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Abstract A serious obstacle to large-scale quantum algorithms is the large number of elementary gates, such

as the controlled-NOT gate or Toffoli gate. Herein, we present an improved linear-depth ripple-carry quantum

addition circuit, which is an elementary circuit used for quantum computations. Compared with previous

addition circuits costing at least two Toffoli gates for each bit of output, the proposed adder uses only a single

Toffoli gate. Moreover, our circuit may be used to construct reversible circuits for modular multiplication, Cx

mod M with x < M , arising as components of Shor’s algorithm. Our modular-multiplication circuits are simpler

than previous constructions, and may be used as primitive circuits for quantum computations.
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1 Introduction

Classical computation algorithms also consist of a finite sequence of instructions for solving certain

problems using a classical computer. A quantum computation algorithm runs on a realistic physical

model such as an atom, a photon, or iron [1–4]. A quantum computation algorithm is also a step-by-step

procedure based on a well-defined quantum computer or quantum computation model. In general, all

classical computation algorithms can be implemented on a quantum computer. However, the quantum

algorithm has its own inherent features beyond the classical computer. The first well-known example of

this idea was provided by Peter Shor [5,6], who addressed two classical computational problems that have

not been solved with classical polynomial time algorithms. One problem is the integer decomposition.

The other is the discrete logarithm over a finite group. Large integer decomposition as a primitive difficult

problem used for the well-known RSA cryptography [7] may be applied to ensure the authority of classical

data [8–11] or image protection [12]. Based on the quantum circuit model [13,14], Peter Shor presented

polynomial time quantum algorithms for these problems. The exponential-speedup has (up to now)

depended on the fast implementation of a quantum Fourier transformation. Large integer decomposition
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can also be improved to address the general classical problem, i.e., the Hiden subgroup problem [14–17].

Such algorithms may be realized using hybrid photonic systems [4], hyper-parallel photonic systems [18],

or an optimal approximate quantum evolution [17]. Some algorithms have also been implemented using

different physical systems [19–21].

Since Shor introduced his quantum algorithms [5,6], many improvements to them have been made

[22–26]. The quantum addition of two integer numbers is a key operation for constructing such quantum

circuits, or other quantum algorithms. Since the importance of quantum addition in quantum computa-

tion, some efficient quantum circuits have been constructed for the addition of two n-bit binary numbers.

Without use of ancillary qubits, Takahashi and Kunihiro [27] presented quantum addition circuits with

depth O(n). Takahashi et al. also improved their algorithm using depth O(log n) [28]. Draper et al.

[29] presented an efficient addition circuit by borrowing techniques from the classical carry-lookahead

arithmetic circuit. Their quantum carry-lookahead adder accepts two n-bit numbers and adds them

to depth O(log n) using O(n) ancillary qubits. Their schemes have reduced the cost of additions with

a slight increase in the number of qubits. Recently, Takahashi et al. [30] demonstrated how to con-

struct an O(n)-depth O(n)-sized quantum circuit for the addition of two n-bit binary numbers without

ancillary qubits. The exact size is 7n − 6. Using this circuit, they also constructed an O(d(n))-depth

O(n)-sized quantum circuit for an addition using O(n/d(n)) ancillary qubits for any d(n) = Ω(logn). If

an unbounded fan-out gate is allowed, they can construct an O(e(n))-depth O(n)-sized circuit with o(n)

ancillary qubits for any e(n) = Ω(logn). Derived from the ripple-carry adder [27], Cuccaro et al. [31]

presented a new quantum ripple-carry addition circuit, using 2n+ O(1) Toffoli gates, 5n+O(1) CNOT

gates, and 2n+O(1) negations. The depth is 2n+O(1) and only one auxiliary qubit is required. Thomsen

and Axelsen [32] optimized this circuit through a parallelization scheme.

In this paper, motivated from the classical carry-lookahead arithmetic circuit, we consider quantum

circuits for the addition of two binary numbers with low complexity. The complexity of a quantum

circuit consists of the number of multiqubit logic gates, circuit depth, and number of qubits. Generally, the

number of multiqubit logic gates and circuit depth correspond to the physical implementation complexity

and the computation time respectively, whereas the number of qubits corresponds to the memory size.

