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Abstract We mainly consider quantum multi-unicast problem over directed acyclic network, where each source

wishes to transmit an independent message to its target via bottleneck channel. Taking the advantage of global

entanglement state 2D and 3D cluster states, these problems can be solved efficiently. At first, a universal scheme

for the generation of resource states among distant communication nodes is provided. The corresponding between

cluster and bigraph leads to a constant temporal resource cost. Furthermore, a new approach based on stabilizer

formalism to analyze the solvability of several underlying quantum multi-unicast networks is presented. It is

found that the solvability closely depends on the choice of stabilizer generators for a given cluster state. And

then, with the designed measurement basis and parallel measurement on intermediate nodes, we propose optimal

protocols for these multi-unicast sessions. Also, the analysis reveals that the resource consumption involving

spatial resources, operational resources and temporal resources mostly reach the lower bounds.
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1 Introduction

Network coding [1], for some networks, can give a higher transmission rate, as well as a lower resource

consumption compared to the widely used store-forward routing scheme [2]. Classical network coding,

since proposed, has been widely studied both in theory [3–5] and application [6–8]. A simple instance

for multicast problem that can demonstrate the network coding advantage (unit-rate transmission via

network coding) is the butterfly network as shown in Figure 1. In quantum network, multicast problem

reduces to multi-unicast problem due to quantum no-cloning theorem [9]. Thus, network coding for

quantum multi-unicast problem is of considerable interest [10–13].

The study on quantum network coding (QNC) is still in its infancy. To analyze the solvability of

specific quantum multi-unicast network and to design constructive protocols with lower communication

cost are still two major issues [14]. We say that (quantum multi-unicast) network is solvable with fidelity

*Corresponding author (email: sunnudt@163.com)



Li J, et al. Sci China Inf Sci April 2016 Vol. 59 042301:2

Figure 1 (a) S1 and S2 are source nodes. Linear coding operations are performed at intermediate nodes C1 and C2 as

well as target nodes T1 and T2 by single use of the network. (b) (r1, r2) be the transmission rate pair from S1 to T1 and

S1 to T1 respectively. Compared with store-forward routing model, the achievable transmission rate region extends to a

square from a triangle.

F if there is a choice of quantum operations P (called a solution) such that every source message can be

sent to its target with fidelity at least F . In particular, when F = 1, it is simply called solvable. The

study on quantum network solvability got going in 2006. Hayashi et al. [10] first presented that butterfly

network (two-unicast network) is solvable with fidelity less than 0.983 in the basic setting (all quantum

nodes connected by noiseless quantum channels with unit capacity). In other words, butterfly network

is unsolvable (with fidelity one) in this network setting. Also in above setting, Leung et al. [11] consider

the asymptotic solvability with fidelity tending to one as a significantly large use of the network.

The need for perfect solvability (fidelity equals one) promoted the study. Related to these studies, multi-

particle entanglement including local entanglement and global entanglement is introduced to address

such imperfection and low transmission rate problems. Leung et al. [11] also explored the solvability

over the butterfly and other networks with additional resource (forward, backward, two-way classical

assistance) by locally pre-shared 2-particle entangled states between some pairs of nodes. Besides, Refs.

[12,15–18] considered QNC with locally pre-shared 2-particle entangled states between source-target pair

or neighbor nodes. In these scenarios, teleportation achieves information transmission. Instead, global

entanglement resource is also introduced to QNC [19–23]. In this scenario, remote nodes together pre-

share a pure multi-particle entangled state, with local operation and classical communication (LOCC) to

transmit quantum information. In Refs. [19–22], the multi-particle entangled state is pre-shared among

all network nodes by introducing additional quantum systems. By constructive proof, Refs. [20,21], give

the sufficient condition that quantum network is solvable, that is, the corresponding classical network

is solvable. In Ref. [23], Beaudrap demonstrated that these protocols in Refs. [20, 21] correspond in

a natural way to measurement-based quantum computations [24, 25]. This observation offers a new

perspective to analyze the solvability for quantum multi-unicast network. Recently, measurement-based

quantum network communication [26,27] has attracted much attention. Cluster state [28] as a universal

resource for measurement-based quantum computation [24], was firstly introduced by Raussendorf et

al. in 2001. It has higher persistency of entanglement compared with Bell state and GHZ state [28]. In

Ref. [24], they proved that a unitary operator U can be realized up to local Pauli operators if 2n eigenvalue

equations can be constructed successfully after proper design of measurement on intermediate nodes. This

theorem plays an important role in this paper for analyzing the specific multi-unicast network. However,

this theorem does not imply anything about the specific measurement models (measurement basis and

measurement orders) which need to be designed properly.

