithm switching mechanism,
the whole searching time will thus be exponentially increased. We have reason to believe that the se-
lection mechanism for generating a combined EAs scheme with lower time complexity is still an urgent
issue to be explored.

In this paper, a new multiple EAs scheme, named rotated neighbor learning-based auto-configured
evolutionary algorithm (RNL-ACEA), is proposed. Instead of original selection mechanism applied in
multi-memes and multi-method search, the algorithm used in each individual is updated according to the
algorithm rank records of both its neighbor and itself. The dynamic changing structure is expected to
improve the collaboration between individuals and find better algorithms with less time. We introduce
up to 14 kinds of classical EAs as the basis of our multi-EAs scheme. To demonstrate the performance
of RNL-ACEA, experiments and discussions are established on 22 complex benchmark functions with
different dimensions. The comparison analysis against six state-of-the-art selection mechanisms from
both multi-method schemes and memetic algorithms and the parameter tuning of our method are all
included.

This paper is structured in the following way. Section 2 gives the review of state-of-the-art memetic
algorithms, multi-method search, and configuration method of EA. Section 3 provides the workflow and
detailed explanation of RNL-ACEA. Experimental studies between the new proposed RNL-ACEA and
the state-of-the-art selection mechanisms with multiple EAs scheme are conducted in Section 4. The
conclusion of this paper and some potential future work are drawn in Section 5.

2 Literature review

Developed from the hybridization of single local search operator and genetic one, memetic algorithms
have gone through three generations [22]"). Under this circumstance, Ong et al. [16] have classified the
most typical selection mechanisms used in memetic algorithms. They include simple random method,
simple inheritance mechanism, subproblem decomposition strategy, and so on. In this scheme, some
classical hill-climbing strategies early elaborated by Schwefel [23] are also applied as local search memes
and listed in [15,16].

From the algorithm design point of view, Nguyen et al. [24] have tested and deeply analyzed the general
parameter settings of local search procedure during the searching process. Le et al. [25] have introduced
the influence of the local optimum structure and connectivity structure in memetic algorithms. These
parameters and structures are proved to be very critical in design of a successful memetic algorithm [26].
From the parallelization point of view, the diversity-based static and dynamic adaptive strategies, that
is, diversity-based static adaptive strategy (PMA-SLS) and diversity-based dynamic adaptive strategy
(PMA-DLS) are designed, in which the number of individuals to perform local search is calculated
according to Gaussian distribution and online entropy ratio, respectively [27].

1) Memetic algorithm. http://en.wikipedia.org/wiki/Memetic_algorithm.
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Except the research on the structure of memetic algorithm, many efforts have been put on the combina-
tion of local search memes and other EAs. Typical examples are the particle swarm optimization-based
memetic algorithm [28], differential evolution-based memetic algorithm [29], memetic computation on
immune systems [30], and so forth.

For further extending its application, researchers have established a new branch of evolutionary com-
puting, called memetic computing. Representative researches on it include the establishment of coevolving
memetic scheme [31], the multi-stage memetic exploration [32], and other heuristics as memes [33] and so
on. Most of them try to combine more heuristics for solving wider range of problems like the development
of hyper-heuristic. Clearly, the research of extensive memetic computing is still at an early stage.

Efforts put on the combined use of multiple evolutionary operators like memes are less. Multi-method
search first presented in 2007 [17] is a typical one. Several evolutionary operators are combined and their
operating scopes are chosen and defined in advance. After that, Vrugt et al. [18] try to improve the
scheme using some acquired information to update the number of individuals handled by each operator,
so as to make the searching process dynamic. Obviously, operator selection mechanism is still lacking.

Recently, Hadka et al. [34,35] presented a Borg multi-objective EA by applying the above multi-
method search and a biased probability-based selection mechanism for auto-adaptation. Grobler et al.
[36] established a framework using EAs as low-level heuristics and built an upper-layer heuristic for
selecting them. By digging the population trait, Peng et al. [37] proposed a group-based portfolio based
on multi-method search. Except that, the research on the selection mechanism for such multi-method
scheme can also be found in the study of adaptive differential evolution, in which multiple differential
mutation strategies are applied as candidates [38,39].

