
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

April 2016, Vol. 59 042701:1–042701:16

doi: 10.1007/s11432-015-5428-1

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

Adaptively secure ciphertext-policy attribute-based

encryption with dynamic policy updating

Zuobin YING*, Hui LI, Jianfeng MA, Junwei ZHANG & Jiangtao CUI

School of Computer Science and Technology, Xidian University, Xi’an 710071, China

Received June 1, 2015; accepted July 7, 2015; published online February 26, 2016

Abstract Attribute-Based Encryption (ABE) is a promising new cryptographic technique which guarantees

fine-grained access control of outsourced encrypted data in the cloud. With the help of ABE, the majority of

security issues in accessing cloud data can be solved. However, a key limitation remains, namely policy updating.

Whenever the access policy is updated, a common approach is to have the data owner retrieve the data and re-

encrypt it with new policy, before sending the new ciphertext back to the cloud. This straight-forward approach

will lead to heavy computation and communication overhead. Although a number of other approaches have

been proposed in this regard, they suffer from two limitations; namely, supporting only limited update-policy

types or having weak security models. In order to address these limitations, we propose a novel solution to the

attribute-based encryption access control system by introducing a dynamic policy-updating technique which we

call DPU-CP-ABE. The scheme is proved to be adaptively secure under the standard model and can support any

type of policy updating. In addition, our scheme can significantly reduce the computation and communication

costs of updating ciphertext.

Keywords attribute-based encryption, ciphertext-policy, dynamic policy updating, adaptive secure, standard

model

Citation Ying Z B, Li H, Ma J F, et al. Adaptively secure ciphertext-policy attribute-based encryption with

dynamic policy updating. Sci China Inf Sci, 2016, 59(4): 042701, doi: 10.1007/s11432-015-5428-1

1 Introduction

Since proposed in [1], Attribute-Based Encryption (ABE) [1], as an ingenious extension of Identity-based

encryption (IBE) by introducing the notion of access policy, has been widely studied and applied in cloud

computing systems. By defining an ABE access policy, data owners can easily determine which group

of users are authorized to access encrypted data that is stored in the cloud. Thus, any data can be

stored in the cloud without the owner needing to worry about the threats of privacy leakage, malicious

users, or even the cloud itself. Traditional ABE has two variants according to the form of access policy;

namely, Key-Policy ABE (KP-ABE) [2] and Ciphertext-Policy ABE (CP-ABE) [3]. CP-ABE, which

offers the data owner a scalable method of encrypting the data, is more appropriate for constructing a

data-outsourcing system than KP-ABE, since the data owner is able to define the access policy [4]. The

core idea of using CP-ABE in a cloud environment can be summarized by Steps (1) and (2) in Figure 1.

*Corresponding author (email: zbying@mail.xidian.edu.cn)

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:2

(1) Encrypt the plaintext with Policy 1.

(2) Outsource the ciphertext to the cloud server.

(3) Data owner retrieve the ciphertext from the cloud.

(4) Decrypt and re-encrypt the plaintext with Policy 2.

(5) Outsource the new ciphertext to the cloud server.

Data owner

Plaintext

Policy 2

Ciphertext

Policy 1

Cloud server

(1) (2)

(3)

(4) (5)

Figure 1 CP-ABE scheme with a straight-forward implementation of policy updating.

However, the traditional CP-ABE scheme suffers from a key limitation in that it does not support policy

changing. In fact, access policies, outsourced along with big data to the cloud by millions of organizations

are frequently changed or dynamically adjusted by the data owners because of personnel changes, emer-

gency situations, etc. Consider the following examples: (1) Without an access-policy change, Bob, the

former Chief Technology Officer of enterprise A, can still visit all sensitive files, which may be encrypted

using ABE, because he was previously authorized to do so, even though he has since moved to enterprise

B. This could lead to serious trade-secret or proprietary information leakages. (2) In nationwide joint

plague-prevention operations, medical institutions and international medical organizations must cooper-

ate in order to prevent the plagues proliferation. Therefore, some confidential investigation and research

files as well as guidance, which may be encrypted using ABE under pre-defined access policies, may

urgently need to be opened to these organizations for a period of time.

A straight-forward implementation of handling these scenarios is to execute Steps (3)–(5) in Figure 1.

Step (3) allows the data owners to retrieve the encrypted data from the cloud, Step (4) re-encrypts

the data under a new policy, and Step (5) sends the ciphertext back to the cloud. Unfortunately, this

approach will cause tremendous network communication overhead, and a heavy computational burden

on the data owner as well [5].

Therefore, developing an ABE access-control system with policy updating has emerged as a key issue

in cloud computing. However, most existing access-control schemes based upon ABE [4,6–8] do not take

into account the policy-updating issue. The prototype of the policy-updating scheme originates from

the delegation of private keys in [2] and the delegation of ciphertext in [9]. Nevertheless, these methods

can only support a situation where the new policy is more restrictive than the current one. Yang et

al. [5] proposed a new approach to reconstruct all types of policies and presented an efficient access-

control system with a dynamic policy-updating mechanism. However, their work was not proved under

a sufficiently secure model.

In this paper, we put forward a novel approach, namely Adaptively Secure Ciphertext-Policy Attribute-

Based Encryption with Dynamic Policy Updating (DPU-CP-ABE), to solve the aforementioned policy-

updating problems in a data-outsourcing system using CP-ABE access control under the standard security

model. Our main idea is to maximize the usage of the existing ciphertext as well as the current policy,

and minimize the data owners computation cost by delegating the ciphertext-updating task to the cloud

server. Meanwhile, we ensure the security of our scheme, which is adaptively secure under the standard

model. In our scheme, whenever data owners want to update the policy, they only need to submit a new

policy-updating query; then, the cloud server updates the ciphertext without decrypting it. However, the

updating procedure should meet the following requirements.

(1) The system should support any type of policy updating.

(2) The system should be fully secure under standard model, since the cloud is an open and complicated

environment.

(3) The updating procedure should not lead to supererogatory information leakage.

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:3

1.1 Contributions

In this paper, we describe a novel data-outsourcing system using CP-ABE access control with efficient

dynamic policy updating. Our contributions can be briefly outlined as follows.

(1) To our knowledge, our scheme is the first CP-ABE access control system with dynamic policy

updating that is proved to be adaptively secure under the standard model. The complete security proof

is presented in the appendix.

(2) Our policy-updating scheme supports the updating of any type of fine-grained policy, as compared

to the ciphertext delegation method [9] which can only re-encrypt the ciphertext under a more restrictive

policy. Moreover, although the policy-updating task is outsourced to the cloud, the updating procedure

will leak no sensitive data to the cloud server. A detailed proof can be found in the appendix.

(3) We design a dynamic policy updating algorithm for LSSS (Linear Secret-Sharing Schemes) access

structure using CP-ABE access control, which is more efficient than the straight-forward policy-updating

implementation.

1.2 Related work

Sahai and Waters [1] pioneered the study of Attribute-Based Encryption (ABE). According to their

original ABE scheme, data owners are able to encrypt the data under a set of attributes ω. The ciphertext

can only be decrypted by attribute sets ω′ where |ω ∩ ω′| > d, where d is the preset threshold value.

After that, by introducing an access-control mechanism, there are two branches of ABE, namely Key-

Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE). In a KP-ABE scheme [2], ciphertexts are

annotated by attributes, and access polices over these attributes are associated with users’ private keys.

However, the access policies and the attributes trade places in a CP-ABE scheme [3], i.e., access policies

are associated with the ciphertext while the users private key is combined with the attributes. Moreover,

the decryption can be processed successfully iff the users attributes match the access policy set by the

data owner. Waters redescribed the CP-ABE scheme using the LSSS access structure in [10].

Note that the schemes mentioned above are all single-authority ABEs. In reality, different attributes

are organized and managed according to their characteristics by different authorities. Chase [11] was the

first to present the multi-authority ABE system, in which multiple AAs (Attribute Authorities) and a

single CA (Central Authority) could be found. The CA releases identity-related keys, while each AA is

responsible for a subset of attributes and releases attribute-related keys. The correctness of reconstructing

an attribute-related key of one user from different AAs is guaranteed by the global identifier (gid). In

addition, the gid can prevent different users from colluding. However, the CA must be fully trusted, and

the scheme only supports an “AND” policy between AAs. The first fully secure multi-authority ABE

scheme was introduced by Lewko and Waters [6], which was proved to be secure under random oracle

model. Liu et al. [7] developed an improved multi-authority CP-ABE scheme in which multiple CAs as

well as AAs could be found. The keys, related to identity, are released by CAs. However, the CAs do

not participate in any operations which are related to attributes. The scheme is adaptively secure under

the standard model.

