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Abstract Visual tracking, as a popular computer vision technique, has a wide range of applications, such as

camera pose estimation. Conventional methods for it are mostly based on vision only, which are complex for

image processing due to the use of only one sensor. This paper proposes a novel sensor fusion algorithm fusing

the data from the camera and the fiber-optic gyroscope. In this system, the camera acquires images and detects

the object directly at the beginning of each tracking stage; while the relative motion between the camera and

the object measured by the fiber-optic gyroscope can track the object coordinate so that it can improve the

effectiveness of visual tracking. Therefore, the sensor fusion algorithm presented based on the tracking system

can overcome the drawbacks of the two sensors and take advantage of the sensor fusion to track the object

accurately. In addition, the computational complexity of our proposed algorithm is obviously lower compared

with the existing approaches (86% reducing for a 0.5 min visual tracking). Experiment results show that this

visual tracking system reduces the tracking error by 6.15% comparing with the conventional vision-only tracking

scheme (edge detection), and our proposed sensor fusion algorithm can achieve a long-term tracking with the

help of bias drift suppression calibration.
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1 Introduction

Visual tracking can present a real-time camera pose estimation related to its environment or other solid

objects [1], which has a wide range of applications. For example, Ref. [2] implemented an augmented

reality (AR) application, which uses several sensors to track the features in a large room and draw visual

overlays. In contrast to other kinds of tracking, such as acoustic or magnetic tracking [3,4], visual tracking

has the advantages that it is capable of tracking a larger range and it is not prone to interference [1].
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Visual tracking is able to estimate the position of objects or cameras from the image observed directly

as well. However, the conventional vision-based tracking methods often suffer from some shortcomings,

such as the lack of robustness and high computational cost. They usually fail to track a rapid or jumpy

motion because the general mathematical model of the object is not appropriate for characterizing such

motion. Several methods have been proposed to overcome the disadvantages of the conventional visual

tracking methods. Refs. [5, 6] used swarm intelligence based searching method to handle the abrupt

motion, which improves both the accuracy and efficiency of the visual tracking. Ref. [7] put forward

a vision-only tracking algorithm, which presents a temporal probabilistic combination of discriminative

observers according to different life spans, thus improves the accuracy of tracking when there exists an

abrupt motion, but the rapid motion still significantly degrades the quality of the video image. Generally,

the conventional vision-only tracking methods use cameras to capture the images all the time and do

image processing, which has an acknowledged problem of involving the high computational complexity [8],

to orientate the object in each image. Meanwhile, the conventional methods largely depend on the quality

of every image.

Inertial sensors, such as rate gyroscopes and linear accelerometers, which provide the measurements

for the rotation velocity and the linear acceleration, are widely used in motion tracking [9–12]. Inertial

sensors can be sampled at a relatively high frequency (100 Hz in this paper, compared with 30 Hz or

so for the general video rates) and with a low latency, thus they are able to provide more amounts of

information for the pose estimation than the cameras at the same time. The signals of inertial sensors

are integrated to predict the position, since the inertial sensors are so robust to track an abrupt motion

that they are ideal for complementing the visual tracking. However, there is still a problem worthy of

concern that the interference of the drift and noise in an inertial sensor should be reduced or corrected.

The fusion of vision data and inertial measurements has been the focus of substantial research [13],

which attempts to overcome the drawback of using only one sensor. Ref. [9] provided a full analysis of

different methods in fusing accelerometer and gyroscope data to camera measurements with extended