The multi-method search has been used in many complex optimization problems in recent times, such
as [40,41]. From the operator point of view, the candidates can be generally applied to wider range of
problems than the memes in memetic algorithm.

Dynamic configuration scheme [19] is designed especially for full use of evolutionary operators and the
improvement strategies. Different from multi-method search, it focuses mainly on the combination ways
of operators in the evolutionary procedure. Tao et al. [19] have divided the configuration into three
layers: parameter configuration, operator configuration, and algorithm configuration.

Parameter configuration refers to general parameter adaptation during the iterations. Operator config-
uration means to combine the existing operators from different algorithms to generate new evolutionary
scheme in a specific period. Algorithm configuration is defined as applying diverse algorithms into differ-
ent stages of the process, as well as multi-method search. Similarly, the specific adaptive configuration
mechanism has not been addressed yet.

Although many studies are gradually carried out on the design of multiple EAs scheme, automatic
selection mechanism, especially for evolutionary operators has yet to be well studied and explored. As a
result, with those dynamic configuration ways, the existing EAs are still far from being efficiently used
and properly assembled.

3 Rotated neighbor learning-based auto-configured evolutionary algorithm

In this section, we will give the basic framework of RNL-ACEA. The specific neighbor learning mechanism
and its rotated structure are elaborated following the framework, respectively. At this level, we will explain
how could it adapt for different problems without increasing searching time.

In RNL-ACEA, the rank record presented by Burke et al. [42] is applied for evolutionary record. With
a rank list, the high-ranked algorithm candidates for each individual can be used to guide their neighbor
and enhance the collaboration between individuals. As shown in the pseudocode of Algorithm 1, the
proposed RNL-ACEA includes mainly four parts.

(1) Initialization (Steps 1-3): The whole population is generated with random Gaussian distribution.
We define evolutionary flag, that is, {Count;|i € [1,N]} as the number of generations after the last
improvement of each individual and 7k = {rk; ;|i € [1,N],j € [1, M]} as the rank matrix, in which 7k; ;
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represents the rank of candidate j for individual 7. In the beginning, N algorithms are randomly selected
from M algorithm candidates and denoted as A = {A4;|i € [1, N]} for generating new individuals. An
algorithm in the candidate pool can be repeatedly selected. Therefore, the size of the candidate pool M
can be either larger or smaller than .

(2) Evolution (Steps 4-7): The selected algorithms

A={Alie1,N]}

are performed on different individuals to find new positions in the solution space.

(3) State record (Steps 8-18): Both the individual states and the algorithm rank records are refreshed
in turn after the evolution.

(4) Rotated interaction (Steps 20-31): Neighbor finding and neighbor learning make the individual
exchange for good algorithm and good information.

Algorithm 1 Rotated neighbor learning-based auto-configured evolutionary algorithm (RNL-ACEA)

1: Generate an initial population with N individuals
2: Set Count; =--- = County =0and rk11 =---=7kj; = =rkyn, i € [1,N], j € [1, M]
3: Randomly select NV algorithms from M candidates
4: while Stopping conditions not satisfied do
5: for each individual ¢ do
6: Perform the selected algorithm A; to generate a new offspring
7 Update the individual by Elitist strategy
8: if the fitness value of the individual is improved then
9: if riA; < rkmax then
10: riA+ =1
11: end if
12: Count; =0
13: else
14: Count;+ =1
15: if r; 4, > 0 then
16: riA,— =1
17: end if
18: end if
19: end for
20: for each individual ¢ do
21: Obtain the serial number of the neighbor n; according to the rotated structure
22: if the updated fitness value of the neighbor is better than ¢ and Count; > CBOUND then
23: Select the candidate of neighbor with the highest rank max(rkneighbor,j) as A;
24: else
25: if Count; < CBOUND then
26: Select the candidate of ¢ with the highest rank rk; ; as A;
27: end if
28: else
29: Randomly select a candidate as A;
30: end if
31: end for

