
. INSIGHT .
Special Focus on Advanced Technology of Software

SCIENCE CHINA
Information Sciences

May 2016, Vol. 59 050101:1–050101:3

doi: 10.1007/s11432-016-5546-4

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

Growing construction and adaptive evolution of

complex software systems

Huaimin WANG* & Bo DING

National Key Laboratory of Parallel and Distributed Processing, College of Computer,

National University of Defense Technology, Changsha 410073, China

Received December 29, 2015; accepted January 29, 2016; published online April 8, 2016

Citation Wang H M, Ding B. Growing construction and adaptive evolution of complex software systems. Sci

China Inf Sci, 2016, 59(5): 050101, doi: 10.1007/s11432-016-5546-4

Distributed software systems are becoming
more and more complex today. It is easy to find
a huge amount of computing nodes in a nation-
wide or global information system. For example,
WeChat (WeiXin), a well-known mobile applica-
tion in China, has reached a record of 650 million
monthly active users in the third quarter of 2015.
At the same time, researchers are starting to talk
about software systems which have billions of lines
of codes [1] or can last one hundred years.

The complexity of distributed software systems
can be measured not just by the scale. Those soft-
ware systems also exhibit a set of unique char-
acteristics in terms of both the internal organi-
zation and the external interaction. A new kind
of software system, the complex software system,
emerged in practice. In short, a complex soft-
ware system is a system which consists of a large
amount of autonomic software systems via cou-
pling and interconnection. It has the following
three characteristics: (1) It is a “system of sys-
tems” [2], which means that it consists of a set of
independent (or semi-independent) systems, and
the interaction among them is dynamic and com-
plex. Its behavior is not a simple linear combi-
nation of the behavior of those subsystems. (2)
It is a “cyber-physical system” [3], which means
that it is closely bound to the physical world. For

example, a minor software malfunction in many
mission-critical systems (such as a smart grid sys-
tem) may directly result in disastrous consequence
in the real world. (3) It is a “socio-technical sys-
tem”, which means that the boundary between the
people and the software is becoming increasingly
blurred. People and other social factors are being
a part of the software itself.

In the 1960s, the software engineering discipline
was spurred by the so-called software crisis [4].
Today, another crisis emerged along with the ap-
pearance of complex software systems. Since those
systems have the features of “systems of systems”,
“cyber-physical systems” and “socio-technical sys-
tems”, many assumptions in traditional software
engineering are no longer valid. As a “cyber-
physical system” and a “socio-technical system”,
it is impossible to predict the user requirements
and the running environment of a complex soft-
ware system precisely in advance. Thus, the “top-
down decomposition” strategy (such as the well-
known waterfall model [5] in traditional software
engineering) cannot be applied. Besides, a tradi-
tional software product can be regarded as a linear
combination of its sub components and thus it can
be developed by the “bottom-up assembly” strat-
egy. However, the relationships among the sub-
systems of a complex software system are more

*Corresponding author (email: whm w@163.com)

The authors declare that they have no conflict of interest.



Wang H M, et al. Sci China Inf Sci May 2016 Vol. 59 050101:2

Adaptive evolution

Evolution
path

Continuous
evolution

Initial
development

Implementation
design

Requirement
analysis

Software
deployment

Environment &
requirement

changes

Planning
software
changes

Complex
software
systems

Providing
services

Growing
construction

Figure 1 (Color online) Relationships between growing construction and adaptive evolution.

dynamic and unpredictable.

Complex software systems present a great chal-
lenge to traditional software engineering method-
ology, i.e., how to construct such kind of systems
and ensure its reliable operation at runtime. To
address this challenge, we should learn the experi-
ence from the formation of complex systems in the
real world [6]. Taking a big city (such as Beijing)
as an example, it cannot be built by the “top-
down decomposition, bottom-up assembly” strat-
egy. We cannot design the whole city in advance
and then construct the buildings one by one. In-
stead, the city “grows” as a result of the loosely
coordinated and regulated actions of many individ-
uals such as companies or organizations. The most
important thing in this process is to introduce cer-
tain mechanisms to enable the growth, such as
appropriate city plans or well-defined laws/rules.
And to ensure the sustainable development of the
city, those mechanisms have to “evolve” continu-
ously to adapt the city to the social and economic
changes in the world.