The purpose of this paper is twofold. We attempt to either propose a new approach to analyze

the solvability over multi-unicast network or design constructive protocols with lower resources cost.

We introduce 2D and 3D cluster state to butterfly, grail and extended butterfly networks. Single qubit

measurement drives the information transmission and classical communication is free. Based on stabilizer

formalism, we proposed an alternative method to analyze the solvability over these networks. Eigenvalue

equations are constructed according to designed measurement basis and measurement orders. Parallel

measurement leads to a significant reduction of the communication complexity.

This paper is organized as follows. In Section 2 we explore how to generate cluster state efficiently
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Figure 2 Examples of clusters with d = 2 and d = 3.

among distant communication nodes connected by directed edge. A universal scheme is presented with

constant temporal resource cost. In Section 3 we analyze the solvability on 2-unicast session over butterfly

and grail networks and design constructive protocols. A new approach is given based on stabilizer

formalism. Section 4 is a generalization on extended butterfly network supporting 4-unicast session.

Finally, in Section 5, we discuss the resource consumption and conclude this paper.

2 Generation of cluster state associated with a topological graph

In this section, we provide a universal scheme for the generation of cluster state among distant commu-

nication nodes connected by directed quantum channel. A usual way [24] to generate a cluster state is

as follows:

• Initiate all communication nodes with quantum state |+〉 = 1√
2
(|0〉+ |1〉);

• Perform unitary operation CZ on each pair of neighbor nodes.

However, for distant quantum systems, an alternative way should be introduced for efficient generation

of cluster state. Before we go into the detailed scheme, in Subsection 2.1, we first present a lemma,

associating a cluster to bigraph, by which we can classify the nodes into two sets. In each set, nodes can

perform quantum operations simultaneously, leading to a constant temporal resource cost. In Subsection

2.2, we give our scheme in detail.

Cluster state |Φ〉C [24] is a multi-particle entangled quantum state associated to a cluster C which is

a connected subset of a simple cubic lattice Zd in d > 1 dimensions. In a cluster, each site a has 2d

neighboring sites. If occupied, these are the sites whose qubit interacts with the qubit at a. Cluster state

|Φ〉C on a cluster C obeys the set of eigenvalue equations

Ka|Φ〉C = |Φ〉C , (1)

with

Ka = σ(a)
x

⊗

b∈ngh(a)

σ(b)
z , (2)

where ngh(a) is the set of neighbor nodes adjacent to a ∈ C, 1 6| ngh(a) |6 2d,

σx =

(
0 1

1 0

)
, σz =

(
1 0

0 −1

)

(we also denote σx as X and σz as Z if needed). From the perspective of stabilizer formalism (for more

detailed background see [29]), cluster state |Φ〉C is a quantum state uniquely stabilized by K = 〈{Ka}a∈C〉.
Namely, K is the stabilizer of |Φ〉C , {Ka}a∈G is the set of generators and a is the correlation center. In

our work, we discuss the case for d = 2 and d = 3, examples are illustrated in Figure 2(a) and (b)

respectively.
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Figure 3 Partition on a cluster.

2.1 A cluster and bigraph

In this subsection, we discuss the correspondence between a cluster and bigraph. We find that a cluster

is naturally a bigraph as shown in Lemma 1. This property is of great significance to the generation of

cluster state over large-scale quantum network. Any finite nodes can be partitioned into two sets. All

nodes in each set can perform quantum operations simultaneously. Temporal resource cost remains a

constant with the increase of network scale.

A simple graph G = (V,E) with V and E the set of nodes and edges in G, is called a bigraph if there

exists a bipartition V1 and V2 for V with

(i) V = V1
⋃
V2,

(ii) V1
⋂
V2 = ∅,

(iii) V1 and V2 are independent set, that is, any two nodes in Vi are nonadjacent, i = 1, 2.