32: end while
33: Output the global best individual

3.1 Basic neighbor learning mechanism

Good algorithms can lead to fast evolution, while bad ones may slow down the evolutionary pace. Gene
bit interaction between individuals can only guide the search, but not speed up the evolution within
group. During the process, if bad algorithms exist in the group, the individuals with slower evolving
speed will lag the whole searching process. It is a waste of time and resources. So, the main target of our
method is to find suitable algorithms for a specific problem and eliminate the bad ones from the process
dynamically.
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As we analyzed in Section 2, there are three main categories for upper-layer algorithm selection mech-
anism: (1) random strategy for evenly applying all candidates, (2) rule-based control with priori infor-
mation and some choice function, and (3) performance-based control with history record. Considering
the rank records with the evolutionary flags, the basic neighbor learning designed in this paper belongs
mainly to performance-based control.

During the search, individuals are interactively and randomly located in the solution space. The rank
records for one individual are also applicable for others. Through the comparisons of the current updated
fitness value with its neighbor, each individual can use the information of the neighbor to guide its own
searching direction.

Specifically, under a connect structure, there are three cases for each individual to select algorithm for
the next generation.

Case 1: the individual i is evolving, that is, the evolutionary flag is within CBOUND. In this scenario,
it can keep its pace and the candidate with the highest rank max(rk; ;) for individual ¢ will be selected.

Case 2: the individual ¢ is not evolving for over CBOUND generations and its neighbor holds a better
fitness value. In this case, the candidate with the highest rank max(rkneighbor,;) for its neighbor will be
introduced.

Case 3: the individual 7 is not evolving for over CBOUND generations and its neighbor is not better
than it. That indicates a convergence trend of the population. To increase the searching diversity, a
randomly selected algorithm will be applied for the next generation.

The random selection step after the neighbor learning is mainly designed to eliminate bad algorithms
and try to keep the population updating with different candidates as far as possible.

In the neighbor learning mechanism, CBOUND is an important parameter. It is used to balance the
diversity of algorithm and the collaboration of population. If CBOUND is too big, the individual can get
very little information from the neighbor records. The collaboration pace will be largely slowed down and
each individual will perform independent searching and algorithm selection. Simultaneously, the random
strategy will have little chance to work, especially at the early stage of the evolutionary searching. On
the other hand, if CBOUND is too small, the algorithm selection will be decided largely by the random
strategy but not the history records.

Hence, if the random strategy and the learning strategy are well balanced, the candidates will evenly
perform on the early stage searching and the good ones will be selected after a certain time of individual
collaboration. Even if early convergences of both algorithm and population happen, the random algorithm
selection and the population refreshment will both help to renew them within limited generations.

3.2 Rotated structure and neighbor finding

In the neighbor learning mechanism, the most crucial problem is how to choose the neighbor during the
interaction. The connection structure of individuals has been researched for years to establish efficient
parallel EAs. The most commonly used topologies are ring topology [43], grid topology [44], full mesh
topology [45], and so on. Matsumura et al. [46] compared and analyzed the influences of different topo-
logies and found the ring structure performs the best in keeping population diversity. Apparently, it can
also be applied to our learning selection scheme. Via one-way ring structure, one neighbor connection
can be assured in the workflow of RNL-ACEA as well.

However, with fixed neighbor assigned beforehand, it requires N — 1 steps at least to transmit good
information to the whole population. As mentioned by Matsumura et al. [46], the convergence rate of
ring structure is very slow. The learning object of an individual is always the same. It has no chance to
learn from other individuals at all. For improving the learning diversity and enhancing the information
transmission, we propose a rotated structure, as shown in Figure 1.