Similarly, we propose two important principles
with regard to complex software systems. The first
one is “Growing Construction”. This principle can
be described briefly as follows: a complex soft-
ware system is formed in the process of dynamic
connection of many autonomous systems. It lays
emphasis on two points: (1) A complex software
system cannot be built totally from scratch by tra-
ditional engineering approach. Instead, it grows
gradually. (2) The “growing” is realized by dy-
namic connection of existing or newly-developed
autonomous systems. The second one is “Adap-

tive Evolution”, i.e. a complex software system
is continuously evolved by adapting itself to the
changes in its environment and the user require-
ments. It lays emphasis on two points as well:
(1) Evolution is a common phenomenon in com-
plex software systems, and thus we should embrace
software changes instead of fighting them. (2) The
major factors driving the evolution process are the
changes in the environment and the user require-
ments. The relationship between those two princi-
ples can be illustrated by Figure 1. From the per-
spective of realization, the growing construction
principle mainly concerns constructing an evolv-
able software system, and the adaptive evolution
principle mainly concerns how to drive the evolu-
tion process.

In the past decades, we have witnessed many
successful practices in software engineering disci-
pline, such as middleware [7], Internetware [8] and
adaptive software [9]. Those practices pushed us
toward the goal of realizing complex software sys-
tems. At the same time, some initial discussions
directly towards the complex software system have
emerged [10, 11]. However, the related theory and
techniques are far from mature, and there are still
a lot of scientific challenges which should be ad-
dressed. As regarding to the growing construc-
tion principle, we should find a model (or a set
of models) to abstract the growth process of com-
plex software systems as well as the practicable
development method to rectify this model. And
as regarding to the adaptive evolution principle,
there are also many open problems, such as what
kind of common patterns can be observed in the



Wang H M, et al. Sci China Inf Sci May 2016 Vol. 59 050101:3

evolution process, how can we gather the environ-
mental and the internal states of a complex soft-
ware system [12], how can the online evolution ac-
tions be enforced, and how can we conduct the
co-evolution between the software system and the
physical world it resides in.

Acknowledgements This work was supported by

National Natural Science Foundation of China (Grant

Nos. 91118008, 61202117).

References

1 Northrop L, Feiler P, Gabriel R, et al. Ultra-Large-
Scale Systems: the Software Challenge of the Future.
Carnegie Mellon University Technical Report. 2006

2 Maier M W. Architecting principles for systems-of-
systems. Syst Eng, 1998, 1: 267–284

3 Lee E A. Cyber-physical systems-are computing foun-
dations adequate. In: Proceedings of NSF Work-
shop on Cyber-Physical Systems: Research Motiva-
tion, Techniques and Roadmap, Austin, 2006. 1–9

4 Naur P, Randell B. Software Engineering: Report of a
Conference Sponsored by the NATO Science Commit-

tee. NATO Technical Report. 1969
5 Boehm B. A view of 20th and 21st century software

engineering. In: Proceedings of International Confer-
ence on Software Engineering, Shanghai, 2006. 12–29

6 Holland J H. Hidden Order: How Adaptation Builds
Complexity. New York: Perseus Books, 1995

7 Wang H M, Wang Y F, Tang Y B. StarBus+: dis-
tributed object middleware practice for Internet com-
puting. J Comput Sci Tech, 2005, 20: 542–551

8 Mei H, Huang G, Zhao H Y, et al. A software archi-
tecture centric engineering approach for Internetware.
Sci China Ser F-Inf Sci, 2006, 49: 702–730

9 Wang H M, Ding B, Shi D X, et al. Auxo: an
architecture-centric framework supporting the online
tuning of software adaptivity. Sci China Inf Sci, 2015,
58: 092103

10 Sommerville I, Cliff D, Calinescu R, et al. Large-scale
complex IT systems. Commun ACM, 2012, 55: 71–77

11 Nielsen C B, Larsen P G, Fitzgerald J, et al. Systems
of systems engineering: basic concepts, model-based
techniques, and research directions. ACM Comput
Surv, 2015, 48: 18

12 Mi H B, Wang H M, Zhou Y, et al. Toward fine-
grained, unsupervised, scalable performance diagnosis
for production cloud computing systems. IEEE Trans
Parall Distr Syst, 2013, 24: 1245–1255