The degree d(v) of node v is the amount of node in G connected with v, i.e., d(v) = |ngh(v)|. It is easy

to see, for any v ∈ V1, ngh(v) ⊂ V2.

In fact, each site in a cluster C corresponds to a node, and each pair of adjacent sites corresponds to

an edge. Thus a cluster C naturally corresponds to a simple graph G = (V,E). For the dimension d = 2

(resp. d = 3), since each site s in C has 2× 2 (resp. 2× 3) neighboring sites, the amount of adjacent sites

with s are no more than 4 (resp. 6). This characteristic for a cluster makes it correspond to a simple

graph with degree of each nodes less than 4 (resp. 6). We claim that this graph is a bigraph.

Lemma 1. A cluster for d = 2 (resp. d = 3) is naturally corresponding to a bigraph with the degree of

any node less than 4 (resp. 6), i.e., for any v ∈ V , 1 6 d(v) 6 4 (resp. 1 6 d(v) 6 6).

Proof. For d = 2, to illustrate this, we need to give a partition to all nodes. First, select one node

v ∈ V with maximum degree and let V
(1)
1 = {v}. Also get that ngh(V

(1)
1 ) = V

(1)
2 is the set of all neighbor

sites of nodes in v ∈ V . Further, let V
(2)
1 =

⋃
w∈V

(1)
2

ngh(w) − V
(1)
1 and V

(2)
2 = ngh(V

(2)
1 ) − V

(1)
2 . As

illustrated in Figure 3, repeat finitely the above process which can cover all nodes in V (since any two

sites in a cluster are connected), we get an array of sets V
(1)
1 , V

(2)
1 , V

(3)
1 , . . . , V

(1)
2 , V

(2)
2 , V

(3)
2 , . . . . Let

V1 = V
(1)
1 ∪ V (2)

1 ∪ V (3)
1 ∪ · · · , V2 = V

(1)
2 ∪ V (2)

2 ∪ V (3)
2 ∪ · · · ,

we get two independent sets with V = V1
⋃
V2, V1

⋂
V2 = ∅ and any pair of nodes in V1 or V2 are

nonadjacent, that is, the conditions (i), (ii) and (iii) hold. Consequently, we conclude that G = (V,E)

corresponding to the cluster is a bigraph. In other words, we get a partition for nodes in V . Similar

partition can be constructed for cluster with d = 3 that makes it a bigraph.

2.2 Generation of the cluster state

The general scheme for procedures to generate a cluster state over distant communication nodes is as

follows. This modified scheme based on Eq. (3) that nonlocal unitary operation CZa→b on quantum
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Figure 4 Simulation of nonlocal unitary operation: at A, CX performs on systems a and a′ and then system a′ is sent

to B who performs CZ on systems a′, b and measures a′ in X-basis.

systems a and b can be simulated by introducing an additional quantum system a′ initialized with |0〉 as
illustrated in Figure 4,

CZa→b ⊗Ha′ |ϕ1〉a|ϕ2〉b|0〉a′ =

(
I + σx

2

)

a′

CZa′→bCXa→a′ |ϕ1〉a|ϕ2〉b|0〉a′ , (3)

where CZa→b = |0〉〈0|a ⊗ Ib + |1〉〈1|a ⊗ Zb, CXa→a′ = |0〉〈0|a ⊗ Ia′ + |1〉〈1|a ⊗ Xa′ . Now we give this

modified scheme. For brevity, the following notation would be used: Let |V1| = n, |V2| = m,

• vi: node in V1, i = 1, . . . , n;

• wj : node in V2, j = 1, . . . ,m;

• vik: fictitious node which belongs to vi and sents to wk eventually.

In addition, for ∀vi ∈ V1, wj ∈ V2, let |ngh(vi)| = ni, |ngh(wj)| = mj .