In the beginning, the structure is totally the same with ring topology. Let n; be the neighbor of the
ith individual. The initial neighbor of 7 is calculated as n; = ¢; + 1. After that, the neighbor can be
calculated by (1) within each generation:
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Figure 1 (Color online) Rotated structure for neighbor learning in RNL-ACEA.

n;=i+14+gen mod (N —1). (1)

In this equation, gen represents the current generation in evolution. The only difference between the
rotated structure and the ring topology is that the neighbor is changed in every generation.

Take a population with eight individuals as an example, as shown in Figure 1, if the selected algorithm
of individual 1 performs very well, then it will pass the candidate to 2 at the first period. Next, indivi-
dual 1 and individual 2 will send the candidate number to their next neighbor, that is, 3 and 4, respectively,
if both of them are evolved in the previous generation. Clearly, it requires at most four steps to transmit
the good one to the whole population. In general, the information transmission steps will be reduced
from log N at least to NV — 1 at most. Meanwhile, the collaborations between individuals in total do not
increase any more. Each one has equal opportunity to learn from all of the other individuals during the
iterations.

The neighbor learning process is much simpler than other rule-based or performance-based selection
mechanisms with some choice functions. During the iterative search, the individuals learn from each
other and find better algorithms by rotated interaction. With rotated neighbor learning, individuals will
have more chance to get suitable algorithms. The diversity of both population and algorithm can also be
well maintained by the combination use of its supplementary random strategy and evolutionary flags.

4 Experiments and discussion

In this section, we apply our proposed RNL-ACEA on 22 typical benchmark problems. Eight of them
are selected from CEC’2005 benchmarks and the others are typical complex numerical functions. Both
unimodal and multimodal functions are tested with dimensions 30, 50 and 100 in the experiments. First,
14 typical EAs are adopted as the under-layer candidates. The performance of rotated structure in
RNL-ACEA based on them is analyzed. Then, to demonstrate the efficiency of RNL-ACEA with the
state-of-the-art mechanisms, six kinds of hyper-heuristics (as the upper-layer selection methods) are
reimplemented in the experiments. Besides, for verifying the scalability and robustness of RNL-ACEA,
the numerical functions with 1000 dimensions are tested. At last, the key parameter of RNL-ACEA is
tuned and analyzed to show its impact on the design and application of RNL-ACEA for a wider range
of continuous numerical problems.

4.1 Experiment settings

(1) Algorithms for comparison
First, we set the auto-configured EA with simple ring structure-based neighbor learning as NL-ACEA,
and the rotated neighbor learning-based one as RNL-ACEA. The above-mentioned six typical hyper-
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Table 1 The six hyper-heuristics for comparison

Abbreviation Algorithm Abbreviation Algorithm

AMALGAM AMALGAM-SO presented in [18]  Inheritance Simple inheritance mechanism introduced in [16]
Borg Borg mechanism presented in [35]  Biased-RW Biased roulette wheel strategy introduced in [16]
Tabu Tabu strategy presented in [43] Subpro-Dec  Subproblem decomposition strategy introduced in [16]

Table 2 The algorithm candidates applied in the experiments

No. Algorithm No. Algorithm
1 Genetic algorithm with single point crossover/mutation 8 Harmony search [49]
2 Particle swarm optimization 9 Differential evolution with best/2 mutation [39]
3 Differential evolution with rand/1 mutation [39] 10 Cuckoo search [50]
4 Tterative local search [47] 11 Differential evolution with target-to-best/1 mutation [39]
5 Differential evolution with best/1 mutation [39] 12 Variable neighborhood search [51]
6 Artificial bee colony algorithm [48] 13 Greedy randomized adaptive search procedure [52]
7 Differential evolution with rand/2 mutation [39] 14 Continuous ant colony optimization [53]

