
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

April 2016, Vol. 59 042403:1–042403:16

doi: 10.1007/s11432-015-5381-z

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

Dynamically reconfigurable architecture

for symmetric ciphers

Bo WANG & Leibo LIU*

National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

Received April 2, 2015; accepted May 8, 2015; published online March 1, 2016

Abstract In this paper, a very large scale integration (VLSI) architecture for a reconfigurable cryptographic

processor is presented. Several optimization methods have been introduced into the design process. The inter-

connection tree between rows (ICTR) method reduces the interconnection complexity and results in a small area

overhead. The hierarchical context organization (HCO) scheme reduces the total context size and increases the

dynamic configuration speed. Most symmetric ciphers, including AES, DES, SHACAL-1, SMS4, and ZUC, can

be implemented using the proposed architecture. Experimental results show that the proposed architecture has

obvious advantages over current state-of-the-art architectures reported in the literature in terms of performance,

area efficiency (throughput/area) and energy efficiency (throughput/power).
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1 Introduction

Symmetric ciphers [1] are generally used to maintain the confidentiality of information when it is traveling

through networks. However, the real demands of network security offer tough challenges for symmetric

cryptographic architecture implementation. First, as the quest for higher system speeds is never-ending,

security networks at the Gbps level, 10 Gbps level or even 100 Gbps level [2,3] present new performance

challenges. Additionally, the corresponding power consumption should also be taken into account under

such high throughput conditions. Second, algorithm flexibility is often a requirement. Many security

protocols, such as IPsec (Internet Protocol Security), allow a variety of optional algorithms and real-time

switching of these algorithms [4]. In addition, there are also applications that require existing algorithms

to be modified or upgraded by changing certain key parameters or components, such as the substitution

box (S-box). Traditional architectures such as general purpose processors (GPPs) and application-specific

integrated circuits (ASICs) can be used to implement symmetric ciphers. Software implementations using

GPPs offer ease of design, use and portability. However, the execution speed is much slower than that of

hardware implementations and, while ASICs can achieve the maximum theoretical performance, ASIC

functions cannot be changed after fabrication, which demonstrates a complete lack of flexibility.
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Reconfigurable architectures can not only produce significantly higher performance levels than soft-

ware implementations, but can also perform algorithm switching and upgrading during runtimes. Also,

reconfigurable architectures typically consist of many structurally-similar processing units. It is therefore

difficult to obtain the algorithm information directly by reverse analysis of the circuit, which can be

implemented in ASICs in cases where the algorithm itself must be kept confidential. All these benefits

mean that reconfigurable architectures for symmetric ciphers are attracting increasing attention.

Researchers have made considerable efforts to explore reconfigurable architectures for symmetric ci-

phers. As a special case of fine-grained reconfigurable architectures, field programmable gate arrays

(FPGAs) are widely used to implement symmetric ciphers [5–11]. The FPGA is a commercially success-

ful reconfigurable architecture that uses look-up tables (LUTs) and fine-grained interconnection networks

to meet the diverse function requirements of symmetric ciphers. In addition to FPGAs, numerous other

reconfigurable architectures are available with middle grain, coarse grain or even mixed grain. These

architectures have all been proposed for implementation of symmetric ciphers, such as ADRES [12, 13],

XPP-III [14,15], MorphoSys [16], DREAM [17], and COBRA [18]. These works improve the performance

levels of symmetric ciphers to varying degrees under the premise of ensuring algorithm flexibility. How-

ever, the real demands for symmetric cryptographic implementation are still not being met. FPGAs are

general architectures that are not specifically designed for symmetric cipher implementation. Their exces-

sive hardware redundancy results in relatively low area efficiency (i.e., throughput/area) and low energy

efficiency (i.e., throughput/power). For example, the interconnections in FPGAs can account for up to

90% of their total area and up to 85% of the total power consumption [19]. This would increase both the

chip area and the power when symmetric ciphers are implemented. Additionally, the other reconfigurable

architectures that are currently in use are intended to fit various applications rather than cryptographic

algorithms alone. Their design spaces have not yet been fully explored for symmetric cipher applications

and their performance and area efficiency must be improved.

This paper presents a very large scale integration (VLSI) architecture for a reconfigurable processor for

symmetric ciphers. Several optimization methods have been introduced in the design of this architecture.

First, the interconnection tree between rows (ICTR) method effectively reduces the complexity of the

interconnections based on the characteristics of the symmetric ciphers. This technique ensures that

the ratio of the interconnection area to the total area remains approximately constant, i.e., it does not

increase with an increase in the array scale. Second, a context group scheme called hierarchical context

organization (HCO) is introduced, in which the contexts are divided into three levels. Using an index,

higher level contexts can call lower level contexts. In this way, the higher level contexts can reuse the

lower level contexts. This avoids duplication of contexts, such that it reduces the total size of the contexts

and results in a fast and dynamic configuration. The proposed architecture is suitable for processing

of most symmetric ciphers and hash functions. The Advanced Encryption Standard (AES) [20], the

Data Encryption Standard (DES) [21], SHACAL-1 [22], SMS4 [23] and ZUC [24] have already been

implemented using this architecture. The results demonstrate that the performance, area efficiency

and energy efficiency of this architecture offer obvious advantages over the state-of-the-art architectures

described in the literature.