Kalman filters (EKF). In addition, Project Glass is a fresh research and development program by Google

to develop an augmented reality optical head-mounted display (OHMD) in this area [14]. Before the

development of the Project Glass, there is a wide use of sensor fusion for visual tracking. For instance,

in [15], the authors fused the data from cameras and inertial sensors with two EKFs, one of which estimates

the motion and the other estimates the 3D locations of the points in the scene. One advantage of the

method in [15] is that there is no need of prior knowledge about the scene during tracking. To correct

the slow drift caused by the gyro data integration, Ref. [10] employed inclinometers as well as a compass,

and designed a Kalman filter to integrate the data from visual sensors and inertial sensors to achieve the

tracking of three dimensions of freedom (3DOF) orientations. Ref. [16] constructed a two independent

channel motion-filter structure, where one channel is used for the low-frequency visual sensor while the

other is used for the high-frequency inertial gyroscope, thus the fusion is performed by using an EKF

to track 6DOF orientations. Besides implementing the fusion with the extended Kalman filters, Ref. [1]

provided a method to combine visual sensors and the gyroscope information to improve the stability and

robustness of tracking when there is motion blur during tracking. In [1], rotation measurements are used

not only to predict the pose but also to modify the operation of edge detection with the estimation by

the exposure time of the camera and a new edge detection kernel.

The fiber-optic gyroscope is a ring interferometer based on the Sagnac effect, which can produce an

output voltage which linearly varies with the rotation velocity within a limit range [17]. Its performance

could allow strategic applications, and its appropriate size makes it convenient to be used in different

environments [18]. Thus, fiber-optic gyroscopes are applicable in the visual tracking system. Compared

with the MEMS gyroscopes, which are usually used in the previous visual tracking research, fiber-optic

gyroscopes are more accurate, especially for their bias drift (The bias drift stability of the fiber-optic

gyroscope is about 0.01–0.001◦/h, while the MEMS gyroscope is about 1◦/h [18]). For the visual tracking

system based on the fusion of the camera and the MEMS gyroscopes, it is usually needed to provide a

complex algorithm to accomplish the sensor fusion work, since the MEMS gyroscopes could not be

employed to locate the object without the help of image processing in a long term due to their inaccuracy,
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as a result that the frequency for image processing is still high. If utilizing the fiber-optic gyroscopes

instead of the MEMS gyroscopes, the fusion system becomes more reliable and does not need to rely on

the complex algorithm to switch frequently between cameras and gyroscopes as the method given in [16].

In this paper, we innovatively propose a sensor fusion algorithm based on the combination of cam-

eras and fiber-optic gyroscopes to design a camera pose estimation system. We just conduct the image

processing at the beginning of each tracking stage, and then make full use of the accurate data from

the fiber-optic gyroscopes during the tracking stage to implement the control over the position and the

orientation of the object. Since the fiber-optic gyroscopes are “blind” to locate the object in the image at

the beginning, the cameras are needed. After capturing the initial object coordinates, only the fiber-optic

gyroscope is enough to finish the estimation due to its accuracy. During the whole tracking process, we

only use a few frames from camera which have a relatively long interval time between each other but

derive a very efficient camera estimation system with the aid of the fiber-optic gyroscope. Our proposed

algorithm can considerably reduce the complexity of the whole visual tracking system. In this paper, we

assume that the rotation is a dominant camera motion since the camera rotation includes more rapid

and serious image deformations, thus we do not contain the accelerometer in our sensor fusion algorithm

as [19].

In addition, a long-term tracking experiment is conducted based on this camera pose estimation system.

As for a long-term tracking, the calibration of the tracking results is necessary, since the accumulation of

the bias drift in the gyroscope cannot be neglected. With the help of our previous work, our proposed

algorithm can easily achieve a long-term tracking effectively after the calibration of bias drift suppression.

Generally, our contribution in this paper can be summarized as follows:

(1) We propose a novel fiber-optic gyroscope aided sensor fusion algorithm to achieve camera pose

estimation, which reduces the computational complexity but earns an effective tracking result.

(2) Our proposed algorithm can achieve a long-term tracking with the help of bias drift suppression

calibration.

The structure of this paper is as follows. Section 2 describes the proposed camera pose estimation

system. Section 3 shows the fusion experiment, simulation, as well as the results. Section 4 draws the

conclusion.