These studies enrich the ABE theory and solve some of the problems. However, policy updating

remains a challenging issue. Goyal et al. [2] were the first to take into account the policy-updating issue

in the key-policy structure. Recently, Sahai et al. [9] discussed the policy-updating problem under the

ciphertext-policy structure. Unfortunately, the policy-updating methods of these systems were limited by

the notion of delegation, which means that the new policy should be more restrictive than the current one.

Yang et al. [5] proposed a new efficient dynamic policy-updating scheme which could update all types of

policies. They proved their scheme was secure under the general group model, and stated that, by using

composite-order groups, the secure model could be extended to the random oracle model. However, they

failed to provide the related proof of security.

In summary, state-of-the-art approaches towards policy updating in ABE either support only limited

update-policy types or work under a weak security model. In contrast, our work in this paper addresses

both of these limitations simultaneously.

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:4

Organization. The remainder of the paper proceeds as follows. In Section 2, we outline some pre-

liminaries, including the framework, security model, access policy, and number-theoretic assumptions.

Section 3 presents our DPU-CP-ABE construction. The comparison between existing schemes and ours

is presented in Section 4 and the conclusion of the paper is in Section 5. In the appendix, we provide the

entire security proof of our DPU-CP-ABE scheme.

2 Preliminaries

Before describing DPU-CP-ABE scheme, we briefly outline the framework and technique preliminaries.

For definitions of the composite order bilinear group and number-theoretic assumptions, see Appendix A.

2.1 Framework

Our DPU-CP-ABE system is a collection of the nine algorithms listed below:

GlobalSetup(λ) → GLPK. This algorithm inputs the security parameter λ and outputs the system

global parameter GLPK.

CenterAuthSetup(GLPK, c) → (CPKc,CVKc,CMKc). Each CAc runs this algorithm with the input

GLPK along with index c. The outcomes are master secret key CMKc which is used by each CAc, and

public key pairs (CPKc,CVKc). AAs will use CVKc as the authentication key when communicating with

the CAs.

AuthSetup(GLPK, u,Qu) → (APKu,AVKu,AMKu). Each AAu runs this algorithm with the inputs of

GLPK, index u and the attributes domain Qu. It generates the master secret key AMKu and public key

pairs (APKu,AVKu). CAs will use AVKu as the authentication key when communicating with the AAs.

CaKeyGen(gid,GLPK, {AVKu|u ∈ U},CMKc) → (cskgid,c, cpkgid,c). gid stands for the global identifier.

CMKc refers to the master secret key of CAc. When a user with a gid accesses CAc to request the

corresponding key, CAc runs this algorithm. By taking gid,GLPK, {AVKu | u ∈ U},CMKc as input, this

algorithm outputs the user-ca-key(cskgid,c, cpkgid,c). Here, cpkgid,c is called user-ca-pub-key. and is the

users public key. cskgid,c is the users private key.

AuthKeyGen(att, {cpkgid,c|c ∈ C},GLPK,AMKu, {CVKc|c ∈ C}) → attkatt,gid or 2. att defines an

attribute. When a user queries AAu to obtain a secret key for att, AAu executes this algorithm. Through

inputting att, {cpkgid,c|c ∈ C},GLPK, {CVKc|c ∈ C},AMKu, it outputs an user-att-key attkatt,gid iff all

cpkgid,cs are valid; otherwise 2 is output to indicate the users public key is invalid. When a user with a gid

obtains the attribute set Agid, the user’s dec-key can be established as UDKgid = ({cskgid,c, cpkgid,c|c ∈

C}, {attkatt,gid|att ∈ Agid}).

Encrypt(m,A,GLPK, {CPKc|c ∈ C}, {APKu}) → CT,En-para(m). This algorithm takes a message m,

an access policy A established upon the global attribute sets Q,GLPK, CAs’ public key sets {CPKc}, as

well as the relevant AAs’ public key sets {APKu} as input. The ciphertext CT and its policy A as well

as the encryption information En-para(m) are the outputs.

Decrypt(CT,GLPK, {APKu},UDKgid) → m or 2. This algorithm inputs a ciphertext CT as well as its

policy A,GLPK, the relevant AAs’ public parameters {APKu}, a user’s dec-key and the related Agid. It

outputs either m when gid fits A or 2 otherwise, which indicates the failure of decryption.

DPUKeyGen({CPKc|c ∈ C}, {APKu},En-para(m),A,A′})→ DPUKm. The data owner runs this algo-

rithm by inputting the related public key APKu, {CPKc|c ∈ C}, the encryption information En-para(m)

of m, the current policy A and the new policy A′ to be updated to. It outputs the DPUKm which will be

used to update the ciphertext CT.

CTUpdate(CT,DPUKm) → CT’. The cloud server runs this algorithm by taking as input ciphertext

CT and the relevant access policy updating key DPUKm. The CT along with its access policy A will be

updated to CT’ and A′ correspondingly.

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:5

2.2 Security model

We describe the assumptions for the participants before the security model is given. The cloud is assumed

to be curious about the data it stores, but will do exactly what the data owner requests and will not

collude with the users. Thus, users cannot obtain ciphertexts encrypted under the previous access policies

so as to derive the encryption component e(g, g)s. The data owners are fully trusted.

Now we describe the security model of DPU-CP-ABE by defining the following game, taken place

between an adversary A and a challenger B. A is able to corrupt CAs and AAs after seeing the public

parameters. The corrupted CA and AA are denoted as Ccr ⊂ C and Ucr ⊂ U, respectively, where

C\Ccr 6= ∅, U\Ucr 6= ∅. Without losing anything general, we presume that all CAs are corrupted by A

except one (i.e., C\Ccr = 1).

Setup. Challenger B runs GlobalSetup, CenterAuthSetup and AuthSetup algorithms and sends GLPK,

{CPKc,CVKc|c ∈ C}, {APKu,AVKu|u ∈ U} to the adversary A. After seeing the public parameters, A

specifies an index c̄∗ ∈ C to be the only uncorrupted CA, so c̄∗ = C\Ccr. Then, A is given the master

secret key of {AMKu|u ∈ Ucr} and {CMKc|c ∈ Ccr}.

Key Query Phase 1. A can question the following oracles to obtain user-ca-key and user-att-key:

CA-KQ(gid, c̄∗): A submits queries with a pair (gid, c̄∗) and acquires the corresponding user-ca-key as

(cskgid,c̄∗ , cpkgid,c̄∗).

AA-KQ(att, {cpkgid,c|c ∈ C}, ū∗): A submits queries with a tuple (att, {cpkgid,c}|c ∈ C}, ū∗) where att

is an attribute in Qū∗ , {cpkgid,c}|c ∈ C} are user-ca-public-key of the user gid, ū∗ = U\Ucr is the index

of the only uncorrupted AA. Oracle AA-KQ replies with the corresponding user-att-key or 2 depending

on whether {cpkgid,c} are valid or not.

Challenge. A submits two messages (m0 and m1) of equal length. Additionally, A also provides a

set of challenge access structures {(M∗
1 , ρ

∗
1), . . . , (M

∗
k , ρ

∗
k)}. The challenger B flips a random coin b ∈

{0, 1} and encrypts mb under all access structures {(M∗
1 , ρ

∗
1), . . . , (M

∗
k , ρ

∗
k)}, then sends the ciphertext

{(CT∗
1), . . . , (CT

∗
k)} to A.

Key Query Phase 2. Moreover, the adversary may submit some other queries as it did in Key Query

Phase 1. The adversary can also query for the update key by submitting (M∗
x , ρ

∗
x), (M

∗
y , ρ

∗
y). B replies

with update key DPUKmb
.

Guess. The adversary outputs a guess b′ of b.

For a gid, A defined the relevant attribute set as Agid = {att|AA-KQ(att, cpkgid,c|c ∈ C), ū∗}.

The adversary wins the above game if b′ = b under the constraint that there exists no Agid so that

Agid ∪ (
⋃

ucr∈Ucr
Qucr) can make the challenge access policy set {(M∗

1 , ρ
∗
1), . . . , (M

∗
k , ρ

∗
k)} satisfied. The

adversary A’s advantage is defined as |Pr[b′ = b]− 1
2 |.