2 Algorithm analysis

Symmetric ciphers can be further divided into block ciphers and stream ciphers. The block cipher takes

a single block, such as 64 or 128 bits of data, as a processing unit. It then generally uses multiple

iterations to improve its security, i.e., it uses identical or similar operations named round functions to

iterate several times to obtain the final cipher text. Many block ciphers can be characterized as Feistel

networks [1]. A basic Feistel network, as shown in Figure 1(a), divides the 2w-bit data into two halves.

At the point when the f -function is dealing with one half of the 2w-bit data using a sub-key, the block

cipher makes the output of the f -function perform an exclusive-OR with the other half of the data.

Many types of operation can be found within the f -function to implement confusion and diffusion in
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Figure 1 Block diagrams of symmetric ciphers. (a) Block cipher based on basic Feistel network; (b) LFSR-based stream

cipher.

cryptography. Many of these operations have distinct characteristics and some of them are hardly seen

in other type of algorithm. For example, a 32-bit permutation can make every bit in 32-bit input data

exchange with each other in a given order to obtain 32-bit output data. Additionally, the granularities

of the data processing for these operations have several levels, i.e., the levels for the block lengths (e.g.,

64-bit or 128-bit) used in permutation operations, the levels for large byte lengths (e.g., 8-bit, 16-bit,

32-bit), and the levels for small byte lengths (e.g., 4-bit, 6-bit). The stream cipher implements encryption

by performing plaintext stream exclusive-OR operations with the key stream. The kernel of the entire

process is the generation of the key stream. A general model for stream ciphers can be built using a linear

feedback shift register (LFSR). Figure 1(b) shows such a model, which consists of one or several LFSRs

and a nonlinear function F. Here, an eight-stage LFSR is used as an example, and it can be divided

further into exclusive-OR and shift operations. The function F is very important in ensuring the security

of the algorithm. An increasingly complex function allows the corresponding algorithm to achieve higher

levels of security. The types of operations in the function F are almost the same as those in the f -function

of the Feistel network. As an example, ZUC is a LFSR-based stream cipher. Its function F includes basic

arithmetic and logic operations, LUTs and rotation operations.

3 Basic architecture

The framework of the proposed reconfigurable architecture is shown in Figure 2(a) and further details of

the reconfigurable cell array (RCA) are shown in Figure 2(b). The reconfigurable architecture consists

of two components: the data path and the configuration path. (1) The data path contains the RCA and

the data memory. The RCA, as the core component of the entire reconfigurable architecture, is mainly

responsible for data flow calculation. It consists of reconfigurable cells (RCs) and the interconnections.

The data memory, which includes the input/output FIFO (first-in first-out) circuit and the inner buffer,

is responsible for storage of the inputs, outputs and intermediate data of the RCA. (2) The configura-

tion path consists of the context memory and the corresponding control logic. The context memory is

responsible for storage of the configuration information. The control logic is responsible for analysis and

distribution of the contexts to the data path to control its function.

The data path design directly affects the performance of cryptographic algorithms, and can be sum-

marized in two aspects, i.e., the RC design and the interconnection design. In the following, the RC
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Figure 2 Proposed reconfigurable architecture. (a) The framework of the reconfigurable architecture; (b) the reconfig-

urable cell array architecture.

design is illustrated first. Because the RC architecture is not the main focus of this paper, only a brief

discussion is given. The general RC architecture consists of an arithmetic logic unit (ALU) and corre-

sponding registers, and the design is similar among various reconfigurable architectures [25]. The main

design variables for RCs are processing granularity and the operation set of the ALU. During selection

of the granularity, trade-offs should be made between flexibility and area efficiency. Small granulari-

ty means a more flexible architecture that allows more complex connections between finer processing

units, while at the same time resulting in larger area requirements. In this paper, the goal is to ensure

sufficient flexibility for symmetric implementations while maintaining area efficiency as far as possible.

Because the smallest granularity that is commonly used for symmetric ciphers is 4 bits (as mentioned in

Section 2), the RC granularity is thus determined to be 4-bit. It should be noted here that the use of

heterogeneous RCs with different granularities in the same array is not recommended. This is because

the splicing and splitting of data would have to be done between the inputs and outputs of RCs with

different granularities, and this would make the design of the interconnections very complicated. Also,

the mapping process for the algorithms would be more complex than that of the homogeneous case. The

operator set of the ALU is determined by the operations in the symmetric ciphers. The sets can be

classified into the following four types. (1) Basic logic operators, including XOR, AND, OR, and NOT.

(2) Modular arithmetic, including modular addition, and modular subtraction. (3) Galois field operators,

including multiplication, inversion, and affine transformations. (4) Other operators, including bypass,

shift, rotation, and operations (such as shift or addition) with conditions. The proportions of the four

types in the operation set are also relatively balanced, and are all at a proportion of 20%–30%. Each

operator in the ALU corresponds to an operation code (opcode). The ALU can be used to execute one

of these functions by configuring specific bits in the context with the corresponding opcode. It should

also be noted that a LUT is also added to an RC to accomplish the required substitution operations in
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cryptographic algorithms, and can logically be seen as an operator of the ALU.