We regard the number of multiqubit logic gates as the primary consideration because it is difficult in a

faithful quantum implementation. Herein, we present an improved quantum addition circuit. The circuit

is based on the ripple-carry approach [31]. The key ingredient of the new adder is a circuit computing the

majority of three bits. Differing from previous quantum additions [19–32], the register locations of the

output are different from these of the input, i.e., the input bits will be swapped after the addition. Based

on this difference, our circuit uses only n Toffoli gates and 5n + O(1) CNOT gates, where the depth is

3n+O(1) and the number of the auxiliary qubit is n+O(1). The proposed circuit is described in more

detail in Section 2. We then describe the use of multiplication circuits in Section 3, which improves the

results in [32].

2 The quantum addition circuit

2.1 Basic addition circuit

Our goal is to compute the sum of two n-bit numbers, a and b. In a quantum application, several different

inputs a or b may be computed simultaneously, such as the Shor’s algorithm. However, because all

operations performed are permutation operations, thus it is unnecessary to worry about the superposition

states. Equivalently, we compute

|a〉|b〉|0〉C 7→ |a〉|b〉|a+ b〉, (1)

where |0〉C is an auxiliary qubit system. Let a = an−1 · · ·a0, where a0 is the lowest-order bit. Similarly,

denote b = bn−1 · · · b0. Here, Aj and Bj denote the memory locations of input bits aj and bj. Compared

with previous schemes [27–32], the memory locations of the output system will be changed in our scheme,



Wang F, et al. Sci China Inf Sci April 2016 Vol. 59 042406:3

jb

0

ja

jc

jb′

jc′

1jc
+

js

1jc
+

jb

ja

1
S 2

S

Figure 1 Elementary quantum circuit. |0〉, bj , cj , and aj are input bits in order. b′j , c
′

j , cj+1 are output bits of sub-circuit

S1. bj , aj , sj , and cj+1 are output bits of sub-circuit S2.

Table 1 The values of MAJ(aj , bj , cj) dependent on input bits aj , bj , and cj

ajbjcj 000 001 010 011 100 101 110 111

MAJ(aj , bj , cj) 0 0 0 1 0 1 1 1

as shown in Figure 1. Therefore, the labels of the memory locations in the output system are not presented

in Eq. (1).

The quantum addition algorithm is based on the classical ripple-carry addition algorithm [31]. For

the input of two n-bit numbers, a and b, n + 1 bits of auxiliary quantum registers are required as

temporary storage registers, and are denoted as c. The carry string for two input bits, a and b, are

defined recursively. In detail, let c0 = 0, and cj+1 = MAJ(aj , bj , cj) = ajbj ⊕ ajcj ⊕ bjcj for j > 0. Note

that MAJ(aj , bj, cj) are symmetric in terms of aj , bj, and cj . It then easily follows that sj = aj ⊕ bj ⊕ cj,

which are also symmetric in terms of aj , bj, and cj for all j < n, and sn = cn. Thus, the additional output

of a and b is snsn−1 · · · s2s1. In a classical ripple-carry adder, one computes each cj from c1 up to cn.

We then have to erase the carry bits [27,28]. However, we found by redesigning the circuit that erasing

the circuit is unnecessary. The values of MAJ(aj , bj , cj) are shown in Table 1. Through the values in

this table, we can construct a new quantum circuit for MAJ(aj , bj, cj) without erasing circuit, as shown

in Figure 1.

To describe our circuit, the bit evolution shown in Figure 1 is as follows.
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. (2)

From this equation, the memory locations of the output system differ from those of the input system. In

detail, after the circuit, the input bit bj is redefined at the first auxiliary register |0〉, the input bit aj
is redefined at |bj〉, and the output bit sj is located at the second auxiliary register |cj〉. This addition

circuit costs five CNOTs and one Toffilo gate for each j > 1.