Scheme 1

(1) For each node v ∈ V1, prepare quantum state |+〉 as well as auxiliary quantum states |0〉⊗|ngh(v)| (a

product state for multiple particles), and prepare |+〉 only for each node in V2. The initial state becomes

|Ψ〉initial =
⊗

vi∈V1

|+〉vi |0〉⊗ni
vi1···vini

⊗

wj∈V2

|+〉wj
. (4)

(2) Entangle |+〉vi with all its auxiliary qubits by control operator CX =
∑

xi∈V1
|xi〉〈xi|

⊗
j∈{1,...,ni}

X
(xi)
vij . The resulting state becomes

|Ψ〉(1)Entangled =
1

2
|V1|
2

⊗

vi∈V1

(|0〉⊗(1+ni) + |1〉⊗(1+ni))vivi1···vini

⊗

wj∈V2

|+〉wj
. (5)

Then send each vik to corresponding node wk. Note that the nodes in V1 can perform these operations

simultaneously .

(3) For each wj ∈ V2, let in(wj) be the received auxiliary quantum systems from its neighbor nodes,

on these particles control operator CZin(wj)→wj
=
∑

y∈{0,1}⊗|in(wj)| |y〉〈y| ⊗ σ
(y)
Z is performed on all

quantum systems in(wj) and wj with

σ
y

Z =

{
I,

⊕
y∈y

y = 0;

σZ ,
⊕

y∈y
y = 1.

The quantum state becomes

|Ψ〉(2)Entangled =
1

2
|V1|
2

∑

xv1 ,··· ,xvn∈Z2

|xv1 · · ·xvn〉v1···vn
⊗

wj∈V2,x⊂{xv1 ,...,xvn}
|x〉in(wj)|+(x)〉wj

, (6)

where

|+(x)〉wj
=

{
|+〉, ⊕x∈x

x = 0;

|−〉, ⊕x∈x
x = 1.
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Figure 5 G(B) = (VB , EB) butterfly network nodes located on 2D cubic lattice.

(4) Measure the auxiliary particles in X-basis, thereby the cluster state associated to a graph is

obtained with proper pauli operators according to classical measurement results, that is

|Ψ〉(2)Entangled =
1

2
|V1|

2

∑

xv1 ,··· ,xvn∈Z2

|xv1 · · ·xvn〉v1···vn
⊗

wj∈V2,x⊂{xv1 ,...,xvn}
|+(x)〉wj

. (7)

All nodes in V1 can perform quantum operations simultaneously as well as all nodes in V2. Accordingly,

two operation rounds are sufficient. This leads to significant reduction of the resource cost.

It should be noted that one-way quantum channel combined with free classical communication can

reverse the quantum channel. Thus opposite quantum channel does not invalidate Scheme 1.

The resources, in Scheme 1, involve directed quantum communication, free classical communication

and local unitary operations. Under the existing technology, these resources are available, thus, our

scheme is technically feasible.

3 2-unicast problem over butterfly network and grail network

In this section, we mainly introduce the approach to analyze the solvability of multi-unicast network

based on stabilizer formalism. Specific details are offered for the butterfly and grail network, both of

which support 2-unicast session. The solvability can be proved by constructing the generators of the

stabilizer correctly. Furthermore, we give the exact protocol according to the designed measurement

model including measurement basis and measurement orders on intermediate nodes.

3.1 2-unicast problem over butterfly network

In butterfly network, two sources holding nodes S1 and S2 wish to communicate with their targets T1
and T2 respectively. Note that the butterfly network is naturally corresponding to a 2D cubic lattice of

size six (as shown in Figure 5). Thus, the butterfly network graph is a bigraph denoted as G(B).

The exact bipartition is as follows: V1 = {S1, S2, C2}, V2 = {T1, T2, C1} with conditions (i), (ii) and

(iii). Additionally, it follows ngh(S1) = {T1, C1}, ngh(S2) = {T2, C1} and ngh(C2) = {T1, T2, C1}.
Also note that, we introduce additional input systems S′

1 and S′
2 held by two sources respectively.

Specifically,

• In(G(B)) = {S′
1, S

′
2}: the set of input quantum systems.

• Media(G(B)) = {S1, S2, C1, C2}: the set of intermediate quantum systems.

• Out(G(B)) = {T1 = out(S′
1), T2 = out(S′

2)}: the set of output quantum systems.