Adjacent RCs in the same row can be used to accomplish operations with granularities that are larger

than 4 bits. This is illustrated using the following two examples of modular addition and LUT-based

substitution. The modular addition operations in symmetric ciphers can be represented by (p+ q) mod

2n, where p and q are two n-bit binary numbers. Compared with the commonly-used addition operation,

the Cout of the most significant bit and the Cin of the least significant bit in modular addition are

always zero, which means that the sum of two n-bit numbers is also n bits. The carry-select adder is

used to accelerate modular addition in the proposed architecture. The 4-bit addition operator in each

RC (with an additional carry path and a multiplexer) is one stage of the carry-select adder, and can be

further connected using the carry bits. In the proposed architecture, the width limit for the modular

addition operation is 32 bits, i.e., addition operations with widths ranging from 4 bits (modular 24) to 32

bits (modular 232) can be accomplished using 1 to 8 adjacent RCs directly. In addition to the modular

addition operation, the 256-bit LUTs in each of the RCs can also be combined to accomplish larger

substitutions. For example, eight nearby RCs can produce an 8-8 (8-bit input and 8-bit output) LUT

in AES. In LUTs, the input can be regarded as the address of the desired output data. Taking a u − v

LUT as an example, one v-bit output is selected from the 2u groups of v-bit data. By using multiplexers

as hardware-assisted logic (for details, please refer to the methods used in FPGAs [26]), a LUT with a

storage capacity of M -bits can be organized into a u − v LUT, where 2u × v 6 M . In this case, the

256-bit LUT in each RC can be seen as an 8-1 LUT, where 28 × 1 = 256. An 8-8 LUT can be achieved

by splicing the 1-bit results of eight adjacent RCs together. This implementation detail of the LUTs is

transparent to the other RCs, which means that the 8-bit output is split into two 4-bit data outputs and

can be used as the ordinary outputs of these RCs.

In the data path, the interconnection design is crucial in the process of ensuring high area efficiency.

To increase the proportion of actual computing resources (RCs) in the RCA, the main design objective

for the interconnections is to minimize the area overhead under the premise of guaranteeing processing

efficiency. In Section 4, a method of using multiplexers (MUXs) to represent the interconnection overhead

is introduced, and an optimized interconnection method (ICTR) is determined after a series of discussions.

The main objective of the configuration path design is to increase the dynamic configuration speed and

reduce the area overhead. This objective is mainly affected by the size of the configuration contexts. A

large context size would increase the context transformation time for each configuration and the storage

space of the on-chip context memory. In Section 5, a novel context organization scheme (HCO) is

introduced, and a discussion of how to use the characteristics of symmetric ciphers to reduce context

duplication is given.

4 Interconnection design

If the RCs in the reconfigurable array are abstracted into vertices and the interconnections between them

are abstracted into directed edges, then the interconnections in the reconfigurable array can be abstracted

into a directed graph. All the possible interconnection routes between the RCs form a directed graph set,

and with increasing array scale, the number of elements in the set becomes so large that it becomes difficult

to conduct a comprehensive analysis of all the elements. Here, a subset is selected for examination, i.e.,

an interconnection structure with one direction. In this structure, each row of RCs is taken as a single

stage and numbered in ascending order, from the top to the bottom of the array. The RCs in each stage

can only take the outputs of RCs with smaller stage numbers as their inputs. The selection of this subset

is reasonable because it coincides with the singular direction of the mapping graphs of the symmetric

ciphers.

To quantify the area overhead and thus ease comparisons among the different kinds of interconnections,

a method of using the number of 2-to-1 MUXs to represent the interconnection overhead is introduced.

In a reconfigurable array, the logic circuit overhead of the interconnection structure mainly comes from

MUXs. For example, assume that there are two rows of RCs and that the number of RCs in the first and
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second rows are 2a and 2b, respectively. If the inputs of the RCs in the second row can come from the

output of any RC in the first row, then the number of 2a-to-1 MUXs that is needed is 2b. Noting that,∑a−1
i=0 2i named (2a-1), 2-to-1 MUXs are required to achieve the same function as that of the 2a-to-1

MUX, and then a total number of (2a − 1) × 2b 2-to-1 MUXs are required to connect the two rows.

Although the actual logic circuit for the interconnection may not be built with 2-to-1 MUXs in the

technology library, this calculation method can still allow designers to have a clear understanding of the

interconnection overhead in the early stages of the design.

The most flexible interconnection of the subset is that where the inputs of the RCs of each stage

can come from the outputs of the RCs of any stage with a smaller stage number. However, a high

area cost must be paid for this flexibility. The 2-to-1 MUX overhead (represented by α) is obtained

as shown in (1) for a reconfigurable array that consists of 2x columns and 2y rows of RCs. For a

square array (x = y), Eq. (2) shows the ratio factor β relating the interconnection area and the area of

the RCs (assuming that the area of each RC is constant and equal for every RC). β is approximately

proportional to the square scale of the rows (or columns). A slight increase in the array scale can cause

a substantial increase in the ratio of the interconnection resource to the total array resource. Ultimately,

this would lead the reconfigurable architecture towards a situation similar to that in FPGAs, i.e., excessive

interconnection resource redundancy that sharply reduces the area efficiency. Another possible and widely

used interconnection structure is full interconnection between rows, i.e., where each RC in one stage can

interconnect with any RC in the adjacent stage. This form of interconnection greatly reduces the area

overhead by removing direct connections between nonadjacent rows. Eq. (3) shows the 2-to-1 MUX

overhead of this type of interconnection. For a square array, when assuming that 2x ≫ 1, β follows the

relationship shown in (4) and is approximately proportional to the scale of the rows. While this growth

is much slower when compared with that of the previous example, β will still be high when the array

scale increases to a certain extent.