Using the elementary circuit shown in Figure 1, a general addition circuit was constructed as shown

in Figure 2. For input bits |0〉|aj〉|bj〉|cj〉, the second circuit S2 may be implemented in parallel with

the followed subcircuit S1 of the input |0〉|aj+1〉|bj+1〉|cj+1〉, j = 0, 1, . . . , n − 2. The final evolution is

obtained as

|a〉|b〉|0〉 7→ |a〉|b〉|s〉. (3)

Note that, at the end of the circuit, the outcomes of |bn−1〉 and |cn−1〉 are the same after the subcircuit
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Figure 2 The ripple-carry adder for n > 3. Si denote the subcircuits shown in Figure 1. aj and bj are input bits. |0〉

and |c0〉 are auxiliary registers.

S1 from Eq. (2). Moreover, c0 = 0, and we do not need a MAJ gate to compute c1 = a0b0. Thus, our

addition circuit costs 5n−2 CNOT gates and n Toffoli gates. The circuit depth is 3n+3 and the number

of auxiliary qubits is n+ 1 (two qubits for j = 0 while one qubit for j > 1).

2.2 Extensions

In this subsection, various slightly modified versions of the ripple-carry adder will be used to consider

the following two problems.

Problem 1. a+ b modulo 2n, i.e., without the highest bit.

Problem 2. The highest bit only: We compute the highest bit, but do not overwrite the b input. This

circuit can be adapted to provide a comparator.

For each case, the quantum circuit is a simple modification of the addition circuit described in Sub-

section 2.1. The final results are summarized in Table 2. Here, for each circuit, we present the number

of the Toffoli gate, the number of the CNOT gate, and the overall depth required.

In the following, we discuss the quantum circuits for the Problems 1 and 2 in detail. Consider the

Problem 1, and suppose that we wish to compute a + b mod 2n, i.e., the high bit cn is omitted. The

details of the algorithm are shown in Algorithm 1. This circuit has n − 2 number of subcircuits S1 and

S2. So, it contains n−1 Toffoli gates and 5n−7 CNOT gates for n > 3. The depth is 3n and the number

of auxiliary qubit is n (two qubits for j = 0 while one qubit for 1 6 j 6 n− 2).

Algorithm 1

Require: a ∈ Fn
2 , b ∈ Fn

2 , |0〉, c0 = 0;

1: j = 0 → n− 1;

2: if j < n− 1 then

3: Compute sj = aj ⊕ bj ⊕ cj ;

4: Compute cj+1 = MAJ(aj , bj , cj) = ajbj ⊕ ajcj ⊕ bjcj ;

5: else

6: Compute sj = aj ⊕ bj ⊕ cj ;

7: end if

8: Output: sn−1, sn−2, . . . , s0.

Consider the Problem 2. The circuit shown in Subsection 2.1 may be reused. However, because only

the highest bit is required, we can simplify it as follows. Note that the addition of any two n-bit strings

may be represented with n+ 1 bits. Thus, we have Algorithm 2.

The evolution procedure is defined as

|a〉|b〉|0〉 7→ |a〉|b〉|sn〉. (4)

The circuit is easily followed from Figure 2. This circuit costs 2n− 2 CNOT gates, n Toffoli gates, and

has a depth of 2n.
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Table 2 Addition circuit summary, for n > 3. The first column provides the function which is computed. The followed

columns provide the numbers of input, output, and ancillary qubits, the numbers of Toffoli and CNOT gates, and the overall

depth

Number of Number of Number Size of Size of Size ofFunction
bits in bits out anc. bits Toffoli CNOT depth

+ in Z 2n 3n+ 1 n+ 1 n 5n− 2 3n+ 3

+ in Z [31] 2n 2n+ 1 1 2n− 1 5n− 3 2n+ 4

+ (mod 2n) 2n 3n n n− 1 5n− 7 3n

+ (mod 2n) [31] 2n 2n+ 1 1 2n− 3 5n− 7 2n+ 2

Highest bit 2n 2n+ 1 1 n 2n− 2 2n

Highest bit [31] 2n 2n+ 1 1 2n− 1 4n− 3 2n+ 3

VBE adder [30] 2n 3n n 4n− 2 4n− 2 6n− 2

Algorithm 2

Require: a ∈ Fn
2
, b ∈ Fn

2
, |0〉, c0 = 0

1: For j = 0 → n− 1

2: if j < n− 1 then

3: Compute cj+1 = MAJ(aj , bj , cj) = ajbj ⊕ ajcj ⊕ bjcj ;

4: end if

5: Output sn = cn.