2 The proposed camera pose estimation system

Figure 1 illustrates the fusion system we proposed. The camera provides the image of the scenes, while

the gyroscope provides rotation measurements for tracking. The signal processing module detects the

object and implements the tracking. The camera and the gyroscope synchronously work during the visual

tracking. Images from the camera and data from the gyroscope are transmitted to the signal processing

module in real time. At the same time, a method for suppressing the gyroscope bias drift and a Kalman

filter can be chosen to be employed to improve the performance of the system.

Figure 2 illustrates the strategy of the fusion system we proposed. The whole tracking process includes

N tracking stages. For each stage, at the discrete time j=0, initialization is performed and then the

tracking stage follows from discrete time j=1 to j=n. The initialization is realized by the image processing

with the data from the camera, and then the coordinates of object are tracked with the data from the

gyroscope.

Initialization of the visual tracking system is described by a mathematical model in detail in Subsection

2.1. The tracking processes of the object coordinates in the tracking system are given in Subsection 2.2.

Subsection 2.3 provides the summary and complexity discussion of the system.

2.1 Initialization of the tracking system (j = 0)

The gyroscopes are “blind” to capture the image when the object enters the scene. However, the camera

provides the image so that the system is able to learn about the object by object detection and initialize

the tracking system.
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Figure 2 The proposed visual tracking strategy.

We can detect the first frame Pi,0 of each fusion stage through the camera. Except for some complex

objects such as human faces, which are only detected by using face detection or other complex methods

as in [7, 20], general cases, such as simple marks and real scene images, can be easily detected by using

edge detection.

From Pi,0, we could locate the object in the image and find out a set of points Si,0 to mark the object

edges in the pixel coordinate by the Sobel edge detection [21]. The number M of the points we used to

describe the object edges depends on the characteristics of the object. The matrix Si,0 takes the form

Si,0 = S (Pi,0) =

[

u
(i,0)
1 u

(i,0)
2 · · · u(i,0)

M

v
(i,0)
1 v

(i,0)
2 · · · v(i,0)M

]

, (1)

where S means the Sobel edge detection function, u
(i,0)
p is the coordinate value in the u-direction, and

v
(i,0)
p is the coordinate value in the v-direction. The superscript (i, 0) means that the coordinates are

obtained in the initialization of the i-th tracking stage, and the subscript p refers to the p-th point to

describe the object, and p = 1, 2, . . . ,M .

We define the distance vector Di,0, which is essential for initializing the tracking system, as

Di,0 =
[

d
(i,0)
1 d

(i,0)
2 · · · d(i,0)M

]

. (2)

The component d
(i,0)
p is defined as

d(i,0)p =

√

(

x
(i,0)
p

)2

+
(

y
(i,0)
p

)2

+
(

z
(i,0)
p

)2

, (3)

where
(

x
(i,0)
p , y

(i,0)
p , z

(i,0)
p

)

is the position of the object in the camera coordinate. The distance vector Di,0

is difficult to measure accurately. Fortunately, on most occasions, the size of the object is far less than

the distance between the object and the camera, so it is feasible to consider that all the distance values

are approximately the same.

In order to obtain the position of the object in the 3-D camera coordinate, we need to use the following



Tan Z W, et al. Sci China Inf Sci April 2016 Vol. 59 042412:5

Eq. (4) for each p from 1 to M :


























[

u
(i,0)
p

v
(i,0)
p

]

=
γ

z
(i,0)
p

[

fu 0

0 fv

][

x
(i,0)
p

y
(i,0)
p

]

+

[

u0

v0

]

,

d(i,0) =

√

(

x
(i,0)
p

)2

+
(

y
(i,0)
p

)2

+
(

z
(i,0)
p

)2

,

(4)

where fu, fv are the focal lengths in pixel, u0 and v0 are the pixel coordinates of the center point in

an image, γ is a parameter varying with the coordinate of each point to approximate and correct the

substantial radial distortion caused by a wide angle lens camera, and d(i,0) can be derived by measuring

the distance between the object and the camera. The first equation in Eq. (4) is described in detail in the

Appendix, which gives the transformation of the object between the camera coordinates and the pixel

coordinates.