α = (1 + 2 + 3 + · · ·+ (2y − 1))× ((2x − 1)× 2x)

=
2y × (2y − 1)

2
× (2x − 1)× 2x

= 2y−1 × (2y − 1)× (2x − 1)× 2x, (1)

β ∝ 2y−1 × (2y − 1)× (2x − 1)× 2x

2x × 2y
∝ (2x − 1)2

2
, (2)

α = (2y − 1)× ((2x − 1)× 2x) , (3)

β ∝ (2y − 1)× (2x − 1)× 2x

2x × 2y
∝ 2x, (4)

α = (2y − 1)× ((2z − 1)× 2x) , (5)

β ∝ (2z − 1)× 2x × (2y − 1)

2x × 2y
∝ const. (6)

Strong data locality can be found in the mapping graphs through the mapping of varieties of ciphers,

which means that intensive data exchanges only exist between relatively close RCs. On this basis, an

optimized interconnection format called ICTR is introduced. The input of each RC in ICTR is only taken

from the outputs of nearby 2z RCs in the adjacent row. The characteristics of the symmetric ciphers

determine the value of z, which is a constant that is independent of the array scale. The corresponding α

and β are shown in (5) and (6) respectively. β is a constant and does not increase with increasing array

scale. After analysis of a large number of the mapping graphs of the symmetric ciphers, it was found that

most of the intensive data exchanges are within the nearest 32 bits. The option in this case is that each

RC interconnects with the nine adjacent RCs (4-bit granularity for each RC) in the previous row. This

allows flexible interaction among the nearest 32-bit data and ensures the symmetry of the interconnection

topology at the same time. While the value of 9 here is not a power of 2, it can apparently be used in

the above formula by simply replacing 2z with 9. Figure 3 shows a schematic diagram of ICTR. Note

that in Figure 3, the corresponding interconnections of two RCs are given for clarity of illustration only.
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Figure 3 ICTR structure.

It should be noted here that the existing interconnections cannot support bit-wise permutations and

irregular rotations very well. While these operations can theoretically be accomplished through the

cooperation of RCs and ICTR, the operations take many clock cycles and reduce the overall performance.

It is therefore necessary to add functional units to specifically accelerate these operations. The proposed

functional unit is called a bit reformer, and it can achieve bit-wise permutation and rotation efficiently

based on the Benes network architecture (a type of multistage switching network) [27]. Because ICTR

is a row-based interconnection with a single direction, bit reformers can be added directly between some

of the rows of the array. The data processing width (i.e., the overall width of the input/output data)

of bit reformers can be set to 128 bits to coincide with the data width of a single RC row. It is then

very straightforward to map the permutations or rotations onto the bit reformer. A 64-bit permutation

is taken as an example to illustrate this process. If the 64-bit data is input into the lower bits (in fact,

any 64 consecutive bits are fine) of the bit reformer, then the corresponding bits of the output are the

desired data after permutation. To generate the configuration context of the bit reformer automatically,

a dedicated program can be written in a high-level language (such as C++ or MATLAB). By taking the

bit-order in the permutation as the input, the binary configuration bit-stream can then be output by the

program. In fact, these types of programs can already be found as open source codes that aim to support

the usage of non-blocking networks such as Benes networks.

The advantage of the proposed interconnection can be further illustrated through comparison with the

interconnections of other reconfigurable architectures. The interconnection details of most reconfigurable

cryptographic architectures given in the literature are insufficient to complete the comparison. Here,

ADRES and XPP-III are used as examples to illustrate this. ADRES and XPP-III are both claimed

to be suitable for applications like cryptography [13, 15]. The interconnection of ADRES consists of a

basic mesh network and some optional extra interconnections [28]. The interconnection area overhead

in ADRES is relatively small, and is at the same level as ICTR. In ICTR, each RC is connected with

the nine adjacent RCs in the next row; in ADRES with nearest neighbor and next hop connections,

the functional unit (FU) is connected to eight FUs, including four neighbor FUs and four hop FUs. The

interconnection in ADRES does not follow a particular direction, which makes the data transmission more

flexible. However, operations such as irregular rotations and bit permutations cannot be accomplished

using this interconnection. For each FU, the output data can be transmitted in any one of the four

directions of the array through the interconnection. Functional modules such as bit reformers, which

have a data processing width that is equal to that of multiple RCs, do not match up with this kind

of interconnection and therefore cannot be added directly to the array. These operations can only be

performed in the very long instruction word (VLIW) processor part of ADRES and ultimately reduces

the overall performance. The interconnection of XPP-III is mainly composed of two-dimensional buses.

Packet-oriented routing buses are used for point-to-point connections, and they can be segmented using

configurable switch objects. This bus connection can connect any two of the objects in a bus, which leads

to good algorithm flexibility. However, it occupies a relatively large area because of the complexity of

the packet-oriented architecture. Also, the switch object in XPP-III adds a register delay by itself. This

would introduce many extra cycles for data communication between nonadjacent processing elements.