Definition 1. A DPU-CP-ABE system is secure given that no poly-time adversaries have a non-

negligible advantage in the above security game1).

The main differences between DPU-CP-ABE security model and the state-of-the-art ones exist in the

following two aspects. Firstly, in the Challenge phase, since the policy may be adjusted, A can release

a set of challenge access policies instead of only one policy, under the restriction by which the decryption

is not allowed. Moreover, all corresponding ciphertexts will be given to the adversary. Secondly, in

Key Query Phase 2, the adversary is able to query and obtain the update key in order to gain more

advantages. We further prove that this attempt is helpless in breaking our scheme.

Remark 1. To simplify the description, we make an assumption that a user with gid can only have

a set of user-ca-keys at one time (i.e., a user can submit requests to each CAc for the user-ca-key only

once)2). In the above model, since the adversary A has all the master secret keys {CMKc|c ∈ Ccorrupt},

the user only needs to submit queries to the CA-KQ (gid, c̄∗) to get user-ca-key (cskgid,c̄∗ , cpkgid,c̄∗), and

they can query the AA-KQ oracle to obtain (cskgid,c, cpkgid,c|c ∈ Ccorrupt) if they are needed.

1) We prove that our system is secure in the appendix.
2) In fact, we can remove this assumption by introducing a time stamp to form cpkgid,c,t as well as Agid,c,t, in which

case the description will be much more complex.

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:6

Ⅸ
"

CA1

CA
n

Decrypt
the ciphertext

Query
ucsk, ucpk
 from CAs

Cloud server

User groupCA server group

AA server group

Query uask

from AAs

AA1

AA
n

Sgid:Alice
Sgid:Frank

Sgid:Bob

Outsourcing encrypted

data under policy A

Submitting new policy B to

achieve dynamic policy updating

Figure 2 DPU-CP-ABE system model under consideration.

2.3 Access policy

Definition 2 (Access Structure [12]). Let P = {Pi} (i = 1, . . . , n) denote a set of participants. Given a

collection A ⊆ 2P, if ∀B,C, B ∈ A and B ⊆ C, we have C ∈ A, then A is monotone. An access structure

(resp., monotone access structure) is a collection (resp., monotone collection) A of non-empty subsets P

(i.e., A ⊆ 2P\{∅}). We designated the sets in A (resp., not in A) as authorized (resp., unauthorized) sets.

In ABE schemes, attributes function as participants. Therefore, access structure A can only be satisfied

in terms of authorized sets. In this context, we concentrate on monotone access structures. Previous

work [10,12] demonstrated how to convert a monotone access structure into linear secret sharing scheme.

The definition of LSSS is provided as follows.

Definition 3 (Linear Secret-Sharing Schemes (LSSS) [10]). Linear (over Zp) in nature is a secret-sharing

scheme Π defined by a set of participants P provided that

1. The shares for every single participant form a vector over Zp.

2. There exists a matrix M (with l rows and n columns), which is named as share-generating matrix

for Π. For i = 1, . . . , l, use function ρ(i) to define the ith row of M as a party. As far as we reckon the

column vector v = (s, r2, . . . , rn), in which s ∈ Zp is the secret to be shared, and r2, . . . , rn ∈ Zp are

selected at random, then Mv is the vector of l shares of the secret s in terms of Π. The share (Mv)i is

a part of participant ρ(i).

As illustrated in [12], every linear secret sharing-scheme which, in accordance with the definition

mentioned above, exhibits a character of linear reconstruction, can be defined as follows. Presume that Π

is an access structure A. S ∈ A is an authorized set, making I = {i : ρ(i) ∈ S} will ensure the existence

constants {ωi ∈ Zp}i∈I for which
∑

i∈I ωiλi = s, if {λi} can be accounted as valid shares of any secret

value s in respect of Π.

3 Our DPU-CP-ABE

In our DPU-CP-ABE scheme, DPUKeyGen and CTUpdate are specifically designed to solve the access

policy updating problem. Since the remaining algorithms have been discussed in [7], our scheme can

be considered as an extension from [5, 7]. The DPU-CP-ABE scheme is constructed in composite order

bilinear groups of order N = p1p2p3 (3 distinct primes). We demonstrate the system in Figure 2 and

detail the phases as follows.

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:7

GlobalSetup(λ) → GLPK. Denote G as a bilinear group with order N = p1p2p3, Gpi
function as

the subgroup in G with the corresponding order pi. Select g, h ∈ Gp1 at random, where h = ga.

Denote the generator of Gp3 as I3. The global public key is organized as GLPK = (g, h,N, I3,ΩSign),

ΩSign = (KGen, Sign,Verify) is a secure signature subsystem called unforgeable under adaptive chosen

message attacks (UF-CMA) [13], which will be used to defend the potential collusion attack.

CenterAuthSetup(GLPK, c) → (CPKc,CVKc,CMKc). CAc runs KGen algorithm of ΩSign to get sig-

nature verifying key pairs (SignKeyc, V erifyKeyc), randomly pick an exponent αc ∈ ZN . CAc releas-

es the public parameters CPKc = e(g, g)αc ,CVKc = V erifyKeyc and the master secret key CMKc =

(αc, SignKeyc).

AuthSetup(GLPK, u,Qu)→ (APKu,AVKu,AMKu). For each att ∈ Qu, AAu chooses satt ∈ ZN random-

ly and sets Tatt = gsatt . Besides, for each c ∈ C, AAu randomly chooses vu,c ∈ ZN and let Vu,c = gvu,c .

Finally, AAu releases its public parameters APKu = {Tatt|att ∈ Qu},AVKu = {Vu,c|c ∈ C} and the

master secret key AMKu = ({satt|att ∈ Qu}, {vu,c|c ∈ C}).

CaKeyGen(gid,GLPK, {AVKu|u ∈ U},CMKc)→ (cskgid,c, cpkgid,c). Whenever a user submits her gid to

CAc in order to get user-ca-key, CAc selects rgid,c ∈ ZN at random and Pgid,c, P
′
gid,c ∈ Gp3 , and sets

cskgid,c = gαchrgid,cPgid,c, Lgid,c = grgid,cP ′
gid,c.

For u = 1 to U , CAc randomly chooses Pgid,c,u ∈ Gp3 and computes Υgid,c,u = V
rgid,c
u,c Pgid,c,u.

CAc computes γgid,c = Sign(SignKeyc, gid‖c‖Lgid,c‖Υgid,c,1‖ · · · ‖Υgid,c,U).

Then, let cpkgid,c = (gid, c, Lgid,c, {Υgid,c,u|u ∈ U}, γgid,c).

AuthKeyGen(att, {cpkgid,c|c ∈ C},GLPK, {CVKc|c ∈ C},AMKu) → attkatt,gid or 2. Whenever a user

asks AAu for a secret key for att, AAu operates as follows.

(1) For c = 1 to C, AAu splits cpkgid,c into (gid, c, Lgid,c, {Υgid,c,u|u ∈ U}, γgid,c):

valid← V erify(V erifyKeyc, gid‖c‖Lgid,c‖Υgid,c,1‖ · · · ‖Υgid,c,U , γgid,c), (1)

e(g,Υgid,c,u) = e(Vu,c, Lgid,c) 6= 1. (2)

Alternatively, if the submitted {cpkgid,c|c ∈ C} are invalid, AAu outputs 2.
(2) For c = 1 to C, AAu randomly chooses P ′

att,gid,c ∈ Gp3 , and set attkatt,gid,c = (Υgid,c,u)
satt/vu,c

P ′
att,gid,c.

Note that

attkatt,gid,c = (Υgid,c,u)
satt/vu,cP ′

att,gid,c

= (V
rgid,c
u,c Pgid,c,u)

satt/vu,cP ′
att,gid,c

= (gvu,c·rgid,cPgid,c,u)
satt/vu,cP ′

att,gid,c

= T
rgid,c
att (Pgid,c,u)

satt/vu,cP ′
att,gid,c.

As (Pgid,c,u)
satt/vu,cP ′

att,gid,c is in Gp3 and P ′
att,gid,c is randomly chosen, then attkatt,gid,c = T

rgid,c
att Patt,gid,c.