From Eq. (4), we can solve the 3-D camera coordinate of the p-th point as









x
(i,0)
p

y
(i,0)
p

z
(i,0)
p








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√
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+ 1
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γfu

(
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1
γfv

(

v
(i,0)
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)

1













, (5)

and get the location Li,0 of the object in the 3-D camera coordinate, which is shown as follows:

Li,0 =









x
(i,0)
1 x

(i,0)
2 · · · x(i,0)

M

y
(i,0)
1 y

(i,0)
2 · · · y(i,0)M

z
(i,0)
1 z

(i,0)
2 · · · z(i,0)M









. (6)

2.2 Tracking stages (j = 1 to j = n)

After the initialization, the coordinates of the object are tracked with the aid of the output data of a

fiber-optic gyroscope.

As shown in Figure 1, the relative rotation rate between the camera and the object is measured by the

fiber-optic gyroscope and processed by the signal processing algorithms.

2.2.1 The motion model

We can get the rotation angle by

Θi,j =









θi,j

φi,j

δi,j









= Ω̂i,j ·∆t, (7)

where Ω̂i,j is the processed output of the fiber-optic gyroscope, ∆t is the time interval between two

discrete times, and θ, φ, δ are Euler Angles, which are shown in Figure 3.

In order to describe the whole related motion model between the camera and the object, we define the

transform matrix Ei,j as

Ei,j =

[

Ri,j ti,j

01×3 1

]

, (8)

where Ri,j is the rotation matrix during the interval between the discrete time j − 1 and the discrete

time j in the i-th tracking stage. ti,j is the translation vector, as is shown in Figure 3, which needs a

linear accelerometer to get.

Note that a general motion model should be measured by both gyroscopes and accelerometers. How-

ever, the visual tracking precision affected by the fiber-optic gyroscope is concerned more in this paper,

thus the detailed description for the accelerometer is omitted.
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Figure 3 Motion model and related coordinates.“W” means world-coordinate, and “C” means camera-coordinate.

2.2.2 Sensor fusion

In this system, the sensor fusion is conducted as the following process. At the discrete time j in the i-th

tracking stage, the location of the object Li,j in the camera coordinate is able to be calculated by

[

Li,j

11×M

]

= Ei,j ·

[

Li,j−1

11×M

]

, (9)

where 11×M is the 1×M matrix of all. Thus, we can get the concrete form of Li,j :

Li,j =









x
(i,j)
1 x

(i,j)
2 · · · x(i,j)

M

y
(i,j)
1 y

(i,j)
2 · · · y(i,j)M

z
(i,j)
1 z

(i,j)
2 · · · z(i,j)M









, (10)

where each column in this matrix gives the coordinate value of each point in the camera coordinate at

the discrete time j in the i-th tracking stage.

The position of every point to mark the object in the pixel coordinate can be calculated as Eq. (11)

for each p from 1 to M :
[

u
(i,j)
p

v
(i,j)
p

]

=
γ

z
(i,j)
p

[

fu 0

0 fv

][

x
(i,j)
p

y
(i,j)
p

]

+

[

u0

v0

]

, (11)

where the parameters (fu, fv, u0, v0, γ) have the same definition as them in Eq. (4). Last, we get Si,j to

mark the object in the pixel coordinate at the discrete time j in the i-th tracking stage, which is defined

as

Si,j =

[

u
(i,j)
1 u

(i,j)
2 · · · u(i,j)

M

v
(i,j)
1 v

(i,j)
2 · · · v(i,j)M

]

. (12)

2.3 Summary and complexity discussion

The proposed algorithm presented above is summarized in Algorithm 1. Our proposed method in this

paper provides an innovative approach. During the whole visual tracking process, which is shown in

Figure 2, the proposed system only does the image processing problem at the initialization. Obviously,

the initializations occupy a small part among the whole tracking process. In the other stage, the tracking
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system takes advantage of the fiber-optic gyroscope to conduct the tracking and avoids complex image

processing problems. Thus, our system has a much lower complexity, compared with the conventional

vision-only tracking method.