As an extension of this discussion, the influence of granularity (where the granularity of the RC is

the same as that of the interconnection) on the interconnection overhead is illustrated. For a specified

data processing capacity (i.e., where both the data processing width and the data processing depth of the

reconfigurable array are constants), the interconnection overhead varies under different granularities. The

interconnection between rows in a single-direction interconnection subset, such as full interconnection
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Figure 4 Mapping block of Inverse MixColumns in AES (for one byte of the state).

between rows or ICTR, is used as an illustrative example. The total interconnection overhead is the

product of the array scale and the overhead for each RC. First, the relationship between granularity and

the scale of the array must be determined. Because the data processing width is the product of the

granularity (represented by G) and the number of columns in the array, the number of columns must

then be proportional to 1/G. Unlike the number of columns, the number of rows is equal to the data

processing depth and remains constant. Then, the scale of the array is proportional to 1/G. For each

RC, the interconnection overhead is proportional to the width of the data that are connected directly to

it. This width is equal to the product of G and the number of other RCs connected to the RC of interest

(i.e., the number of inputs for the MUX). In the case of interconnection between rows, the width of the

data connected to each RC is constant. For example, this value is equal to the data processing width

of the array for full interconnection between rows, and is roughly equal to 32 bits in the case of ICTR

for symmetric ciphers. Therefore, the interconnection overhead for each RC is a constant. In this case,

the total interconnection overhead is then proportional to 1/G. This means that the overhead decreases

with increasing granularity. As mentioned in Section 3, the disadvantage of higher granularity is a lack

of flexibility. In this case, mapping efficiency decreases for algorithms with fine-grained operations. For

example, when a 4-bit operation is executed on a 16-bit RC, 75% of the computing resources may be

wasted. In this paper, sufficient flexibility for common symmetric ciphers and even confidential symmetric

ciphers for national defense or other special applications must be ensured first. Therefore, 4-bit is chosen

as the granularity in this case. However, for other designs that have target sets of algorithms that have

larger granularities, the researcher may then select a higher granularity for the array to perform a trade-off

between flexibility and area overhead.

Finally, an example of partial mapping graphs is given to better illustrate the way in which the

algorithms are accomplished using ICTR. Figure 4 shows the mapping block for Inverse MixColumns for

AES. Inverse MixColumns is the primary source of diffusion in the AES round function. For different

bytes of the state (where the state is the intermediate result of AES), operations in Figure 4 should

be executed in parallel. The opcodes that are marked *xl or *xr denote the left half part or the right

half part of the multiplication of x in GF(28), respectively. The connections in the mapping graph show

strong data locality and can be supported very well by ICTR.
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5 Organization form of configuration contexts

In most cases, the entire mapping graph of a single algorithm is several times larger than the dimension

of the RCA, so dynamic reconfiguration is needed. The most important factor in the configuration path

design is determination of the organization form of the configuration contexts, which will affect the total

size of the contexts and the speed of dynamic configuration.

The iterative nature of cryptographic algorithms should be used to its full advantage in this design

process. Without loss of generality, it can be assumed that a specific cryptographic algorithm has i

different kinds of round functions, and each round function should be iterated mi times. For example, if

a cipher has ten rounds, and the first round and the last round are different from the other rounds, then

we have i = 3 and m1 = 1, m2 = 8, and m3 = 1. When mapped onto the RCA, one round function

can be further divided into several stages by the registers of the RCs, which means that several data

groups can be encrypted in a pipeline during a single iteration. Among the mi iterations of a single

round function, the operations inside the round function are the same, but there are differences among

the addresses of the processed data. This can be illustrated by the following three examples. (1) RCA

input data come from the input FIFO for the first round, but then come from the inner buffer for the

middle rounds. (2) When stored in the inner buffer, the immediate data from the different pipeline stages

usually adopt different addresses to avoid overwriting of the valid data. (3) Some of the fixed values (e.g.,

the round keys and the round constants) also differ among the mi iterations. All these aspects make the

configuration contexts for the mi iterations different to each other. In this case, if the configuration of

the data input, the data output, the intermediate data buffer and the functions of RCA are integrated

into a single context, mi iterations require mi different contexts. There will be a great deal of duplicate

information (e.g., the configuration information about the functions of the RCs and the interconnections)

stored between the different contexts and this will consume a great deal of time and power when the

configurations are switched. By taking these factors into account, a new scheme called HCO is introduced.

Figure 5(a) shows a schematic view of the HCO scheme. The contexts are divided into three levels,

and are called level by level by using the index. The data exchange contexts are separated from the

contexts of the RCA itself, and in this way, the contexts of one level can be reused by the contexts

of a higher level. This avoids the duplication of contexts, thus reducing the total size of the contexts,

and leads to a fast and dynamic configuration. Among the three levels of contexts, level 2 is the core

context, and mainly contains several row contexts. Row context is the basic context, and contains the

configuration information of one row of RCs and the corresponding interconnections. It means that the

RCA configuration can be switched by row. In this case, the array can be reconfigured row by row like

waves. After one row finishes its calculation, the reconfiguration of this row can take place at the next

clock cycle and does not need to wait until the calculation of the whole array is complete. Therefore,

the impact of dynamic configuration on pipeline efficiency in the array is minimized. The configuration

contexts of the LUTs and the bit reformers are separated with the row contexts. These contexts generally

only exist in one core context of the entire algorithm. Level 1 is the group context, and mainly consists

of multiple group context kernels that contain the internal data exchange information in the data path,

the sequence control for the core context and the index of the core context. The sequence control part

contains the sequence information required to operate the core context properly, including the number

of iterations, and the required interval between iterations. The internal data exchange part contains

the data exchange information between the RCA and the internal memory (i.e., the input/output FIFO

and the inner buffer), which mainly consists of the address information. Level 0 is the top context, and

corresponds to a unique algorithm. The top context contains the data exchange information between the

entire reconfigurable architecture and the external memory, which mainly controls the transmission of

plaintexts and ciphertexts.