(3) AAu releases user-att-key attkatt,gid to user

attkatt,gid =

C
∏

c=1

attkatt,gid,c =

C
∏

c=1

T
rgid,c
att Patt,gid,c

= T
∑C

c=1 rgid,c
att

C
∏

c=1

Patt,gid,c

= T
∑C

c=1 rgid,c
att Patt,gid. (3)

Encrypt(m,A,GLPK, {CPKc|c ∈ C}, {APKu}) → CT,En-para(m). A is the access policy which can be

symbolized by matrix (M,ρ). (M,ρ) can be represented as an l × n matrix which uses ρ to map each

row Mx of M to an attribute ρ(x). Besides, m is a piece of plaintext to be encrypted.

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:8

The algorithm picks a vector v = (s, v2, . . . , vn) ∈ Zn
N at random, for every single x ∈ {1, . . . , l}, selects

rx ∈ ZN randomly. Let Mx ·v denote the inner product of the xth row of M . Chiphertext is constructed

as follows:

A = (M,ρ), C = m ·
C
∏

c=1

e(g, g)αc·s, C′ = gs,

{Cx = hMx·vT−rx
ρ(x) , C

′
x = grx |x ∈ {1, . . . , l}}.

En-para(m) (the encryption information) is composed of all random rx (i.e., En-para(m) = {r1, . . . , rn})

and the first entry s of vector v = (s, v2, . . . , vn) ∈ Zn
N . For each message m, s is randomly chosen at

the very beginning of the whole scheme and will be applied as the first entry of the new vector v′ which

will be discussed later. In other words, s will not change whether the policy associated with m changes

or not.

Decrypt(CT,GLPK, {APKu},UDKgid) → m or 2. CT is split and constructed as 〈C′, C, {Cx, C
′
x|x ∈

{1, . . . , l}}, (M,ρ)〉, the dec-key UDKgid is split into ({cskgid,c, cpkgid,c|c ∈ C}, {attkatt,gid|att ∈ Agid}).

The algorithm calculates:

1.cskgid =

C
∏

c=1

cskgid,c = gαhrgidPgid,

2.Lgid =

C
∏

c=1

Lgid,c = grgidP ′
gid,

∀att ∈ Agid, attkatt,gid = T
∑C

c=1 rgid,c
att Patt,gid = T

rgid
att Patt,gid.

If Agid matches (M,ρ), recall that
∑

ρ(x)∈Agid
ωxMx = (1, 0, . . . , 0), then it calculates

e(C′, cskgid) /
∏

ρ(x)∈Agid

(e(Cx, Lgid) · e(C
′
x, attkρ(x),gid))

ωx = e(g, g)αs.

The ciphertext C can then be decrypted to get m.

DPUKeyGen({CPKc | c ∈ C}, {APKu},En-para(m),A,A′}) → DPUKm. The algorithm inputs the

public parameters {CPKc | c ∈ C}, {APKu}, the ciphertext information En-para(m) of m, both the

current access policy (M,ρ) and the new access policy which we symbolized by (M ′, ρ′). Assume that

M ′ is a new l′×n′ access matrix using ρ′ to map the rows to attributes. Based on the fact that function

ρ and ρ′ are non-injective, we can define numρ(x),M and numρ(x),M ′ to be the number of attribute ρ(x)
in M and M ′, respectively.

We initialize the DPUKeyGen procedure by calling a comparing algorithm named as PolicyComp

(shown in Algorithm 1). This algorithm compares the new policy with the current one. It outputs the

row indexes information which can be classified into three sets: R1,M ′ , R2,M ′ , R3,M ′ . Let both R1,M ′ and

R2,M ′ be denoted as the set of indexes y, which indicate that ρ′(y) exists in the current matrix M . If

numρ′(y),M ′ 6 numρ′(y),M , let (ρ(x) = ρ′(y)), the indexes are put in R1,M ′ . If numρ′(y),M ′ > numρ′(y),M ,

the excess part (i.e., numρ′(y),M ′–numρ′(y),M) will be recorded in R2,M ′ . R3,M ′ is the set log that ρ′(y)

do not exist in M (i.e., ρ′(y) appears to be a new attribute).

Then the algorithm picks a new random vector v′ ∈ Zn′

p and sets s as the first entry. Afterwards, it

computes the following:

(1) δx = Mx · v. Mx is the valid share of the vector corresponding to the xth row in M .

(2) δ′y = M ′
y · v

′. M ′
y is the valid share of the vector corresponding to the yth row in M .

(3) RM = {1, . . . , l} are the rows’ index set in M .

Afterwards, the update key component can be generated in the following manner, which is in fact

classified into three types depending on (y, x).

For each y ∈ [1, . . . , l′]:

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:9

Algorithm 1 PolicyComp

Input: current policy (M, ρ) with l × n matrix; new policy (M ′, ρ′) with l′ × n′ matrix;

Output: R1,M′ , R2,M′ , R3,M′ ← three row index sets of M ′;

1: initialize the value of R1,M′ , R2,M′ , R3,M′ to ∅;
2: RM ← row index set of M ;

3: for y = 1 to l′ do

4: if ρ′(y) is in M then

5: if ∃x ∈ RM s.t. ρ(x) == ρ′(y) then

6: add (y, x) into R1,M′ ;

7: delete x from RM ;

8: else

9: find any x ∈ [1, l] s.t. ρ(x) == ρ′(y);

10: add (y, x) into R2,M′ ;

11: end if

12: else

13: add (y, 0) into R3,M′ ;

14: end if

15: end for

[TYPE1] (y, x) ∈ R1,M ′ , the update key elements will be

DPUKy,x,m =
(

DPUKy,x,m = hδ′y−δx
)

.

and then set r′y = rx.

[TYPE2] (y, x) ∈ R2,M ′ , the algorithm randomly picks r′y, dy ∈ Zp, and generates the update key

elements

DPUKy,x,m =
(

dy ,DPUKy,x,m = hδ′y−dyδx
)

.

[TYPE3] (y, x) ∈ R3,M ′ , the algorithm randomly picks r′y ∈ Zp, and generates the update key elements

DPUKy,x,m =
(

DPUK(1)
y,x,m = hδ′yT

−r′y
ρ′(y),DPUK

(2)
y,x,m = g−r′y

)

.

Therefore, the update key DPUKm is constructed as

DPUKm = ((TYPE1, {DPUKy,x,m}(y,x)∈R1,M′
)

(TYPE2, {DPUKy,x,m}(y,x)∈R2,M′
)

(TYPE3, {DPUKy,x,m}(y,x)∈R3,M′
)).

Afterward, the data owner submits the update key DPUKm to the cloud server.

CTUpdate(CT,DPUKm) → CT’. Once receiving the update key DPUKm, for each y ∈ [1, . . . , l′], the

cloud server will run this algorithm to update the ciphertext elements. The original elements will be

updated to E′ according to the three types mentioned above.

[TYPE1] y ∈ R1,M ′ , the new ciphertext elements E′ will be

E′ = (C′ = gs, Cy = Cx · DPUKy,x,m = hM ′

y·v
′

T
−r′y
ρ′(y), C

′
y = gr

′

y),

where r′y = rx.

[TYPE2] y ∈ R2,M ′ , the new ciphertext elements E′ will be

E′ = (C′ = gs, Cy = (Cx)
dy · DPUKy,x,m = hM ′

y·v
′

T
−r′y
ρ′(y), C

′
y = gr

′

y),

where r′y = dyrx.

[TYPE3] y ∈ R3,M ′ , the new ciphertext elements E′ will be

E′ = (C′ = gs, Cy = DPUK(1)
y,x,m = hδ′yT

−r′y
ρ′(y), C

′
y = DPUK(2)

y,x,m = g−r′y).

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:10

Table 1 Feature Comparison

Multi-authority KP/CP Security model Security Ciphertext updating Dynamic policy updating

Goyal [2] × KP Standard Selective × ×
Yu [14]

√
KP Standard Selective

√ ×
Lewko [15] × CP Standard Adaptive × ×
Lewko [6]

√
CP Random Oracle Adaptive × ×

Liu [7]
√

CP Standard Adaptive
√ ×

Sahai [9] × KP+CP Standard Selective
√ ×

Yang [5]
√

CP Generic Group Adaptive
√ √

Ours
√

CP Standard Adaptive
√ √

Table 2 Complexity

MA-CP-ABE + straight-forward Ours Type 1 Ours Type 2 Ours Type 3

Communication overhead 2|Γ|+ 2C′ + 1 |∆| |L|+ |∆| 2|∆|
Ciphertext updating |D|+ 2C′ + 2 C′ + 2 2C′ + 2 2C′ + 2

Then, the new ciphertext CT’ is reconstructed as

CT ′ =

(

C = m ·
C
∏

c=1

e(g, g)αc·s, E′|∀y ∈ [1, . . . , l′]

)

.