3 Multiplication circuit

We now design several circuits for C ·x mod M and related operations, using the additive building blocks

described above.

3.1 Circuits for (2k + 1)x

The circuits for (2k + 1)x (not modular) can be constructed using shifts and adds, but the challenge is

avoiding unnecessary ancillary qubits. Our circuits are structured as follows.

Our goal is to compute

|x〉|0〉 7→ |x〉|(2k + 1)x〉. (5)

Case 1. 0 6 k 6 n− 1.

For bit values xj(j < n) of x, the bit values of (2k + 1)x, Sj can be constructed using a k-bit shift of

x followed by an n + k bit add (i.e., 2kx+ x). The addition can be conducted using a generic Cuccaro

adder-2kx on the main qubits, and x on the ancillary qubits; however, clearing these ancillary qubits is

difficult. Another approach is to construct logical sub-expressions for the output bits. The formula in

Eq. (8) gives sub-expressions for each Sj bit [33].

Sj =























xj , 0 6 j 6 k − 1;

xi ⊕ xj−k ⊕ cj , k 6 j 6 n− 1;

xj−k ⊕ cj , n 6 j 6 n+ k − 1;

xj−k−1cj−1
, j = n+ k,

(6)

cj =















0, 0 6 j 6 k;

xj−1xj−k−1 ⊕ xj−1cj−1 ⊕ xj−k−1cj−1, k + 1 6 j 6 n;

xj−k−1 ⊕ cj−1, n+ 1 6 j 6 n+ k − 1.

However, their circuit complexity is also high. In what follows, we make use of the scheme in Section 2.

First, a k-bit shift of x is constructed at n+ k auxiliary qubits, as shown in Figure 3. We obtain

|x〉|0〉 7→ |x〉|x̃〉, (7)
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Figure 3 Circuits for (2k + 1)x. The subcircuit addition denotes the addition presented in Section 2. A and B are

auxiliary qubit systems.

Table 3 Multiplication circuit summary, for n > 3. The first column gives the function which is computed. The followed

columns provide the numbers of input bits, output bits, and ancillary qubits, Toffoli gate and CNOT gate. n1 denotes as

non-zero bits of input bits

Number of Number of Number of Size of Size of
Function

bits in bits out anc. bits Toffoli CNOT

|(2k + 1)x〉 n n+ k + 1 n+ k + 1 n 5n− 2

|(2k + 1)x〉 [33] n n+ k + 1 k + 1 6n 3n

|x mod M〉 n 2n n 2n 10n

|x mod M〉 [33] n n k + 1 5n n+ 5

where |x̃〉 is a k-bit shift of |x〉, and the auxiliary qubit system |0〉 = |0〉⊗n+k. The total cost is n CNOT

gates.

Second, from our scheme in Section 2, we can obtain

|x〉|x̃〉|0〉B 7→ |x〉|x̃〉|x+ 2kx〉B, (8)

where the auxiliary qubit system |0〉B = |0〉⊗n+k+1. The total costs are 5n−2 CNOT gates and n Toffoli

gates. Finally, we need to clear out the qubit information in quibt system C using n CNOT gates. The

circuit for (2k + 1)x requires n Toffoli gates and 7n CNOT gates, which are less than 6n Toffoli gates

and 3n CNOT gates [33].

Case 2. k > n.

In this case, only 2n CNOT gates are required to compute 2kx, and another 2n CNOT gates are

required to compute 2kx + x. Here, one only needs to copy the first n bits of x into the first n bits of

2kx, as shown in Eq. (8). Thus, the total cost is 4n CNOT gates, see Table 3.