Table 3 The initial parameter settings of the algorithm candidates

No. of algorithms Parameters Settings
1 Crossover probability (Pc), Mutation probability (Pm) 0.8, 0.15
2 Cognitive factor (cl), Social factor (c2), Inertia weight (w) 2.0, 2.0, 0.85
3,5,7,9,11 Weighting factor (F'), Crossover constant (cr) 0.8, 0.3
4,12, 13 Local search strategy Bit climbing
6 The trial limitation of scout bee 50
8 The choosing rate of harmony memory, the choosing rate of neighboring value 0.9, 0.3
14 The size of the archive, locality of the search process, speed of convergence 10, 1x10~%, 0.85

Table 4 The 14 test functions for testing the proposed algorithm

No. Func name Range Optimum Accuracy No.  Func name Range Optimum Accuracy
T1 Sphere [—100, 100]P 0 1x10=6¢ T8 NoiseQuadric [—100,100]” 0 1x102
T2 Schwefel P2.22 [—100,100]” 0 11076 T9  RotatedF6  [—100,100]" 0 1x10~1
T3  Schwefel P1.2  [—100,100]” 0 1x10~6 T10 HighElliptic [—100,100]" 0 1x10~6
T4 Schwefel P2,21 [—100,100]” 0 11076 T11  2Dminima [—5,5]7 0 1x10~6
T5  Rosenbrock  [—5,100]” 0 1x1072  TI2 Tablet [-100, 100]” 0 1x10~6
T6 Step [—100, 100]P 0 1x1076 TI13  Diff power  [—100,100]" 0 1x10~6
T7 Ellipse [—100, 100]P 0 1x107% T14  Rastrigin [-5,5]" 0 1x10~6

heuristics and their abbreviations are listed in Table 1. Among them, Borg, Tabu, Subprob-Dec, and
Biased-RW all belong to the category of performance-based control with history record. The under-layer
algorithm candidates are provided in Table 2 with serial numbers. Then, the initial settings of these
algorithms are given in Table 3. These parameters will not be changed during the whole experiments.
(2) Benchmarks

We apply 14 complex functions used in [54] and 8 shifted benchmarks listed in CEC’2005 [55] to test
the above algorithms. The search range and accuracy of the 14 test functions are listed in Table 4. The
details of the eight benchmarks from CEC’2005 can be found in [55]. In the following experiments, we test
the algorithms on the 14 test functions with dimensions 50 and 100 and eight benchmarks on dimensions
30 and 50, respectively.
(3) Performance metric

Following the evaluation criteria in [55,56], all of the experiments are taken 30 runs to get the average
value. And we mainly evaluate the algorithm using Err, SR, and TIME.

e Err: The average error of the optimal solution and the best fitness value found in the 30 runs.

e SR: Success rate of the 30 runs.

e TIME: The average searching time in the 30 runs. Its unit is second (s).
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Table 5 t-test comparison of NL-ACEA and RNL-ACEA on small- and large-scale tests

Small scale ERR SR TIME Large scale ERR SR TIME
t-test 0.3255 0.1498 0.03827 t-test 0.3283 0.1479 0.0294
Wilcoxon-test 0.0431 0.0679 0 Wilcoxon-test 0.1380 0.1088 0.0009

Table 6 t-test comparison of Err between RNL-ACEA and other six selection mechanisms

RNL-ACEA v.s. t Unadjusted p Bonferroni p i Holm p Hochberg p
AMALGAM 1.163 0.2512 >1 >1 > 1 >1
Borg 1.084 0.2845 >1 >1 >1 >1
Tabu 1.090 0.2828 > 1 >1 > 1 > 1
Inheritance 1.448 0.1547 0.9282 0.4641 0.4641 0.4641
Subpro-Dec 2.355 0.0232 0.1392 0.0464 0.0464 0.0464
Biased-RW 2.198 0.0334 0.2004 0.0334 0.0334 0.0334

Table 7 t-test comparison of SR between RNL-ACEA and other six selection mechanisms