During the entire update procedure, the cloud has neither transmitted the ciphertext back and forth

nor decrypted it. Moreover, the data owner only needs to release a new access policy and submit it to

the cloud server, which makes it much more safe and efficient (see Appendix B for the security proof).

Remark 2. Note that in the system above, an attribute could only appear at most once in an LSSS

structure, which is a crucial restriction in security proof. That is also why we classify two types of indexes

to denote the attributes that exist in current matrix M .

4 Comparison

In Table 1, we compare state-of-the-art work [2, 5–7, 9, 14, 15] and our DPU-CP-ABE system in a series

of aspects, including Multi Authority, KP/CP, Security Model, etc.

The complexity comparison between the MA-CP-ABE [7] scheme and our DPU-CP-ABE is listed in

Table 2. Since there is no policy updating module in the MA-CP-ABE system, we utilize the straight-

forward implementation as demonstrated in Figure 1 to accomplish the updating task.

The symbols used in Table 2 are as follows: C′ refers to the number of attributes involved in encryption

under updated policy, which reflects how many rows have participate in the LSSS Matrix (M ′, ρ′). |D|

denotes the number of rows in (M,ρ) which will be used in decryption. |Γ| is the length of the elements

in GT , |∆| is the length of the elements in G, and |L| is the length of Zp. We mainly focus on two aspects

in the comparison: communication overhead3) and ciphertext updating. Firstly, in MA-CP-ABE, the

data owner has to retrieve the entire ciphertext and send the re-encrypted data back to the cloud, along

with the other ciphertext components. In contrast, in our scheme, data owner only needs to submit

the components which need to be updated. Secondly, in MA-CP-ABE, the data owner have to do the

decryption and re-encryption job all by himself in MA-CP-ABE. Whereas, in our scheme, the ciphertext

updating task is outsourced to the cloud. However, for each data m, the data owner should provide

extra secret information En-para(m) in order to update the current policy. The En-para(m) will increase

linearly with the growth of the data, maintaining such additional information seems to be an efficiency

3) For ease of description, we discuss the communication situation in an ideal environment, since the data transfer rate

can be influenced by a lot of factors in real world, which is beyond the scope of this paper.

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:11

drawback for the data owner. However, the policy update will result in the update of users’ private

key, correspondingly to other policy updating schemes such as [2, 9]. Meanwhile, ABE is a one-to-many

encryption. Taking the scenario of nationwide joint plague-prevention operations in the introduction,

for example, the medical institutions will join in continuously, which means that the number of users

will scale enormously and that the policy will be updated frequently. If the users private keys must be

updated with each policy update, the generation of a new private key for each user will certainly lead

to an extremely heavy computation cost for the whole system. By applying our scheme, however, the

users will not need to update their private keys whenever the data owner updates the policy. This is an

obvious benefit for all the users in the system. The sacrifice of the data owner’s extra storage will not

only avoid the need to update the new policy by himself, but also save the computation cost of updating

the keys of all users in the system. Therefore, our scheme is efficient on the whole.

5 Conclusion

In this paper, we propose a fully secure CP-ABE scheme specifically designed for dynamic updating issues

in policy-changing circumstances under the standard model. State-of-the-art methods of policy-updatable

ABE either exert restrictions on the policy to be updated or are designed for a weak security model. In

comparison, our scheme, namely DPU-CP-ABE, solves both limitations simultaneously. Moreover, we

show that our approach is more efficient compared to the straight-forward policy-updating implementa-

tion [7] and supports any type of fine-grained updating policy. More importantly, our scheme is much

safer than the policy-updating method in [5]. Our DPU-CP-ABE scheme is proved to be adaptively

secure under the standard model.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

61202179, 61173089, 61472298, 61472310, U1405255, 61502248), National High-Tech R&D Program (863) (Grant

No. 2015AA016007), SRF for ROCS, SEM and Fundamental Research Funds for the Central Universities.

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Sahai A, Waters B. Fuzzy identity-based encryption. In: Proceedings of 24th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Aarhus, 2005. 457–473

2 Goyal V, Pandey O, Sahai A, et al. Attribute-based encryption for fine-grained access control of encrypted data.

In: Proceedings of 13th ACM Conference on Computer and Communications Security, Alexandria, 2006. 89–98

3 Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-based encryption. In: Proceedings of IEEE Symposium

on Security and Privacy, Oakland, 2007. 321–334

4 Hur J, Noh D K. Attribute-based access control with efficient revocation in data outsourcing systems. IEEE Trans

Parall Distrib Syst, 2011, 22: 1214–1221

5 Yang K, Jia X, Ren K, et al. Enabling efficient access control with dynamic policy updating for big data in the cloud.

In: Proceedings of the IEEE International Conference on Infocom, Toronto, 2014. 2013–2021

6 Lewko A, Waters B. Decentralizing attribute-based encryption. In: Proceedings of 30th Annual International Confer-

ence on the Theory and Applications of Cryptographic Techniques, Tallinn, 2011. 568–588

7 Liu Z, Cao Z F, Huang Q, et al. Fully secure multi-authority ciphertext-policy attribute-based encryption without

random oracles. In: Proceedings of 16th European Symposium on Research in Computer Security, Leuven, 2011.

278–297

8 Ruj S, Nayak A, Stojmenovic I. Dacc: distributed access control in clouds. In: Proceedings of the IEEE International

Conference on Trustcom, Changsha, 2011. 91–98

9 Sahai A, Seyalioglu H,Waters B. Dynamic credentials and ciphertext delegation for attribute-based encryption. In: Pro-

ceedings of 32nd Annual Cryptology Conference, Santa Barbara, 2012. 199–217

10 Waters B. Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization.

In: Proceedings of 14th International Conference on Practice and Theory in Public Key Cryptography, Taormina,

2011. 53–70

11 Chase M. Multi-authority attribute based encryption. In: Proceedings of 4th Theory of Cryptography Conference,

Amsterdam, 2007. 515–534

12 Beimel A. Secure schemes for secret sharing and key distribution. Dissertation for the Doctoral Degree. Haifa:

Technion-Israel Institute of Technology, Faculty of Computer Science, 1996

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:12

13 Goldwasser S, Micali S, Rivest R L. A digital signature scheme secure against adaptive chosen-message attacks. SIAM

J Comput, 1988, 17: 281–308

14 Yu S C, Wang C, Ren K, et al. Achieving secure, scalable, and fine-grained data access control in cloud computing.

In: Proceedings of the IEEE International Conference on Infocom, San Diego, 2010. 1–9

15 Lewko A, Okamoto T, Sahai A, et al. Fully secure functional encryption: attribute-based encryption and (hierarchical)

inner product encryption. In: Proceedings of 29th Annual International Conference on the Theory and Applications

of Cryptographic Techniques, French Riviera, 2010. 62–91

Appendix A Number-theoretic assumptions

Composite order bilinear groups4) are a building block of our DPU-CP-ABE scheme. Let G define the group generator,

along with inputting security parameter λ while outputting (p1, p2, p3, G,GT , e) as well. Here, p1, p2, p3 are three different

primes, N = p1p2p3 are the orders of G and GT , where e : G×G→ GT , then:

1. (Bilinear) ∀g, h ∈ G and x, y ∈ ZN , e(gx, hy) = e(g, h)xy ;

2. (Non-degenerate) ∃g ∈ G so that the order of e(g, g) in GT is N .

Suppose either the bilinear map e or the group operations in G,GT related to λ are computable in terms of polynomial

time. Let Gp1 , Gp2 , Gp3 be G’s three subgroups with p1, p2, p3 as respective orders. Note that when ha ∈ Gpa and hb ∈ Gpb

where a 6= b, e(ha, hb) = 1. 1 denotes the identity element in GT .

Assumption A1 (Three primes attached to subgroup decision problem5)). Provided with a group generator G, the

distributions are given as follows:

G = (e,G,GT , N = p1p2p3)
R←− G,

g
R←− Gp1 , I3

R←− Gp3 ,

V = (g,G, I3),

W1
R←− Gp1p2 ,W2

R←− Gp1 .