Figure 5(b) shows the simplified hardware structure of the configuration path used to support the HCO

scheme, in which many details are omitted to highlight the main structural framework. Group context

memory (GCM) and core context memory (CCM) are used to store group contexts and core contexts,

respectively, and the configuration interface, the group context parser and the core context parser are
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Figure 5 HCO. (a) Schematic view of HCO scheme; (b) architecture of configuration path supporting the HCO scheme.

Table 1 Size of configuration contexts in HCO

Hierarchical context organization Size (word)

Total 5

Top context
Units

Top context kernel 4

Index 1

Total 4 + 5ua)

Group context
Units

Group context head 4

Group context kernel 4 + 1b)

Core context

Total 30n + 256m + 56i+ 40jc)

Units

Row context 30

Others
256 for LUTsd)

56/40 for bit reformers

a) u denotes the number of group context kernels.

b) Four words for the address/sequence control and one word for the index.

c) 0 6 n 6 16; 0 6 m 6 8; i, j ∈ {0, 1}.

d) Although 256 is much larger than 30, the contexts of the LUTs usually only exist in one core context of the entire

algorithm, and thus the row contexts still dominate in size.

used for analysis and distribution of the contexts at each level.

By using HCO, the size of the overall contexts can be reduced significantly. Tables 1 and 2 show the

sizes of the configuration contexts for HCO and further compare them with the sizes of the contexts for

the non-hierarchical case. Because of the removal of the duplicated contexts, the overall context has a
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Table 2 Size of configuration contexts in different cases

Task

Non-hierarchical Proposed HCO

Reduction (%)Overall context
(word)

Top context
(word)

Group context
(word)

Total core context
(word)

Overall context
(word)

AES 11444 5 99 1864 1968 82.8

DES 7536 5 54 892 988 86.9

SHACAL-1 21928 5 204 1188 1397 93.6

SMS4 6440 5 44 832 881 86.3
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Figure 6 Proportions of configuration times and data access & calculation times for XPP40 and for the proposed recon-

figurable architecture.

different degree of reduction that ranges from 82.8% to 93.6% for the various algorithms. When a smaller

context size is used, the configuration speed of the proposed architecture can be greatly increased. When

coupled with the ability to reconfigure by row, the influence on the pipeline efficiency is minimized and

fast and efficient dynamic reconfiguration can finally be achieved. The reason why we mainly discuss block

ciphers here is that they have higher dynamic reconfiguration requirements because of their computational

complexities, which means that the different bottom contexts usually need to be switched during execution

of the algorithm.

Figure 6 shows the proportions of the configuration time and the data access and calculation time

required for the proposed reconfigurable architecture and for the XPP40 [29]. Because the proportion

of configuration time required for most reconfigurable cryptographic architectures is not mentioned in

the literature, the XPP40 (when executing sub-tasks for H.264 decoding) is used as an example for

comparison. While the symmetric cipher and the decoding algorithm are two different types of application,

they are both computationally-intensive algorithms, and it also makes sense to compare the average

proportions of their configuration times. As shown in Figure 6, the configuration time of the proposed

reconfigurable architecture only accounts for 4.26%–9.47% of the total execution time. This time is much

lower than that of XPP40. As a commercial architecture, the detailed organizational form of the contexts

in XPP40 cannot be found in public literature. However, it is obvious that the serial configuration method

used in XPP40 has a major influence on the dynamic configuration speed. The configuration of each

processing array element (PAE) in XPP40 is performed sequentially with a delay of R+ C clock cycles,

where R and C are the numbers of rows and columns of the target PAE, respectively. The contexts

are loaded from the sole configuration port at one corner of the array. To configure a specific PAE, the

contexts are first transferred to the desired row, and are then transferred to the corresponding column.

In this case, the configuration affects the overall computing efficiency dramatically, which means that

the calculation may be interrupted and forced to wait until the configuration is complete. Unlike the

XPP40 configuration scheme, the proposed architecture can be configured row by row, which means that
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Table 3 Implementation results of a REPROC core

Tech.
(nm)

Frequency
(MHz)

Array Scale
(row × column)

Area
(mm2)

Throughput (Gbps)

AES-128 2.16

DES 2.72

65 400 16×32 4.28 SHACAL-1 1.55

SMS4 6.30

ZUC 0.49

Table 4 REPROC architecture gate counts

Element Gates

RCs 949120

Interconnections 259491

Data memories 108253

Context memories and controllers 819200

Total 2136064

Table 5 REPROC on FPGA (Stratix IV EP4SE820)

Element RCs Interconnections Data memories Context memories and controllers Total

ALMsa) 55424 45525 2332 2268 105549

Block memory (bits) 74752 0 7680 397,312 479744

a) Adaptive logic modules (ALMs) are the basic logic units in Altera FPGAs (similar to slices in Xilinx FPGAs).

the parallel configuration of a single row can be performed in a single clock cycle. This would ultimately

reduce the configuration cost and increase overall performance.