RNL-ACEA v.s. t Unadjusted p Bonferroni p i Holm p Hochberg p
AMALGAM 3.366 0.0016 0.0096 0.0096 0.0096 0.0096
Borg 2.799 0.0076 0.0456 0.0380 0.0380 0.0380
Tabu 4.863 0 0 0 0 0
Inheritance 5.560 0 0 0 0 0
Subpro-Dec 10.355 0 0 0 0 0
Biased-RW 8.670 0 0 0 0 0

Also, the population size in the experiments is set to be 20 and the maximum number of generations
Ghax 18 set to be N x 10000, in which N represents the number of variables. In the comparison, the
parameter of RNL-ACEA, CBOUND and rkpyax are initially set to be 10 and 100, respectively. The
stopping criterion of the whole iteration is that if the accuracy is arrived or the number of generations
has arrived to the maximum number G.x. The level of significance used for statistical analysis [54,56]
in this paper is uniformly set as 0.05.

4.2 Comparison of NL-ACEA and RNL-ACEA

Pair comparisons between NL-ACEA and RNL-ACEA are carried out using ¢-test. Table 5 shows the
p-values of Err, SR, and TIME between NL-ACEA and RNL-ACEA in different statistical tests. From
the ¢-test comparison, it can be observed that the rotated structure significantly decreases the searching
time in both small- and large-scale tests. The p-value of TIME becomes smaller as the problem scale
increases. On the contrary, the rotated structure on searching precision and success rate are insignificant.
However, from the results on shifted benchmarks, especially Shifted Rotated Weierstrass Function and
Schwefel’s Problem 2.13, we can find that the average success rate and precision are both decreased
without neighbor rotation.

4.3 Comparison of RNL-ACEA and other six hyper-heuristics

(1) Solution quality

Considering the precision and success rate independently, the results of ¢-test pair comparison on Err
and SR between RNL-ACEA and other six hyper-heuristics are in Tables 6 and 7. The p-values obtained
by Bonferroni-Dunn’s, Holm’s, and Hochberg’s procedure are also provided.

Except the pair comparison, non-parametric Friedman’s test is also employed to evaluate RNL-ACEA
and other six hyper-heuristics on the selection of EAs. The rankings in terms of Err and SR are listed in
Table 8. The approximate ranking of the seven methods from the solution quality point of view can be
summarized as RNLACEA > Borg > AMALGAM > Tabu > Inheritance > BiasedRW > SubproDec.
(2) Searching time

From the perspective of searching time, we also employ the pair comparisons using ¢-test to analyze
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Table 8 Friedman-test comparison between RNL-ACEA and other six selection mechanisms

Small scale Err SR TIME Large scale Err SR TIME
RNL-ACEA 2.23 5.52 1.55 RNL-ACEA 2.05 5.77 1.23
AMALGAM 2.86 4.89 4.09 AMALGAM 2.84 4.73 4.09

Borg 2.66 5.30 3.09 Borg 2.66 4.77 3.50
Tabu 3.82 4.11 3.59 Tabu 4.23 4.09 3.91

Inheritance 4.25 3.59 5.14 Inheritance 3.77 3.82 4.91
Subpro-Dec 6.32 1.98 6.05 Subpro-Dec 6.23 2.05 6.23

Biased-RW 5.86 2.61 4.50 Biased-RW 6.23 2.77 4.14

X2 86.661 75.266 60.117 X2 96.064 67.350 64.870
P 0 0 0 P 0 0 0

Table 9 t-test comparison of TIME between RNL-ACEA and other six selection mechanisms

RNL-ACEA v.s. t Unadjusted p Bonferroni p i Holm p Hochberg p
AMALGAM 2.860 0.0065 0.0391 0.0391 0.0391 0.0391
Borg 2.911 0.0057 0.0341 0.0284 0.0284 0.0284
Tabu 2.826 0.0071 0.0427 0.0285 0.0285 0.0285
Inheritance 2.820 0.0072 0.0435 0.0217 0.0217 0.0217
Subpro-Dec 3.138 0.0031 0.0184 0.0061 0.0061 0.0061
Biased-RW 3.411 0.0014 0.0085 0.0014 0.0014 0.0014

the efficiency of RNL-ACEA. It can be observed from Table 9 that RNL-ACEA outperforms other six
methods on the aspect of TIME. The p-values obtained from Bonferroni-Dunn’s, Holm’s, and Hochberg’s
procedure are all under the level of significance.