Algorithm 1 Algorithm of the proposed visual tracking system

Require: image Pi,0 captured by the camera, rotation rates Ω̂i,j , translation vector ti,j , time interval ∆t, the distance

between the camera and the object d(i,0);

1: for i = 1, i 6 N, i = i+ 1 do

2: Initialization of the tracking system:

3: � Use Pi,0 to obtain the pixel coordinates matrix Si,0 of the object by Sobel edge detection;

4: � Use d(i,0), Si,0 to calculate the camera coordinates matrix Li,0 by Eq. (5);

5: for j = 1, j 6 n, j = j + 1 do

6: Tracking stage:

7: � Use Ω̂i,j and ti,j to obtain the transform matrix Ei,j by Eq. (7) and Eq. (8);

8: � Use Ei,j and Li,j−1 to calculate Li,j by Eq. (9);

9: � Use Li,j to calculate Si,j by Eq. (10);

10: end for

11: end for

The comparison of the computational complexity between our proposed method and the conventional

vision-only tracking method is briefly analyzed here. The image processing parts are both employed

Sobel edge detection. We set the frequency of cameras as fc (typical value is 30 Hz) and gyroscopes as fg
(typical value is 100 Hz), respectively. In order to guarantee the fairness, the tracking time should be set

as the same for the two methods, thus we know that the conventional vision-only method would conduct

Nnfc/fg image processing. As is known, the computational complexity of the Sobel edge detection for

an image of p × q is O(pq). The computational complexity of the gyroscope tracking in each discrete

time is O(M). From the above, the computational complexity for the conventional vision-only method

is O(Nnpq), while our proposed method is O (N(pq + nM)). In reality, pq + nM ≪ npqfc/fg, thus

our proposed method has an obviously low computational complexity. Generally speaking, our tracking

system conducts much fewer image processing problems, as a result of lower complexity.

In addition, the memories occupied in the system for storing the image are much larger than the

memories for storing the gyroscope data. Since we just capture the image at discrete time j = 0, as a

contrast that the conventional vision-only method stores the captured images at each discrete time, our

proposed algorithm has a clear advantage.

3 Experiments and results

3.1 Platform setup and parameter setting

We set up a demo to verify our proposed camera pose estimation algorithm, which is shown in Figure 4.

The experiment in this paper was conducted on a high-precise, single-axis, variable velocity turntable

“AVIC”, model 901CF. The object in this experiment was chosen as a landmark which consisted of six

black squares and was adhered on the wall in front of the camera, thus the relative motion between the

camera and the object depended on the camera. The camera and the gyroscope were fixed together

so that the relative motion between the camera and the object was able to be detected during all the

tracking process. The two sensors transmit their data to a computer, which processes the sensor fusion

part in this experiment. The gyroscope employed in this experiment is a single-axis open-loop fiber-optic

gyroscope, whose bias drift stability is 0.02◦/h and the angle random walk is 0.002◦/
√
h. In addition, we

set N=1 in this experiment.

A CMOS camera with the squared pixels, which has a lens with a focal length of 4.8 mm, is used. The

captured images are RGB and have a resolution of 1280 × 720. The fiber-optic gyroscope has a sampling

rate of 100 Hz, and its measurement range is ±30◦/s. The synchronization of two sensors is controlled

by the computer system with a synchronization program. Since the format of the images captured is
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Figure 4 The experiment setup in this paper.

(a) (b) (c) (d)

u

v

Figure 5 The edge detection results (green) and the proposed sensor fusion tracking results (red) (rate = 15◦/s). (a) (b)

(c) (d) are 4 tracking results with time interval of 1/3 s.

RGB, we need to convert them to gray-scale in the initialization stage so that the edge detection is easy

to implement.

