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Abstract Electromagnetically induced transparency (EIT) is a fascinating phenomenon in optical physics and

has been employed in slow light technology. In this work, we use terahertz (THz) metamaterials to mimic EIT

phenomenon and study their spectral dependence on the coupling strength between bright and dark resonators.

In these metamaterials, two kinds of resonators are located on two different layers separated by a 10-µm-thick

polyimide (PI) film. The whole sample is supported by a 5-µm-thick flexible PI film, so the Fabry-Perot resonance

at THz can be avoided. The coupling strength is tuned by the translational offset of symmetry axes between

two different kinds of resonators, resulting in the change of EIT-like spectra.
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1 Introduction

Electromagnetically induced transparency (EIT) is a quantum mechanical process observed in specific

three-level atomic system, which produces an extremely-narrow transparent window with low absorption

and steep dispersion in an opaque medium [1–6]. The extreme dispersion of the EIT can reduce the

group velocity of light by 7 orders in magnitude [6] and store light temporally [7–9]. Moreover, the

narrow window can provide a well-defined frequency marker for precision measurement [10]. However,

the disadvantages of the atomic EIT system are also obvious. The EIT is only applicable in some specific

atomic systems and rigorous experimental environment. Besides that, the frequency window is fixed by

the energy levels of atomic transitions in the visible region [10]. The experimental complications and the

limited spectrum range have significantly obstructed its fundamental research and practical applications.
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Figure 1 (Color online) Schematic representation of unit cell of THz EIT meatamatials. (a) Top view of the structure.

The translational offset between the centers of dark resonator and radiative resonator is denoted by d. (b) Front view of

the structure. The periodicity of the unit cell is b = 220 µm. Feature sizes are a = 20 µm, c = 150 µm, e = 180 µm, f =

40 µm, g = 30 µm, j = 100 µm, w = 30 µm and h = 10 µm.

To take advantage of the EIT effect, the EIT phenomenon has been mimicked by solid-state, on-chip

all optical and optomechanic systems [11–13]. In the past decade, metamaterials which are artificial

electromagnetic structures provided an excellent platform to study EIT effect from microwave to visi-

ble light region [14–35]. Using metamaterials to mimic EIT phenomenon was first proposed by Zhang

et al. [14]. A typical unit cell of EIT metamaterials includes two coupled resonators with different quality

factors. Only the resonator with lower quality factor can couple to the free space radiation directly, so it

is called bright resonator. Another one is dark resonator as it cannot be directly excited by incident wave.

For THz EIT metamaterials, the bright and dark resonators are usually fabricated onto a thick and rigid

substrate, e.g. 0.5-mm-thick silicon or MgO substrates. The Fabry-Perot (F-P) resonance frequency in

such thick substrate is located at THz frequency range, which could interfere with the spectral response

of metamaterials [36–38]. In this work, we characterized THz EIT metamaterials fabricated on ultrathin

substrates. This metamaterial with ultrathin substrate is more close to the practical situation than those

on thick substrates. Therefore, the physical properties obtained from this EIT structure will be more

valuable. In addition, the ultrathin substrate made from polyimide (PI) is flexible, making the devices

convenient to be attached on arbitrary surface. This is not affected by the incident electromagnetic wave

which is perpendicular to the direction of the structure.

In our design, the bright and dark resonators are on the different layers which are separated by a

dielectric layer. The coupling strength can be easily tuned by the relative displacement of their symmetry

axes. From the measured and simulated spectra, the coupling strength is extracted.

2 Design and fabrication

The structure of a unit cell is shown in Figure 1. Each unit cell consists of two resonators, which are

located at different layers. The straight metallic strip near the top works as bright resonator, it couples

to the incident THz wave directly. The dark resonator is double-gap split ring resonator (DSRR) onto

the bottom substrate. The isolating layer between two layers of metal resonators is a 10-µm-thick PI

film. The top and bottom layers are 5-µm-thick PI films. The incident electromagnetic (EM) wave is

normal to the plane of the metamaterial (z-axis) with polarization along y-direction.

For the fabrication of device, first, a 5-µm-thick PI film is formed onto the silicon wafer by spin coating

and baking. Second, a 200-nm-thick gold layer is deposited on this PI layer using thermal evaporation

and the dark resonators are patterned using conventional photolithography. Third, a 10-µm-thick PI film

is formed by spin coating and baking. Another 200-nm-thick gold layer is deposited to form the bright

resonator. Using alignment marks at the edge of the mask, the different translational offset d between

symmetry axes of resonators is obtained. Fourth, the top PI layer with a 5-µm thickness is spin-coated.



Zhang Y G, et al. Sci China Inf Sci April 2016 Vol. 59 042414:3

(a) (b)

Figure 2 (Color online) Microscopic (a) and optical (b) images of the fabricated EIT metamaterials (d = 30 µm).