A poly-time algorithm A’s advantage in terms of breaking Assumption A1 is defined as

Adv1G,A(λ) :=| Pr[A(V,W1 = 1)]− Pr[A(V,W2 = 1)] | .

For any poly-time algorithm A, if Adv1G,A(λ) is a non-negligible function of λ, then G fails to satisfy Assumption A1.

Assumption A25). Given the generator G, Distributions are given as follows:

G = (e,G,GT , N = p1p2p3)
R←− G,

g, I1
R←− Gp1 , I2, J2

R←− Gp2 , I3, J3
R←− Gp3 ,

V = (g,G, I1I2, I3, J2J3),

W1
R←− G,W2

R←− Gp1p3 .

A poly-time algorithm A’s advantage in terms of breaking Assumption A2 is defined as

Adv2G,A(λ) :=| Pr[A(V,W1 = 1)]− Pr[A(V,W2 = 1)] | .

For any polynomial time algorithm A, if Adv2G,A(λ) is a non-negligible function of λ, then G fails to satisfy Assumption

A2.

Assumption A35). Given the generator G, Distributions are given as followed:

G = (e,G,GT , N = p1p2p3)
R←− G,

s, α
R←− ZN , g

R←− Gp1 , I2, J2, K2
R←− Gp2 , I3

R←− Gp3 ,

V = (G, g, gαI2, I3, gsJ2,K2),

W1 = e(g, g)αs,W2
R←− GT .

A poly-time algorithm A’s advantage in terms of breaking Assumption A3 is defined as

Adv3G,A(λ) :=| Pr[A(V,W1 = 1)]− Pr[A(V,W2 = 1)] | .

For any polynomial time algorithm A, if Adv3G,A(λ) is a non-negligible function of λ, then G fails to satisfy Assumption

A3.

4) Boneh D, Goh E J, Nissim K. Evaluating 2-DNF formulas on ciphertexts. In: Proceedings of 2nd Theory of Cryptog-

raphy Conference, Cambridge, 2005. 325–341.
5) Lewko A, Waters B. New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Pro-

ceedings of 7th Theory of Cryptography Conference, Zurich, 2010. 455–479.

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:13

Appendix B Proof of security

Our DPU-CP-ABE system is an extension of the Multi-authority CP-ABE scheme (MA-CP-ABE) with composite or-

der bilinear groups in [7], which is proved to be adaptively secure on the basis of the standard model. The difference

between our security game and [7] is that the adversary returns two messages (m0,m1) along with a tuple of policies

{(M∗
1 , ρ

∗
1), . . . , (M

∗
k , ρ

∗
k)}. Further, the adversary will receive ciphertexts of mb encrypted under these policies one by one.

In addition, the update key query is also allowed for the challenging messages (m0, m1) between (M∗
x , ρ

∗
x) and (M∗

y , ρ
∗
y) in

our security game.

In our security model, CAc̄∗ is defined as the only uncorrupted CA and no Agid ∪ (
⋃

ucr∈Ucr
Qucr) can satisfy the set of

of challenge access structures, which implies that no polynomial time adversary is able to form a userskgid,c̄∗ by requesting

keys in order to rebuild e(g, g)αc̄∗s. Note that in our security game, the challenger B will return all the key queries from

the adversary, except c = c̄∗. Similar to [15], we can also provide the answers to key queries related to c̄∗.

First, we need some modifications before the proof. Let Ψ be the primary structure. We covert Ψ into Ψ′ as follows:

(1) The AuthkeyGen algorithm generates attkatt,gid = {attkatt,gid,c|c ∈ C}, i.e., the decryption key of gid is constructed as

UDKgid = ({cskgid,c, cpkgid,c|c ∈ C}, {attkatt,gid|att ∈ Agid})
= ({cskgid,c, cpkgid,c|c ∈ C}, {{attkatt,gid,c|c ∈ C}|att ∈ Agid})
= ({cskgid,c, cpkgid,c|c ∈ C}, {{attkatt,gid,c|att ∈ Agid}|c ∈ C})
= {(cskgid,c, cpkgid,c, {attkatt,gid,c|att ∈ Agid})|c ∈ C}
= {userskgid,c|c ∈ C},

where userskgid,c = (cskgid,c, cpkgid,c, {{attkatt,gid,c|att ∈ Agid}}) is gid’s user-key related to c.

(2) In the Decrypt algorithm, for c = 1 to C, e(g, g)αcs is rebuilt by the using of userskgid:

e(C′, cskgid) /
∏

ρ(x)∈Agid

(e(Cx, Lgid) · e(C′
x, attkρ(x),gid))

ωx = e(g, g)αcs, (B1)

then m can be regained by

m = C/
C
∏

c=1

e(g, g)αcs. (B2)

Notably, both the attacker and the user will obtain more information in Ψ′; thus, the security of Ψ′ implicitly reflects that

of Ψ.

Secondly, we define two extra structures: semi-functional keys (sf-key) and semi-functional ciphertexts (sf-ciphertext).

We select vatt ∈ ZN randomly to be associated with the attributes.

Semi-functional Key (sf-key). Note that, given a gid, an (sf-key) userskgid,c̄∗ may be in two different forms. We randomly

choose exponents b, π, rgid,c̄∗ ∈ ZN , {fu,c̄∗ ∈ ZN |u ∈ U}, and components Pgid,c̄∗ , P
′
gid,c̄∗ ∈ Gp3 , {Patt,gid,c̄∗ ∈ Gp3 |att ∈

Agid}, {Pgid,c̄∗,u ∈ Gp3 |u ∈ U}.
[TYPE1]: user-ca-key(cskgid,c̄∗ , cpkgid,c̄∗) is constructed as

cskgid,c̄∗ = gαc̄∗ hrgid,c̄∗Pgid,c̄∗g
π
2 ,

Lgid,c̄∗ = grgid,c̄∗P ′
gid,c̄∗ ,

Υgid,c̄∗,u = V
rgid,c̄∗

u,c̄∗ Pgid,c̄∗,u(u = 1, . . . ,U),

γgid,c̄∗ = Sign(SignKeyc̄∗ , gid‖c̄∗‖Lgid,c̄∗‖Υgid,c̄∗,1‖ · · · ‖Υgid,c̄∗,U),

cpkgid,c̄∗ = (gid, c̄∗, Lgid,c̄∗ , {Υgid,c̄∗,u|u ∈ U}, γgid,c̄∗).

∀att ∈ Agid, the descendent attkatt,gid,c̄∗ is bulit as attkatt,gid,c̄∗ = T
rgid,c̄∗

att Patt,gid,c̄∗ .

[TYPE2]: user-ca-key(cskgid,c̄∗ , cpkgid,c̄∗) is constructed as

cskgid,c̄∗ = gαc̄∗ hrgid,c̄∗Pgid,c̄∗g
π
2 ,

Lgid,c̄∗ = grgid,c̄∗P ′
gid,c̄∗g

b
2,

Υgid,c̄∗,u = V
rgid,c̄∗

u,c̄∗ Pgid,c̄∗,ug
bfu,c̄∗

2 (u = 1, . . . ,U),

γgid,c̄∗ = Sign(SignKeyc̄∗ , gid‖c̄∗‖Lgid,c̄∗‖Υgid,c̄∗,1‖ · · · ‖Υgid,c̄∗,U),

cpkgid,c̄∗ = (gid, c̄∗, Lgid,c̄∗ , {Υgid,c̄∗,u|u ∈ U}, γgid,c̄∗).

∀att ∈ Agid, the descendent attkatt,gid,c̄∗ is built as attkatt,gid,c̄∗ = T
rgid,c̄∗

att Patt,gid,c̄∗g
bvatt
2 .

It can be inferred that both Type 1 and Type 2 sf-keys can satisfy (1) and (2). Especially, when b = 0, Type 2 degenerates

to Type 1.

Semi-functional Ciphertext (sf-ciphertext). Let g2 be the generator of Gp2 , and d modulo N be a random exponent.

Additionally, we choose another random vector w = (o, w2, . . . , wn) ∈ Zn
N , as well as random numbers {τx ∈ ZN |x ∈

{1, 2, . . . , l}}. Then, sf-ciphertext will be:

C′ = gsgd2 ,
{

Cx = hMx·vT−rx
ρ(x)

g
Mx·w+τxvρ(x)

2 , C′
x = grxg−τx

2 |x ∈ {1, 2, . . . , l}
}

.