3.1.1 Analysis of solvability

There have been several papers analyzing the solvability over butterfly network [10,11]. In this subsection,

an alternative proof is provided built upon stabilizer formalism. In Ref. [24], they proved the sufficient

conditions for successfully simulating an n-qubit unitary operation U . They claimed that if 2n eigenvalue

equations can be constructed successfully after proper design of measurement model on intermediate

nodes over a cluster state, U can be realized up to some local pauli operators. However, this theorem
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does not imply anything about the specific measurement basis and measurement orders which need to be

designed properly.

Lemma 2. [24] Let G(C) be a graph corresponding to a cluster C with

• G(C) = In(G(C))
⋃
Media(G(C))

⋃
Out(G(C)),

• In(G(C))
⋂
Media(G(C)) = In(G(C))

⋂
Out(G(C)) = Media(G(C))

⋂
Out(G(C)) = ∅.

|Φ〉G(C)
is the cluster state on G(C) and U is an n-qubit unitary operation. If

|Ψ〉G(C)
= PMedia(G(C))|Φ〉G(C)

, (8)

where PMedia(G(C)) denotes measurement model on intermediate nodes, obeys the 2n eigenvalue equations

σ(i)
x (UσxU

†)out(i)|Ψ〉G(C)
= (−1)λx,i |Ψ〉G(C)

,

σ(i)
z (UσzU

†)out(i)|Ψ〉G(C)
= (−1)λz,i |Ψ〉G(C)

, (9)

where i ∈ In(G(C)), 1 6 i 6 n, and λx,i, λz,i ∈ {0, 1}. Then, on G(C) the n-qubit unitary operation U

acting on an arbitrary quantum input state |ψin〉 can be realized up to some pauli operators with the

measurement model in Media(G(C)) described by PMedia(G(C)) and in In(G(C)) being X-basis measure-

ments.

For network topology supporting multi-unicast session, unitary operation Ũ can be considered as a

permutation on the input quantum systems and resulting states read from corresponding output systems.

Specially, for butterfly network supporting 2-unicast session, this permutation is a swapping operation

Uswap on two quantum systems A and B,

UswapA↔B
=

∑

a,b∈{0,1}
|ab〉〈ba|, (10)

with

UswapA↔B
σA
x U

†
swapA↔B

= σB
x ,

UswapA↔B
σB
x U

†
swapA↔B

= σA
x ,

UswapA↔B
σA
z U

†
swapA↔B

= σB
z ,

UswapA↔B
σB
z U

†
swapA↔B

= σA
z . (11)

Now, it is sufficient for us to prove the solvability of 2-unicast session over butterfly network. The key

concern is to design the measurement model PMedia(G(C)) on intermediate nodes making the eigenvalue

equations (9) hold.

• Suppose that we have a six-particle cluster state |Φ〉initial associated to butterfly network graph

G(B). Sources introduce two additional quantum systems S′
1 and S′

2 in states |+〉S′
1
and |+〉S′

2
as the

input respectively and perform CZ operation to obtain an eight-particle cluster state |Φ〉G(B)
as illustrated

in Figure 6(a) and (b).

• Select correlation centers on which we perform X operation and its neighbor nodes perform Z

operation. The choice of correlation centers decides the measurement model PMedia(G(B)) (measurement

basis and orders) and then the solvability of a given communication task. The correlation centers are

shown in Figure 7(b) for each eigenvalue equation. There follow the equations:

|Φ〉G(B)
= K(S′

1,C1,T2)|Φ〉G(B)
= σ

(S′
1,C1,T2)

x |Φ〉G(B)
,

|Φ〉G(B)
= K(S′

2,C1,T1)|Φ〉G(B)
= σ

(S′
2,C1,T1)

x |Φ〉G(B)
,

|Φ〉G(B)
= K(S1,C2)|Φ〉G(B)

= σ(S1,C2)
x σ

(S′
1,T2)

z |Φ〉G(B)
,

|Φ〉G(B)
= K(S1,C2)|Φ〉G(B)

= σ(S2,C2)
x σ

(S′
2,T1)

z |Φ〉G(B)
. (12)
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Figure 6 (a) Each source introduces an additional quantum system in state |+〉 and performs CZ operation to obtain an

eight-particle cluster state (b).

Figure 7 (a) Another graphical representation of the eight-particle cluster state |Φ〉G(B)
; (b) the correlation centers for

the construction of eigenvalue equations (13); (c) the measurement basis on intermediate and input quantum systems.