On the other hand, the results of Friedman’s test shown in Table 8 also provide the rankings of these
seven methods in terms of TIME. The efficiency ranking can be concluded as RNLACEA < Borg < Tabu
< AMALGAM < BiasedRW < Inheritance < SubproDec.

On the whole, RNL-ACEA with rotated neighborhood structure and learning strategy established
based on a group of rank records and evolutionary flags can find suitable candidates faster for all of the
22 functions. The diversities and collaborations of both population and algorithm candidates are well
maintained, thus the solution quality and searching time are comprehensively improved.

4.4 Scalability and robustness of RNL-ACEA

(1) Scalability

To verify the scalability of RNL-ACEA in complex numerical optimizations, experiments on 14 test
functions with dimension 1000 are carried out. Accorting to Table 10, it is clear that even if the problem
dimension increased to 1000, RNL-ACEA can still find the optimal solution with certain precision. How-
ever, the searching times are increased accordingly. Although the upper-layer selection mechanism has
low time complexity, how to make the under-layer evolution converge faster and find the optimal solution
simultaneously is still a big challenge.
(2) Robustness

As we introduced in Section 3, RNL-ACEA has only two parameters, that is, CBOUND and rkyax.
CBOUND is used to control the algorithm learning between individuals, while rky,.x is applied to avoid
biased algorithm selection. To assess the robustness of RNL-ACEA, parameter-tuning experiments are
also carried out in this paper. With fixed rknax = 100, we test RNL-ACEA with different CBOUND
values on the 14 test functions, respectively. When CBOUND changes from 5 to 50, the precision and
success rate can both be well maintained. Nevertheless, when it continuously increases, the success rate
and precision are decreased. The same trend can also be obtained on the aspect of searching time.

Considering the insignificant changes on precision and success rate, statistical analysis is only taken
on TIME by t-test pair comparison and Friedman’s test multiple comparison. The p-values obtained
by t-test comparison of RNL-ACEA are shown in Table 11, and the rankings obtained by Friedman’s
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Table 10 Result of RNL-ACEA for 14 test functions with dimension 100

T1ErrSR TIME T2ErrSR TIME T3 ErrSR TIME T4 ErrSR TIME T5 ErrSR TIME T6 ErrSR TIME T7 ErrSR TIME
0 1173.123 0 1 260.245 0 1 4941.86 0 1 1434.45 0 1 3070.41 0 1 173.868 0 1 592.627
T8ErrSR TIME T9ErrSR TIME T10ErrSR TIME T11ErrSR TIME T12ErrSR TIME T13ErrSR TIME T14ErrSR TIME
0 11131.43 0 1 702.405 0 1 199.946 0 1 2062.32 0 1 50.8057 0 1921.716 0 1 301.069

Table 11 t-test comparison of RNL-ACEA under different parameter settings of CBOUND

CBOUND 5-10 5-20 5-30 5-50 5-100 10-20 10-30 10-50 10-100 20-30 20-50 20-100 30-50 30-100 50-100
p-value  0.0165 0.0229 0.0206 0.6794 0.0047 0.7202 0.4635 0.0004 0.0018 0.2856 0.0003 0.0022 0 0.0017 0.0062

Table 12 Friedman-test comparison of RNL-ACEA under different parameter settings of CBOUND