Because the context size is relatively large, a program is developed to automate context generation. In

this program, the binary bit strings in the contexts are represented by a series of parameters to reduce

the researcher’s workload. For example, if the function of a specific RC in the array is exclusive-OR,

then the researcher only needs to assign “xor” to the variable “OPCODE”. This saves a great deal of

manpower and time when compared with inputting of real bits into the contexts (such as “001101” for

the opcode). In this case, to generate the desired contexts, the researcher should determine both the

mapping graph and the algorithm execution sequence first, according to the hardware constraints. Using

this information, the corresponding parameters that are required in these three context levels should then

be input to the program. Finally, the program organizes these bit strings automatically to form a binary

context file. It should be noted that the context generation tool for the bit reformer that was mentioned

in Section 4 is also integrated into this program. Based on our experience, a researcher who is not very

familiar with the proposed architecture can still complete the mapping of an algorithm and generate the

contexts within a week.

6 Experiments and comparison

A reconfigurable architecture called REPROC (reconfigurable encryption processor core) was determined

after the previous analysis. The synthesis and place-and-route processing of the core are performed using

Synopsys tools. AES-128, DES, SHACAL-1, SMS4 and ZUC are all implemented in REPROC, and the

results are shown in Table 3 and Table 4. The REPROC core is also implemented on an Altera FPGA,

and the results are shown in Table 5.

As noted in Section 1, high throughput (e.g., dozens of Gbps) is usually required for network applica-

tions. Theoretically speaking, a single core with a very large array scale or multiple cores with a specified

array scale can be used to meet such high performance requirements. However, in practice, the former is

not a good choice for the following reasons.

Two parameters can be used to describe the array scale: the number of columns and the aspect ratio.
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Table 6 Data path area efficiency for different array scales (row × column)

Area efficiency
(Gbps/mm2)

8 × 16 16 × 16 16 × 32 32 × 32

AES-128 0.64 0.46 0.83 0.94

DES 0.60 0.99 1.05 0.98

SHACAL-1 0.34 0.18 0.59 0.40

SMS4 1.16 1.22 2.42 1.30

ZUC 0.20 0.18 0.19 0.22

Host
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On-chip
memory

DMAC

Off-chip
memory EMI

REPROC

REPROC

REPROC
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Figure 7 Multi-core mode.

The number of columns characterizes the data processing width of the array, and this parameter should

coincide with the data width of the mapping graphs. If the number of columns is too small, then the

mapping graphs must be divided into multiple small graphs to ensure that they map onto the array.

However, this division reduces the pipeline efficiency and the parallelism. In contrast, when the number

of columns is too large, the computational resources may be wasted and the difficulty of the place-and-

route process may also increase dramatically. In addition to the number of columns, the other parameter

that can be used is the aspect ratio, which is the ratio of the number of columns to the number of rows.

Because the data stream in the array flows from top to bottom, this parameter represents the ratio of

the data processing width to the data processing depth. For a certain number of columns, a small aspect

ratio can mean a relatively large number of pipeline stages. However, because the area required for the

input/output selection logic increases very rapidly with increasing numbers of rows (following a square

relationship, for example), the number of parallel input/output interfaces typically does not grow with the

same speed as the data processing depth. In this case, when the aspect ratio is small, the input/output

data must be divided into multiple groups. This affects the pipeline efficiency greatly and ultimately

reduces the throughput.

Because the data processing width for most commonly used symmetric ciphers is approximately 128

bits (e.g., AES-128, SMS4 and SHACAL-1) or less (e.g., 64 bits for DES and 32 bits for ZUC), the number

of columns is selected to be 32 (4-bit×32 =128-bit). Experiments are also carried out to determine the

aspect ratio. Table 6 shows the area efficiency of the data path for different array scales (using Taiwan

Semiconductor Manufacturing Company 65-nm technology). For the same number of columns, when the

aspect ratio is 1, the area efficiency of some algorithms is much lower than that when the aspect ratio is

2 because of the reduced pipeline efficiency. The aspect ratio is therefore selected to be 2, which means

that the scale of the array is 16 × 32. The results in Table 6 also show that the area efficiency in the

32 column case is higher than that in the 16 column case. This further confirms that 32 columns is a

wise choice.

As shown in Table 3, a single REPROC core with a 16 × 32 array scale may not satisfy the high

throughput requirements mentioned above. In this case, multiple cores can be used together. Figure 7

shows the framework for the multi-core mode. The host processor controls the entire system. The on-chip

memory stores the data and contexts required for fast access, while the slower off-chip memory stores

larger amounts of data and can be accessed through the external memory interface (EMI). A direct

memory access controller (DMAC) is also added to enhance the parallelism of the system. The REPROC
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Figure 8 Throughput in multi-core mode.

cores are the major computing components of this system. There are two alternative computing modes,

depending on the connections of these cores, i.e., whether they are in parallel mode or in serial mode.

In parallel mode, there is no data exchange among the cores. Each core receives plaintexts and sends

ciphertexts independently through the system bus. In contrast, in serial mode, the inputs and outputs of

each core are connected together to form a data dependency structure. The plaintexts are input to the

first core and ciphertexts are output from the final core. In this case, a larger number of pipeline stages

can be unrolled to these cores. The throughputs of the cryptographic algorithms vary for the two modes.

The throughputs are affected by a combination of factors, including the algorithm characteristics and

the topologies of the mapping graphs. It is thus necessary to compare the performances of an algorithm

when using the two different modes to determine which mode is superior for the given number of cores.