• Measure the intermediate quantum systems S1, S2, C1 and C2 in X-basis, and get classical results

s1, s2, c1 and c2. The above equations induce the following eigenvalue equations for the projected state

|Ψ〉G(B)
:

σ
(S′

1,T2)
x |Ψ〉G(B)

= σ
(S′

1)
x (Uswapσ

(T1)
x U †

swap)|Ψ〉G(B)
= (−1)c1 |Ψ〉G(B)

,

σ
(S′

2,T1)
x |Ψ〉G(B)

= σ
(S′

2)
x (Uswapσ

(T2)
x U †

swap)|Ψ〉G(B)
= (−1)c1 |Ψ〉G(B)

,

σ
(S′

2,T1)
z |Ψ〉G(B)

= σ
(S′

1)
2 (Uswapσ

(T1)
2 U †

swap)|Ψ〉G(B)
= (−1)s1+c2 |Ψ〉G(B)

,

σ
(S′

1,T2)
z |Ψ〉G(B)

= σ
(S′

2)
z (Uswapσ

(T2)
z U †

swap)|Ψ〉G(B)
= (−1)s2+c2 |Ψ〉G(B)

. (13)

According to Lemma 2, swapping operation Uswap on butterfly network can be realized up to some local

unitary operations. In other words, the 2-unicast session is solvable over butterfly network. As shown

in Figure 7(c), X-basis measurement on all nodes except for target nodes can complete 2-unicast session

and all measurements are parallelized. A specific protocol is presented according to this measurement

model in the following subsection.

3.1.2 Our protocol

The procedure to realize swapping operation on butterfly network with In(G(B)) = {S′
1, S

′
2},Out(G(B)) =

{T1 = out(S′
1), T2 = out(S′

2)} is as follows.

• Prepare six-particle cluster state |Φ〉(initial) related to butterfly network according to Scheme 1.

• Each source introduces an arbitrary input quantum system and entangles it with its quantum system

belonging to the cluster state.

• Measure all qubits in the cluster state as well as the input quantum systems except for the output

qubits in X-basis simultaneously (the choice of measurement basis is based on the analysis in Subsection

3.1.1).

• Recover the original states with the help of classical communication and local pauli operators.

a) Generation of eight particles entangled state associated to butterfly network

Let the initial states of quantum systems S′
1 and S′

2 be

|ψ1〉 = α1|0〉+ β1|1〉, |ψ2〉 = α2|0〉+ β2|1〉.
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(1) Prepare |+〉 for all nodes in VG(B)
and auxiliary states |0〉 for each node v ∈ V1 according to the

amount of neighbor nodes |ngh(v)|. That is, for S1 ∈ V1, prepare |0〉⊗2
{C′

1,T
′
1}
, and so on. After that, the

initial state is prepared as follows:

|Φ〉initial = |+〉S1 |0⊗2〉{C′
1,T

′
1}|+〉S2 |0⊗2〉{C′′

1 ,T ′′
2 ,R′

2}|+〉C2 |0⊗3〉{C′′′
1 ,T ′′

1 ,T ′′
2 }|+⊗3〉{C1,T1,T2}. (14)

(2) Select proper nodes to be the control nodes for the generating cluster state. This selection is of

great importance in reducing the communication cost. For each node in V1, perform CX on its qubit

and auxiliary qubits. The resulting state becomes

|Φ〉(1) = 1√
2
(|0⊗3〉+ |1⊗3〉){S1,C

′
1,T

′
1}(|0

⊗3〉+ |1⊗3〉){S2,C
′′
1 ,T ′

2}(|0
⊗4〉+ |1⊗4〉){C2,C

′′′
1 ,T ′′

1 ,T ′′
2 }|+⊗3〉{C1,T1,T2}.

(15)

Then auxiliary states are then sent to their correlative neighboring nodes.