3.2 Circuits for x(mod M) for x 6 2M

The circuits for x(mod M) for odd x 6 2M (modular-reduction circuit) can be applied with one compara-

tor x > M or x < M , and one conditional subtraction x−M if x > M . Here, from the addition circuit

shown in Section 2, the subtraction can be evaluated using a bitwise negation as (x −M) = (x′ +M)′.

The cost is the same as that of the addition circuit shown in Table 2. The comparator is similar to a

subtractor-one subtracts x−M and checks x−M < 0. For our highest bit, only adders can be modified

to perform a comparison, leaving their data inputs unchanged and producing a one-bit result as the most

significant carry-bit of the subtraction. Although the resulting circuit operates correctly for only x 6 2M ,

x 6 2M can be guaranteed in Shor’s algorithm. The cost is no more than that of the addition circuit

shown in the Table 2. The total circuit requires at most 2n number of Toffoli gate, and 10n number of

CNOT gate.

To construct general quantum circuits for 2kx(mod M), we begin with a linear-sized circuit for 2x

(mod M), which can be completed using the bit shift circuit of 2x and the modular-reduction circuit

above. If the outcome of the first comparator is 2x > M , the modular-reduction circuit is used to obtain

2x(mod M), and the bit shift circuit of 2k−1(2x mod M) is designed to complete the general quantum

circuit. If the outcome of the first comparator is 2x < M , 22x(mod M) may be reconsidered. This

procedure may be iterative, as shown in Figure 4. Although the resulting circuit in Figure 4 operates

correctly for only x 6 M , x 6 M can be guaranteed in Shor’s algorithm.
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Figure 4 Circuits for 2kx mod M . The subcircuit BS denotes the bit shift circuit, CC denotes the comparator circuit

while SC denote the subtraction circuit using the addition presented in Section 2.

3.3 Circuits for Cx(mod M) for C < M/2

Different from a general constant C < M , if C < M/2 is satisfied, we can obtain the following equivalent

computation procedure. In detail, consider integers 0 6 x < M and 1 < C < M/2 with gcd(C,M) = 1.

Defining the integers D = ⌈M/(2C)⌉ and r = C − (⌈M/2⌉ mod 2C), then

Cx mod M = r⌊x/D⌋(mod ⌈M/2⌉) + C(x mod D). (9)

Thus, one can compute Cx mod M using division of a remainder. In fact, for the integer D, it follows

that x = D⌊x/D⌋ + (x mod D). Then, Cx = CD⌊x/D⌋ + C(x mod D). Note that C(x mod D) 6

C(D − 1) < M/2. Moreover,

CD⌊x/D⌋ mod ⌈M/2⌉ = (CD − ⌈M/2⌉)⌊x/D⌋

= (CD − (CD − C + (⌈M/2⌉ mod 2C)))⌊x/D⌋

= (C − (⌈M/2⌉ mod 2C))⌊x/D⌋.

To construct reversible circuits using this result, we can use the circuit for division with remainder

[31–33] to represent x through the pair (⌊x/D⌋, x mod D). A challenging part is to implement multi-

plications using constants r⌊x/D⌋(mod ⌈M/2⌉) and C(x mod D) with reversible circuits.

4 Conclusion

In this paper, linear-sized circuits are proposed for several special cases of quantum addition and modular

multiplication. First, a ripple-carry adder is proposed to reduce the Toffoli gate. In comparison to

previous circuits with at least 2n Toffoli gates, our circuit costs only n Toffoli gates through the use

of more auxiliary qubits [29–32]. Note that a Toffoli gate may be decomposed at least six CNOT gates

[1,34] and is very difficult to achieve experimentally. Thus, our improvement is important experimentally.

Moreover, our addition circuits are adapted to construct a multiplication circuit derived from Shor’s

algorithm [5]. The recent results in [33] require 6n and 5n Toffoli gates for |(2k + 1)x〉 and |x mod M〉,

respectively. Our results require n and 2n, respectively. In adition, our total costs are 10n+ O(1) and

20n, respectively, which are also less than the circuits in [32] in terms of the equivalent Toffoli gate [34].

Of course, additional auxiliary qubits have to be used in our circuits. Our results may be used to improve

Shor’s circuit or other quantum algorithms based on a quantum computation model [13–16].
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