Experiments are performed to analyze the throughput trends for the two modes for multiple algorithms.

Figure 8 shows the results, assuming that the bandwidth is unlimited. In parallel mode, the throughput

increases in proportion to the number of cores, which is consistent with the definition of this mode.

However, this simple rule cannot be applied equally to the serial mode because of a number of factors.

For example, on the one hand, the resources that were originally idle in the adjacent cores may be

used together to unroll more rounds. In this case, the number of pipeline stages per REPROC core is

larger than that in the parallel mode. This makes the throughput of the serial mode higher in general

than that of the parallel mode. On the other hand, the calculation of a certain algorithm is sometimes

accomplished by executing multiple subgraphs. The number of pipeline stages required in these subgraphs

may be different. When more rounds are unrolled in the serial mode, this difference increases and finally

leads to reduction of the pipeline efficiency. This sometimes makes the serial mode throughput lower

than that of the parallel mode. Also, significant performance boosts can even be found in the serial mode

for certain algorithms, such as AES and ZUC. This is because the algorithms are fully unrolled onto the

hardware at those particular points, at the point at which the pipeline efficiency reaches a maximum

value and the performance is no longer related to the critical path of the algorithm. In this case, the

algorithm can accomplish encryption of a complete data group (such as a 128-bit block) in a single clock

cycle. It should be noted, however, that in the stream cipher case, the serial mode is the only available

mode and an upper performance limit exists in this mode because of the feedback feature (e.g., 32 bits

per clock cycle for ZUC).

To meet the specific performance requirements of 20 Gbps and 10 Gbps for block ciphers and stream

ciphers, respectively (the performance of stream ciphers is usually lower because of their feedback feature),

a 12-core architecture is finally selected. Table 7 shows the implementation results of AES-128 (which is

one of the most commonly used symmetric ciphers) on the different platforms. The three implementations

are all performed using the same technology (65 nm) to ensure fair comparison. When compared with

the other results, the energy efficiency and the area efficiency are fairer evaluation standards than the
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Table 7 Results for AES-128 on different 65-nm platforms

Virtex-5 FPGA (XC5VLX50T) [10] Many-core GPP Array [30]
Purposed reconfig-

urable architecture

Frequency (MHz) 350 1210 400

Area (mm2) 132a) 6.63 51.36

Throughput
Original 4.1 Gbps with 400 slicesb) 1.019 Gbps 51.2 Gbps

Converted 58.75 Gbpsc)

Power (Watt) 1.398d) 1.58 0.584

Converted area efficiency

(Gbps/mm2)
0.45 0.1537 0.99

Converted energy efficiency

(Gbps/W)
42.02 0.64 87.6

a) The FPGA area is obtained by X-ray imaging of the die.

b) In Xilinx FPGAs, logic resources are grouped in slices. One slice in the FPGA contains a set of LUTs, flip-flops and

multiplexers. To compare the area efficiency of the FPGA with other types of hardware, Gbps/slice is converted to the

more general standard of Gbps/mm2.

c) To XC5VLX50T FPGA with 7200 slices, using a slice utilization rate of 80% (higher than the average value), and the

original throughput level can achieve the required converted throughput, i.e. converted throughput = 10.2 Mbps/slice [10]

× 7200 slices × 80% resource utilization.

d) The FPGA power (without the I/O part) is obtained by Xpower Estimator [31] based on the information about the

clock frequency and the logic resource usage.

throughput, because they require comprehensive consideration of the performance, area and power. When

compared with an industrially successful reconfigurable processor, the Xilinx Virtex-5 FPGA [10], the

reconfigurable architecture used in this work achieves a 2.1× energy efficiency improvement and a 2.2×
increase in area efficiency. This advantage is inseparable from the multiple optimization methods that

have been introduced based on the characteristics of the symmetric algorithms. When compared with

state-of-the-art many-core GPP arrays [30], the reconfigurable architecture proposed here achieves a 6.4×
area efficiency improvement because of the significantly improved performance. Additionally, because

operations such as instruction fetch and decode must be carried out in each calculation, the GPP has

much lower energy efficiency than the reconfigurable architecture. In fact, the energy efficiency of the

architecture proposed in this work is as much as 137 times that reported in [30]. It should be noted

that there may be more recent papers on FPGA implementations than [10], but to obtain the converted

FPGA throughput to form the required comparison, we finally choose an implementation based on a

65-nm FPGA (to avoid technology conversion) without using any FPGA RAMs. The comparison results

for the other algorithms are not given here because of a lack of detailed comparison data. Most of the

corresponding implementations are based on FPGAs, and it is difficult to determine the exact areas and

powers for the different FPGA implementations.

7 Conclusion

A reconfigurable cryptographic architecture is presented in this paper. A series of optimization methods,

including ICTR and HCO, have been introduced into the design. The results show that the proposed

architecture can be used to realize most mainstream symmetric ciphers. The performance, energy efficien-

cy and area efficiency of the architecture have obvious advantages over the state-of-the-art architectures

reported in the literature. There is still much to be explored with regard to the corresponding reconfig-

urable architecture design because of the diversity of the calculation forms and operational granularities

of the symmetric ciphers. Research in this area will be highly valuable in the cryptography field, and

would also play a significant role in the research into general reconfigurable architectures to support a

variety of calculation forms and granularities.
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