Finally, the whole structure is peeled off from the silicon wafer. The microscopic and optical images of

samples are shown in Figure 2(a) and (b) respectively.

3 Results and discussion

Figure 3(a) and (b) show the simulated and measured transmission spectra for different d respectively.

In Figure 3(a), when d = 0 µm, only one resonant dip is observed in the transmission spectra, indicating

that there is not EIT spectral response. As d is increased to 5 µm, there is a protrusion on the right side

of transmission dip. A typical characteristic of the EIT is observed when d = 7.5 µm. The maximum

transmittance of the transparency window gradually increases with increasing d.

The condition for realizing EIT in metamaterials is the creation of destructive interference of two dif-

ferent modes having the same resonance frequencies [24]. When d = 0 µm, the structure is symmetrical,

so destructive interference is not supported. When d is increased to 5 µm, the symmetry of structure is

destroyed and destructive interference occurs, and the EIT phenomenon therefore appears. The trans-

parence window can be seen from the spectrum of offset d = 5 µm although it is very weak. With

the increase of d, the asymmetry of the structure enhances and coupling effect becomes stronger, the

transmittance peak gradually increases.

We also characterized the samples utilizing THz time-domain spectroscopy (THz-TDS). The measured

spectra shown in Figure 3(b) agree very well with the simulation results. The evolution of the transmission

spectra from single resonance to EIT response are clearly displayed both theoretically and experimentally.

A trivial difference between them lies in the fact that the transmission magnitudes in the simulation are

2–3 dB larger than the experimental results. The additional loss for measurement may be attributed to

some minor defects that are present in metallic structures and polyimide films and the curvature of the

sample.

Figure 4 shows the group delay at different d. When d = 12.5 µm, we get the maximum value of about

5 ps. With the increase of d, the corresponding group delay-bandwidth increases, it is mainly attributed

to the increase of the coupling coefficient.

The equations describing the EIT with two coupled resonators are as follows [34,35]:
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where ω1, ω2 and γ1, γ2 are the resonance frequencies and damping factors of bright and dark resonators

respectively, p(t) and q(t) represent the excitation in bright and dark resonators respectively, f(t) is the

external radiation applied on the bright resonator, κ is the coupling coefficient of two resonators. The

key element of classical EIT system is described by Eqs. (1) and (2) and EIT spectral response can be

obtained using this model. However, the shortage of this model lies in that some essential parameters of

EIT system (e.g. group delay) cannot be extracted using it.
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Figure 3 (Color online) (a) Simulated transmission spectra of the EIT metamaterials with different d; (b) the correspond-

ing measured spectra.
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Figure 4 (Color online) Calculated group delay spectra of samples from the measured transmission spectra.

If the thickness of metamaterials is much lower than free space wavelength, we can use an equivalent

current sheet with surface conductance of σ to describe its response to external radiation. The scattering

parameters of an electric current sheet are [34,39]

T =
2

2 + ξσ
, (3)

where T is transmission coefficient, ξ is the wave impedance of external waves. From theoretical model,

the surface conductivity σ can be expressed as follows [34,39]:

σ ≈ −iω
βD2(ω)

D1(ω)D2(ω)− κ2
, (4)

where

D1(ω) = 1− (ω/ω1)
2 − iγ1(ω/ω1), (5)

D2(ω) = 1− (ω/ω2)
2 − iγ2(ω/ω2), (6)

β is static surface susceptibility.

Considering the thickness PI layer between two metallic layers is only 10 µm, far below the free space

THz wavelength, so they can still be viewed as a layer of conducting film. Here, the equivalent surface

conductivity σ of conducting film, which is used to quantize the interactional of incident wave with the

equivalent medium, can be retrieved from the transmission spectra. Using Eq. (3), the equivalent surface

conductivity of samples with different d were obtained (see Figure 5). When d 6= 0 µm, a sharp incision

appears in the spectra of equivalent conductivity. With the increase of d, the incision peak becomes

larger and its width becomes broader.

The coupling coefficients were obtained from equivalent surface conductivity by fitting. As shown in

Figure 6, when d = 0 µm, the coupling coefficient κ = 0, indicating that destructive interference does not

occur. When d 6= 0, structural symmetry is broken. In that case, the destructive interference appears, so

there is coupling interaction between the two resonators (κ > 0). As d is increased, κ also increases.
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Figure 5 (Color online) Equivalent surface conductivity (unit is S) with different offset d, (a) Real (σ); (b) Image (σ).
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Figure 6 (Color online) Coupling coefficients for different d.

4 Conclusion

In conclusion, we demonstrated THz EIT metamaterials fabricated on ultrathin and flexible substrates

both theoretically and experimentally. By changing the relative translational displacement of bright

and dark resonators on different layers, the EIT response is introduced and then tuned, which is well

explained by the change of coupling strength. These results show good prospects of THz metamaterials

in applications such as slowing down THz wave and biosensor.
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