(3) At each node w ∈ V2, in(w) is the auxiliary qubits received by nodes w. Clearly, in(C1) =

{C′
1, C

′′
1 , C

′′′
1 }, in(T1) = {T ′

1, T
′′
1 }, in(T2) = {T ′

2, T
′′
2 }. Control operation CZin(w)→w is performed on

in(w) and w. The resulting state becomes

|Φ〉(2) =
∑

x,y,z∈{0,1}
|xyz〉S1S2C2 |xyz+(xyz)〉C′

1C
′′
1 C′′′

1 C1
|xz+(xz)〉T ′

1T
′′
1 T1

|yz+(yz)〉T ′
2T

′′
2 T2

. (16)

(4) Measure in(w) in X-basis, a highly entangled state

|Φ〉(3) =
∑

x,y,z∈{0,1}
|xyz〉S1S2C2 |+(xyz)+(xz)+(yz)〉C1T1T2 (17)

is generated among nodes in VG(B)
.

(5) Further, entangle |ψ1〉 and |ψ2〉 with this six-particle cluster state in Eq. (17). Finally, we get an

eight-particle entangled state

|Φ〉(4) = [(|000 + + + ψ1ψ2〉+ |001−−− ψ1ψ2〉) + (|010 +−− ψ1ψ2〉+ |011−++ ψ1ψ2〉) + (|100
−+− ψ1ψ2〉+ |101 +−+ ψ1ψ2〉) + (|110−−+ ψ1ψ2〉+ |111 + +− ψ1ψ2〉)]S1S2C2T1T2C1S

′
1S

′
2
.

(18)

b) Transmitting information crossly over butterfly network

We rewrite Eq. (18) with X-basis in a compact way as

|Φ〉(4) =
∑

m,n,p,q∈{0,1}
|+(m) +(n) +(p) +(q)〉S1,S2,C2,C1(Z

qXn+p)T1 ⊗ (ZqXm+p)T2 |Φ〉(5), (19)

where |Φ〉(5) = (|++ψ1ψ2〉+|−+ψ1ψ2〉+|+−ψ1ψ2〉+|−−ψ1ψ2〉)T1T2S
′
1S

′
2
with |+(0)〉 = |+〉, |+(1)〉 = |−〉,

|ϕ〉 = Z|ϕ〉.
• Measurements on S1, S2, C2, C1 lead to classical results s1, s2, c2, c1 and the resulting state

|Φ〉(6) = (Zc2Xs2+c2)T1 ⊗ (Zc2Xs1+c2)T2 |Φ〉(5), (20)

s2, c2, c1 and s1, c2, c1 are sent to T1 and T2 with free classical communication, respectively.

• Next, we measure particles S′
1, S

′
2 in X-basis and get that

|Φ〉(7) = (Z
s′2
T1

⊗ Z
s′1
T2
)

(
I + (−1)s

′
1X

2

)

S′
1

(
I + (−1)s

′
2X

2

)

S′
2

|Φ〉(6). (21)

Note that ( I+(−1)s
′
1X

2 )S′
1
( I+(−1)s

′
2X

2 )S′
2
are commuted with (Zc2Xs2+c2)T1 ⊗ (Zc2Xs1+c2)T2 because of

acting on different quantum systems. Thus all the measurements can be performed simultaneously which

will lead to a significant reduction of the communication complexity. We rewrite Eq. (21) as

|Φ〉(7) = (Zc2+s′2Xs2+c2)T1 ⊗ (Zc2+s′1Xs1+c2)T2

(
I + (−1)s

′
1X

2

)

S′
1

(
I + (−1)s

′
2X

2

)

S′
2

|Φ〉(5). (22)
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Table 1 Pauli operators where s1, s2, c1, c2, s′1, s
′

2 ∈ {0, 1} to attain |ψ2ψ1〉T1T2

Measurement results Local pauli operators

s1s2c1c2s
′

1s
′

2 Z
c1+s

′
2

T1
X

s2+c2
T1

⊗ Z
c1+s

′
1

T2
X

s1+c2
T2

• After proper pauli operators as illustrated in Table 1, we have

|ψ〉out = (α2|0〉+ β2|1〉)T1(α1|0〉+ β1|1〉)T2 .

Consequently, it accomplishes the 2-unicast session over butterfly network with the final state denoted

as

|ψ〉out = Uswap|ψ1ψ2〉T1T2 = |ψ2ψ1〉T1T2 .

We can conclude that swapping operator Uswap can be realized with inputs {S′
1, S

′
2} and outputs

{T1, T2}. In other words, 2-unicast session can be completed by X-basis measurement on all intermediate

nodes {S1, S2, C1, C2} and also on the input nodes {S′
1, S

′
2} over the butterfly network with bottleneck

channel (C1, C2).