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:14

Considering when (a) a normal userskgid,c̄∗ and a sf-ciphertext or (b) a normal ciphertext and a sf-key userskgid,c̄∗ , are

applied in (B1), then e(g, g)αc̄∗s can be obtained and will be used in (B2). However, the use of both sf-key userskgid,c̄∗ and

sf-ciphertext in (B1) will produce e(g, g)αc̄∗s · e(g2, g2)dπ−bo, in which e(g2, g2)dπ−bo will interfere with the computation

in (B2). Nevertheless, if dπ = bo, the sf-key will be able to decrypt the sf-ciphertext, thus, we treat this kind of keys as

nominally semi-functional.

The security of Ψ′ is established on the basis of Assumption A1, A2, and A3. For ease of expression, we utilize a hybrid

statement upon a series of games to prove the security of our game. The first Gamereal is the real one. In the last game

Gamefinal, all the {userskgic,c̄∗} are semi-functional of Type 1. It also includes a randomly distributed message encrypted

under the Semi-functional Ciphertext algorithm, which is not the same as the challenge messages A provides.

Gamereal. The challenge ciphertext in this game is normal. Normal user-ca-key are used to reply to all the CA-KQs

while all the AA-KQs are replied with user-att-key which are generated by running the normal AuthKeyGen in the real

scheme.

Game0. The challenge ciphertext in this game is the sf-ciphertext. Normal user-ca-key are used to reply to all the

CA-KQs while all the AA-KQs are replied with user-att-key which are generated by running the normal AuthKeyGen in the

real scheme.

Let t be the number of CA-KQs made by the adversary A. For q = 1 to t, we design the games as follows:

Gameq,1. The challenge ciphertext in this game is the sf-ciphertext. Type 1 sf-key user-ca-keys are used to reply to the

first q − 1 CA-KQs; while Type 2 sf-key user-ca-key is used to reply to the qth CA-KQ. Normal user-ca-keys are used for

replying the remaining CA-KQs. All the AA-KQs are replied with user-att-key which are generated by running the normal

AuthKeyGen in the real scheme.

Gameq,2. The challenge ciphertext in this game is the sf-ciphertext. Type 1 sf-key user-ca-keys are used to reply to

the first qth CA-KQs. Normal user-ca-keys are used for replying the remaining CA-KQs. All the AA-KQs are replied with

user-att-keys which are generated running the normal AuthKeyGen in the real scheme.

Gamefinal. The challenge ciphertext in this game is a random message encrypted under Semi-functional Ciphertext

algorithm, which is not the same as the challenge messages A provides. Type 1 sf-key user-ca-keys are used to reply all the

CA-KQs. All the AA-KQs are replied with user-att-keys which are produced by executing the normal AuthKeyGen in the

real scheme.

Notably, all AA-KQs in the above games are replied to with user-att-keys which are produced by executing the normal

AuthKeyGen in the real scheme. It can be inferred that attkatt,gid,c̄∗ is determined by user-ca-key (cskgid,c̄∗, cpkgid,c̄∗)

correspondingly. Consequently, user-keygid,c̄∗ is also decided by (cskgid,c̄∗, cpkgid,c̄∗) correspondingly. Note that all user-

ca-keys related to c̄∗ in Game0 are normal, while all user-ca-key related to c̄∗ in Gamet,2 are sf-keys of Type 1. In

other words, all user-keygid,c̄∗s are normal in Game0 while all user-keygid,c̄∗s in Gamet,2 are the keys of Type 1 with

semi-function. The indistinguishable quality of these games is demonstrated in the following lemmas. In the sequel, we will

use Game0,2 to denote Game0, for simplicity.

Lemma B1. In the case of a UF-CMA signature algorithm ΩSign, presume that a poly-time algorithm A exists, provided

that GamerealAdvA − Game0AdvA = ǫ, and algorithm B with polynomial time can be constructed to break Assumption

A1 with advantage ǫ.

Proof. B is given g, I3, T . It will start the simulation of Gamereal or Game0 with A. B runs the setup algorithms

GlobalSetup, CenterAuthSetup and AuthSetup just the same as in the real scheme. Then, it randomly chooses

exponents a, αc ∈ ZN , for each attribute att ∈ Qu, as well as satt ∈ ZN . Afterwards, B sends the public parameters to A,
which contain GLPK = (N, g, ga, I3,ΩSign), CPKc = e(g, g)αc ,CVKc = V erifyKeyc and APKu = {Tatt|att ∈ Qu},AVKu =

{Vu,c|c ∈ C}.
Recall that ΩSign,CVKc and AVKu will be used in another signature subsystem to defend the collusion attack, which

is independent from this proof. Hence, the public parameters that will be used in this proof is constructed as PK =

{g, ga, N, e(g, g)αc , Tatt = gsatt ∀att}.
The adversary A specifies the only uncorrupted CAc̄∗ and AAū∗ , then queries the normal keys from B, since B knows

MSK = {αc, satt}.
A submits two equal length messages m0, m1 to B, as well as a set of challenge access matrices {(M∗

1 , ρ
∗
1), . . . , (M

∗
k , ρ

∗
k)}.

In order to generate the challenge ciphertexts, B will let gs implicitly be the Gp1 section of T , which means T is produced

from gs ∈ Gp1 and probably has Gp2 as an element. B randomly selects b ∈ {0, 1} and sets C = mbe(g
αc , T), C′ = T.

Constructing Cx for each row x of M∗
x , B will first choose random values v′2, . . . , v

′
n ∈ ZN and then create vector

v
′ = (1, v′2, . . . , v

′
n). It will likewise randomly select a r′x ∈ ZN and set Cx = TaM∗

x ·v
′

T−rx′sρ(x) , C′
x = T rx′ .

This means that v = (s, sv′2, . . . , sv
′
n) and rx = r′xs. By modulo p1, we find that v is a random vector with s as the first

coordinate; rx is also random. Thus, if T ∈ Gp1 , these are properly dispensed normal ciphertexts.

If T ∈ Gp1p2 , we refer gd2 to the Gp2 section in T (i.e., T = gsgd2). Hence, we get access to sf-ciphertext with

ω = dav′, τx = −dr′x and vρx = sρ(x). Although the values of Gp1 parts are reused here, this would not cause unexpected

correlations. By Chinese Remainder Theorem6), the results of v′2, . . . , v
′
n, r

′
x, sρx modulo p1 are irrelevant from modulo

p2, so these are properly distributed sf-ciphertexts. A may query the DPUKeyGen oracle to gain more advantage. Let

us consider the following two update key queries DPUK(m0, (M∗
x , ρ

∗
x), (M

∗
y , ρ

∗
y)) and DPUK(m1, (M∗

x , ρ
∗
x), (M

∗
y , ρ

∗
y)). We

assume that the random numbers utilized in encrypting m0 and m1 are the same (since the simulator only chooses one

6) Ding C S, Pei D Y, Salomaa A. Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography.

River Edge: World Scientific Publishing Co., Inc., 1996. 1–213.

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:15

challenge message by flipping a coin in the security game). The DPUKeyGen oracle returns the same update keys, which do

not contain the challenge data. That means no information of the chosen challenging message is revealed to the adversary.

Therefore, B is enabled to break Assumption A1 because of the advantage of ǫ using A’s outputs.

Lemma B2. In the case of a UF-CMA signature algorithm ΩSign, presume that a poly-time algorithm A exists, pro-

vided that Gameq−1,2AdvA − Gameq,1AdvA = ǫ, and algorithm B with polynomial time can be constructed to break

Assumption A2 with advantage ǫ.

Proof. B is given g, I1I2, I3, J2J3, T . It will start the simulation of Gameq−1,2 or Gameq,1 with A. B randomly chooses

exponents a, αc ∈ ZN , and for every single att ∈ Qu select satt ∈ ZN at random. Then B sends the public parameters to

A. The public parameters that will be used in this proof is constructed as PK = {g, ga, N, e(g, g)αc , Tatt = gsatt ∀att}.
A specifies the only uncorrupted CAc̄∗ and AAū∗ , then queries the normal keys from B, who knows MSK = {αc, satt}.
In order to generate the first q−1 sf-keys of Type 1, B selects rgid,c̄∗ ∈ ZN randomly and pick Pgid,c̄∗, P

′
gid,c̄∗, Patt,gid,c̄∗

from Gp3 to respond to each key request. Then it sets:

cskgid,c̄∗ = gαc̄∗ gargid,c̄∗ (J2J3)
rgid,c̄∗ ,

Lgid,c̄∗ = grgid,c̄∗P ′
gid,c̄∗,

attkatt,gid,c̄∗ = T
rgid,c̄∗

att Patt,gid,c̄∗ ∀att ∈ Agid.