3.2 Test of the visual tracking system

In order to test the efficiency of the algorithm, the camera undergoes a uniform rotation in different

speeds. Figure 5 shows the tracking results, when the camera is rotating around the y axis with a rate of

15◦/s. The time interval between each scene is 1/3 s and the initialization is conducted only once during

the tracking process, i.e. N=1. The green rims are the results by using the conventional edge detection,

which is vision-only, while the red rims are the results by using the proposed fiber-optic gyroscope aided

fusion method. The main error of the edge detection method is caused by the streaking effect, while the

main error of the sensor fusion method is from the inaccuracy of the fiber-optic gyroscope and the image

distortion from the camera.

We use the parameter D to describe the tracking error, which is presented as follows:

D =

√

√

√

√

∑M

p=1

[

(ûp − up)
2
+ (v̂p − vp)

2
]

M
, (13)

where up and vp are the real object coordinates, ûp and v̂p are the tracked object coordinates.

In this experiment, since a single-axis gyroscope is used, we can only track the object in the direction

of u. Figure 6 shows the comparison of the tracking errors between the conventional vision-only method

and the proposed sensor fusion method. From the result, we find that the sensor fusion method has

a better performance than the conventional vision-only method. The proposed system can reduce the

tracking error by 6.15% in average in this experiment. During experiments, there are some joggles for

the camera in the direction of v and some distortion of the images caused by the wide angle lens camera.

Based on the error analysis, the performance can be better if the experiment platform is much better.
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In addition, we give a simulation result of the tracking in a variable rotation rate. Figure 7(a) is

the original object scene. Figure 7(b) is the tracking result after a variable rotation, where Figure 7(d)

gives the fiber-optic gyroscope data in a 0.59 s tracking motion. Figure 7(c) shows the same tracking

process as Figure 7(b), but has a serious camera shaking. From the simulation results, we know that the

sensor fusion method can always get a good tracking result. However, the edge detection method greatly

depends on the quality of the image.

We also test the computational complexity of our proposed tracking system. Since the computational

complexity of the algorithm is hard to characterize in numerical results, we employ the program running

time to describe it. Most of our tracking work on the computer is conducted through Matlab, thus we

compare the program running time in Matlab between the two methods. The CPU for our computer

is Intel i7-4770, and the Matlab version is R2012a. A 0.5 min visual tracking is implemented, where

fc = 30 Hz, fg = 100 Hz, and N = 1. The result is shown in Figure 8, from which we learn that the

conventional vision-only method has fewer tracking steps, each of which, however, takes a relatively longer

running time, on account of the image processing at every step. As a contrast, our proposed method

contains more tracking steps, and the whole tracking stage only takes much less running time, except for

the initialization part resulting in a sheer waste of time. In general, the running time of the program, that

is, the computational complexity, of our proposed method is 86% lower than the conventional vision-only

method in a 0.5 min visual tracking process.

3.3 Test of calibration and long-term tracking performance

In practical application, the long-term tracking performance is more important, which means that the

tracking system could track the object successfully for a relatively long period of time. The conventional

vision-only tracking method can achieve the long-term visual tracking all the time, but it needs to conduct

the quantities of the image processing problems, which has a high computational complexity. In order

to guarantee the long-term tracking performance of our proposed system, the calibration for the fiber-

optic gyroscope is necessary. For the tracking experiment in Subsection 3.2, none of the calibration is
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Figure 9 Long-term tracking performance test (tracking time = 20 min, rate = 15◦/s). (a) The two tracking schemes;

(b) the tracking result without suppressing the bias drift; (c) the tracking result with suppressing the bias drift; (d) the

comparison of the tracking errors for the two schemes.

employed on account of the high accuracy of the fiber-optic gyroscope in the short-term tracking. The

main error from the gyroscope in a long-term tracking is the accumulated bias drift, which cannot be

neglected. Based on the above, our previous work which proposed a signal processing method to suppress

the bias drift of the fiber-optic gyroscope can be used to calibrate the bias drift [22]. This method uses

the reversing of the piezoelectric modulator to suppress the bias drift, which is a hardware method. In

addition, we employ a novel Kalman filter method, which fuses an adaptive Kalman filter and finite

impulse response filter in a DSP chip, to eliminate the angle random walk noise to promote the tracking

performance in the high rotation velocity, based on our another previous work in [23]. Figure 9(a) shows

the two tracking schemes without and with the calibration of the bias drift suppression. Figure 9(b) and

(c) show the 20 min tracking results for the two schemes, respectively.