CBOUND 5 10 20 30 50 100 x> D
Rank 4.14 2.21 2.64 1.43 4.71 5.86 56.490 0

Table 13 t-test comparison of RNL-ACEA under different parameter settings of rkmax

rkmax  5-10  5-20 5-30 5-50  5-80 5-100 5-500 10-20 10-30 10-50 10-80 10-100 10-500 20-30
p-value 0.0562 0.0127 0.0142 0.0128 0.0219 0.0361 0.2101 0.0019 0.0072 0.0156 0.0374 0.0998 0.1014 0.0364
rkmax 20-50 20-80 20-100 20-500 30-50 30-80 30-100 30-500 50-80 50-100 50-500 80-100 80-500 100-500
p-value 0.0478 0.0979 0.2470 0.0544 0.2023 0.5121 0.6837 0.0291 0.1264 0.0107 0.0147 0.0132 0.0186 0.0223

Table 14 Friedman-test comparison of RNL-ACEA under different parameter settings of rkmax

Tkmax 5 10 20 30 50 80 100 500 X2 P
rank 6.57 5.79 4.43 2.64 1.86 2.79 4.86 7.07 60.810 0

test comparison are summarized in Table 12. Obviously, when CBOUND is in the range of [10,30], the
searching time of RNL-ACEA changed little. Likewise, Friedman’s test is also introduced to evaluate its
searching time with different settings of CBOUND. The ranking results can be shown in Table 11. We
can observe that when CBOUND is set as 30, RNL-ACEA performs the best.

With fixed CBOUND = 10, we set different rky,.x on 14 test functions as well. We found that no
matter how rkya.x changed, the precision and success rate of RNL-ACEA can be well maintained. From
Tables 13 and 14, it is clear that when 7rkyax changes from 30 to 80, the change of TIME is insignificant.
When it changes from 5 to 50, the searching time of RNL-ACEA is gradually reduced. When it increased
further (from 50 to 500), the searching time of RNL-ACEA is bounced back.

In theory, small 7k, can lead to random algorithm selection. Algorithms with good performance can
always get the rank equal to rkmax. Then, the selection probability of each algorithm will become even.
On the contrary, large rkyax can result in biased search because when the rank of an algorithm becomes
very large, it is hard to be reduced to a low level. So, it can be concluded that when 7k« changes from
30 to 80, the robustness of RNL-ACEA can be well held. When it is set as 50, RNL-ACEA performs the
best in solving those continuous benchmark problems.

As CBOUND and rkyax both have little influence on the whole performance of search when located in
a suitable range, it can be seen that RNL-ACEA is easy to implement with lesser parameters and high
adaptation.

5 Conclusion

In this paper, we proposed a rotated neighbor learning-based multiple EAs scheme, RNL-ACEA, to
schedule suitable algorithms for individuals via rotated information learning. We attempted to use the
random replacement strategy in accordance with a bound of evolutionary state to keep the diversity of
both algorithms and population. Then, we designed a rotated neighborhood structure to scatter suit-
able candidates among individuals. Experiments conducted based on 22 classical benchmark problems
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demonstrated that RNL-ACEA outperforms the six state-of-the-art schemes from the perspectives of both
solution quality and efficiency. And its parameter is easy to tune with high robustness and feasibility in
a certain range.

As described in the previous sections, RNL-ACEA can be applied on both continuous numerical prob-
lem and combinatorial optimization problem in industrial engineering. For continuous numerical prob-
lem, engineers only need to provide the specific fitness evaluation function to recall the algorithm. For
combinatorial optimization problem, RNL-ACEA with its operators can also be used by adding an en-
coding/decoding function in evaluation. For example, to solve the service composition optimal selection
problem in Cloud Manufacturing [46], a simple float-to-integer mapping can be adopted as the decoding
way in evaluation. All the candidate operators are independent from the specific problem. Therefore,
this method can be well applied to scheduling and numerical optimization in many kinds of distributed
systems such as service-oriented manufacturing system [57-59], energy management system [60], and
SO On.

In this scenario, we are motivated to conduct an auto-configured EA library with a uniform problem
input interface. By integrating numbers of EAs as under-layer candidates and implementing a group of
hyper-heuristic strategies to automatically select EAs, it is expected that efficient optimization of engi-
neering problems can be obtained with less design work, repetition, and manual adjustment.
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