It can be inferred that cskgid,c̄∗ is dispensed properly, because the results of rgid,c̄∗ modulo p2 and p3 are unrelated to

that modulo modulo p1. For key requests > q, as B knows MSK, it simply utilizes the key generation algorithm in order

to make normal keys. B will then implicity set grgid,c̄∗ to be the Gp1 part of T , and set

cskgid,c̄∗ = gαc̄∗ TaPgid,c̄∗,

Lgid,c̄∗ = TP ′
gid,c̄∗,

attkatt,gid,c̄∗ = T sattPatt,gid,c̄∗ ∀att ∈ Agid.

Note that when T ∈ Gp1p3 , this appears to be a normal reasonably dispensed key. When T ∈ G, it becomes a Type 2

sf-key. It means that vatt = satt. Let gπ2 be the Gp2 section of T , we can get π = a modulo p2. (i.e., the Gp2 part of csk

and Lgid,c̄∗ are ga2 , the Gp2 part of attkatt,gid,c̄∗ is gavatt2). The value of vatt modulo p2 is unrelated to satt modulo p1.

A submits two equal length messages m0,m1 to B as well as a set of challenge access matrices {(M∗
1 , ρ

∗
1), . . . , (M

∗
k , ρ

∗
k)}.

To generate challenge sf-ciphertexts, B will implicitly let gs = I1 and gd2 = I2. It randomly chooses ω2, . . . , ωn ∈ ZN and

defines ω
′ = (a, ω2, . . . , ωn). It will also randomly choose a r′x ∈ ZN and sets the ciphertexts as follows:

C = mbe(g
αc , I1I2), C′ = I1I2,

Cx = (I1I2)
M∗

x ·ω
′

(I1I2)
−rx′ sρ(x) , C′

x = (I1I2)
rx′ .

Note that this will implicity set v = sa−1
ω

′, ω = dω′, rx = r′xs and τx = −dr′x. It can be inferred that s is shared in

Gp1 and da in Gp2 . If vρx = sρ(x) are of Type 1 semi-functional, they match those in kth key as required.

Consequently, suppose T ∈ Gp1p3 , and Gameq−1,2 has simulated properly by B. If T ∈ G and all τx modulo p2 are

non-zero, B has simulated Gameq,1 properly. Therefore, B is able to break Assumption A2 with a non-negligible advantage

ǫ by using A’s outputs.

Lemma B3. In the case of a UF-CMA signature algorithm ΩSign, presume that a poly-time algorithm A exists, provided

that Gameq,1AdvA−Gameq,2AdvA = ǫ, and algorithm B with polynomial time can be constructed to break Assumption A2

with advantage ǫ.

Proof. g, I1I2, I3, J2J3, T are given to B. It will start the simulation of Gameq,1 or Gameq,2 with A. B selects exponents

a, αc ∈ ZN at random, and for every single att ∈ Qu chooses satt ∈ ZN randomly. Then, B sends the public parameters to

A. The public parameters that will be used in this proof are constructed as PK = {g, ga, N, e(g, g)αc , Tatt = gsatt∀att}.
We apply the same method in constructing q − 1 Type 1 sf-keys, > q normal keys, as well as the challenge ciphertexts,

as in the proof of the previous Lemma. This indicates that ciphertext is sharing the value ad in Gp2. It has no relationship

with key q, so the value modulo p2 is random.

In order to make key q, B randomly chooses an exponent k ∈ ZN and repeats the procedure it did before, then sets

cskgid,c̄∗ = gαc̄∗ TaPgid,c̄∗(J2J3)
k ,

Lgid,c̄∗ = TP ′
gid,c̄∗,

attkatt,gid,c̄∗ = T sattPatt,gid,c̄∗ ∀att ∈ Agid.

The only difference lies in cskgid,c̄∗ , where another factor (J2J3)k is attached. This will randomize the Gp2 part of

cskgid,c̄∗ which makes the key no longer nominally semi-functional. Any attempt to decrypt the sf-ciphertext with cskgid,c̄∗

will end in failure.

If T ∈ Gp1p3 , this is a properly distributed Type 1 sf-key. If T ∈ G, this is a properly distributed Type 2 sf-key.

Therefore, B can gain a non-negligible advantage of ǫ by using A’s output to break Assumption A2.

Lemma B4. In the case of a UF-CMA signature algorithm ΩSign, presume that a poly-time algorithm A exists, provided

that Gamet,2AdvA−GamefinalAdvA = ǫ, and algorithm B with polynomial time can be constructed to break Assumption

A3 with advantage ǫ
C
.

Ying Z B, et al. Sci China Inf Sci April 2016 Vol. 59 042701:16

Proof. g, gαcI2, I3, gsJ2, K2, T are given to B. It will start the simulation of Gamet,2 or Gamefinal with A. B selects

an exponent a ∈ ZN at random and, for every single attribute att ∈ Qu, randomly chooses satt ∈ ZN . It obtains αc from

gαcI2. Then B sends the public parameters to A. The public parameters that will be used in this proof are constructed as

PK = {g, ga, N, e(g, g)αc = e(g, gαcI2), Tatt = gsatt∀att}.
A specifies the only uncorrupted CAc̄∗ and AAū∗ , then queries the normal keys from B, who knows MSK = {αc, satt}.
In order to generate the Type 1 sf-keys, B randomly chooses rgid,c̄∗ ∈ ZN as well as elements Pgid,c̄∗, P

′
gid,c̄∗, Patt,gid,c̄∗

from Gp3 to respond to each key request. Then, it sets

cskgid,c̄∗ = gαc̄∗ gargid,c̄∗K
rgid,c̄∗

2 Pgid,c̄∗,

Lgid,c̄∗ = grgid,c̄∗P ′
gid,c̄∗,

attkatt,gid,c̄∗ = T
rgid,c̄∗

att Patt,gid,c̄∗ ∀att ∈ Agid.

A submits two equal length messages m0,m1 to B along with a set of challenge access matrices {(M∗
1 , ρ

∗
1), . . . , (M

∗
k , ρ

∗
k)}.

With the purpose of generating the challenge sf-ciphertexts, B obtains s from gsJ2, randomly chooses ω2, . . . , ωn ∈ ZN and

defines ω
′ = (a, ω2, . . . , ωn). It will also randomly chooses r′x ∈ ZN and set the ciphertexts as follows:

C = mb ·
C
∏

c=1

T, C′ = gsJ2,

Cx = (gsJ2)
M∗

x ·ω
′

(gsJ2)
−rx′ sρ(x) , C′

x = (gsJ2)
rx′ .

Note that this will implicity set v = sa−1
ω

′, ω = dω′, rx = r′xs and τx = −dr′x. It can be inferred that s is shared in

Gp1 and da in Gp2.

When T = e(g, g)αcs, this becomes a properly distributed semi-functional encryption of mb. Elsewise, it is a random mes-

sage in group GT of properly distributed semi-functional encryption. As C is the number of CAs, B can break Assumption

A3 with the advantage of ǫ
C

using A’s outputs.

Theorem B1. If ΩSign is proved to be UF-CMA secure, Assumptions A1–A3 work, DPU-CP-ABE scheme is therefore

secure.

Proof. If the scheme of signature ΩSign is proved to be UF-CMA secure and Assumptions A1–A3 work, then we have

demonstrated that the real security game and Gamefinal are indistinguishable through the previous lemmas, in which value

b is information-theoretically hidden to the attacker. Therefore, it can be concluded that the adversary fails to obtain a

non-negligible advantage in terms of breaking Ψ′, which means that the adversary is unable to break Ψ in our DPU-CP-ABE

system with a non-negligible advantage.

	Introduction
	Contributions
	Related work

	Preliminaries
	Framework
	Security model
	Access policy

	Our DPU-CP-ABE
	Comparison
	Conclusion
	Number-theoretic assumptions
	Proof of security