From Figure 9(b) and (c), we find that using the bias drift suppression method to calibrate the

gyroscope can help the proposed sensor fusion system realize the superior long-term visual tracking in

spite of the errors of a few pixels. Figure 9(d) shows the comparison of the tracking errors in Figure 9(b)

and (c).

It is worth mentioning that our proposed system only conducts the initialization once during the

20 min visual tracking. A remarkable advantage for this visual tracking system is its long-term tracking

performance, which tremendously reduces the frequency of the image processing and the computational

complexity compared with the vision-only tracking method.
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4 Conclusion

An efficient fiber-optic gyroscope aided camera pose estimation algorithm based on the sensor fusion is

proposed. The angular velocity provided by the gyroscope helps the camera to track the object accurately

and the tracking results are better than the vision-only (edge detection) tracking results (reducing the

tracking error by 6.15%) by employing the proposed novel sensor fusion algorithm. It is worth mentioning

that our proposed algorithm has a relatively lower computational complexity (reducing the program

running time by 86% for a 0.5 min visual tracking experiment). Furthermore, the system can track the

object in a long term with the help of the bias drift suppression calibration.
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Appendix A The principle of image formation in camera

This Section exhibits the principle of image formation in camera, which is the detailed derivation of Eq. (4).

Video images are acquired from the video capture hardware which connected with the camera. The pin-hole model is

commonly used to describe the images acquired by cameras. Figure A1 shows the model, where the camera acquires digital

images on the image plane, which is described by the pixel coordinate system and the retina coordinate system. The unit

length of the former is measured by pixels and that of the latter is measured by physical length such like millimeter. The

origin of the pixel coordinate system Op usually set at the vertex of the image and u-axis is parallel to x-axis in the camera

coordinate while v-axis is parallel to y-axis, just as Figure A2 shows. According to the model, the origin of the retina

coordinate system Or is in the center of image (u0, v0)
T, and it is on the z-axis of the camera coordinate system. There is

a matrix that transfers the camera coordinates (xc, yc, zc)
T to the retina coordinates (xr, yr)

T, just as follows:

[

xr

yr

]

=
1

zc

[

f 0 0

0 f 0

]









xc

yc

zc









, (A1)

where f is the focal length of the camera. The retina coordinate system as well as the pixel coordinate system is a 2-D

coordinate system. They are unable to acquire the depth. The relation between the retina and pixel coordinate system is

as follows:
[

u

v

]

=

[

1/du 0 u0

0 1/dv v0

]









xr

yr

1









, (A2)

where du and dv are the unit physical length of pixels in the direction of u-axis and v-axis.

Therefore, by using Eqs. (A1) and (A2), the positions of edges are given by pixel coordinates (u, v)T and there is a

matrix to transfer them to camera coordinates:
[

u

v

]

=
r′

r
·

1

zc

[

fu 0

0 fv

][

xc

yc

]

+

[

u0

v0

]

, (A3)

where fu and fv are the pixel length of the focal length, which are defined by

fu = f/du, fv = f/dv. (A4)
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Figure A1 The relationship between the camera coordi-

nate system and retina coordinate system.

Figure A2 The relationship between the retina coordi-

nate system and pixel coordinate system.

Since the images which are acquired by wide angle lens camera exhibit substantial radial distortion, a standard pin-hole

model cannot be used directly. The distort needs to be approximated and corrected by normalizing the radius in camera

coordinate [1]:

r′ = r + αr3 + βr5, (A5)

where

r =

√

(

xc

zc

)2

+

(

yc

zc

)2

. (A6)

In order to simplify the Eq. (A3), we define γ = r′/r in this paper. For this visual tracking system, the fu, fv, u0, v0, α

and β are the camera parameters and they can be calibrated on-line. In addition, α = −0.3, β=0.06 in the tracking system

proposed.
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