3.2 2-unicast session over grail network

In this subsection, we analyze the solvability of the grail network supporting 2-unicast session. Ref. [18]

has discussed the solvability on the 2-unicast session in grail network. In their protocol, EPR pairs

pre-shared between neighbor nodes are considered as the fundamental resources which are local entan-

glement resource. Now we provide an alternative way for the solvability over this network according to

Lemma 2 and the designed measurement model. The grail network (Figure 8(a)) naturally relates to a 2D

cubic lattice (Figure 8(b)) over which we can pre-share an eight-particle cluster state. In grail network,

two sources holding nodes S1 and S2 wish to communicate with their targets T1 and T2 respectively.

• Firstly, suppose that we pre-share an eight-particle cluster state |Φ〉Gr associated to the grail network

(Figure 8(b)). The bipartition to this graph is given by V1 = {S1, S2,M2,M4} and V2 = {M1,M3, T1, T2}.
According to Scheme 1, we get the eight-particle cluster state,

|φ〉 =
∑

x1x2x3x4∈{0,1}
|x1x2x3x4〉S1S2M2M4 |+({x1,x2,x3})〉M1 |+({x1,x3,x4})〉M3 |+({x3,x4})〉T1 |+({x4})〉T2 .

• Sources introduce input quantum systems S′
1 and S′

2, respectively. Each source performs CZ on Si

and S′
i, i = 1, 2 (as illustrated in Figure 8(c)), we then get a ten-particle cluster state in Figure 8(d),

|φ〉 =
∑

x1x2x3x4∈{0,1}
|x1x2x3x4〉S1S2M2M4 |+({x1})〉S′

1
|+({x2})〉S′

2

|+({x1,x2,x3})〉M1 |+({x1,x3,x4})〉M3 |+({x3,x4})〉T1 |+({x4})〉T2 . (23)

• Select correlation centers to perform unitary operation of Eq. (2). The choice of correlation centers

decides the measurement model PMedia(Gr)(measurement basis and orders) and then the solvability of

the 2-unicast session over grail network. We get that

|Φ〉Gr = K(S′
1,M1,T2,M3)|Φ〉Gr = σ

(S′
1,M1,T2,M3)

x |Φ〉Gr ,

|Φ〉Gr = K(S′
2,T1,M3)|Φ〉Gr = σ

(S′
2,T1,M3)

x |Φ〉Gr,

|Φ〉Gr = K(S1,M2,M4)|Φ〉Gr = σ
(S′

1,T2)
z σ(S1,M2,M4)

x |Φ〉Gr,

|Φ〉Gr = K(S2,M2)|Φ〉Gr = σ
(S′

2,T1)
z σ(S2,M2)

x |Φ〉Gr. (24)

X-basis measurement on intermediate nodes gets that

σ
(S′

1,T2)
x |Ψ〉Gr = σ

(S′
1)

x (Uswapσ
(T1)
x U †

swap)|Ψ〉Gr = (−1)m1+m3 |Ψ〉Gr,

σ
(S′

2,T1)
x |Ψ〉Gr = σ

(S′
2)

x (Uswapσ
(T2)
x U †

swap)|Ψ〉Gr = (−1)m3 |Ψ〉Gr,
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Figure 8 (a) Grail Network Gr; (b) Grail Network associated to 2D cubic lattice; (c) each source introduces an additional

quantum system in state |+〉 and performs CZ operation to obtain a ten-particle cluster(d); (e) the measurement basis on

intermediate nodes.

σ
(S′

2,T1)
z |Ψ〉Gr = σ

(S′
1)

2 (Uswapσ
(T1)
2 U †

swap)|Ψ〉Gr = (−1)s1+m2+m4 |Ψ〉Gr,

σ
(S′

1,T2)
z |Ψ〉Gr = σ

(S′
2)

z (Uswapσ
(T2)
z U †

swap)|Ψ〉Gr = (−1)s2+m2 |Ψ〉Gr. (25)

According to Lemma 2, swapping operation on arbitrary 2-qubit input state can be realized up to some

local unitary operations. As shown in Figure 8(e), X-basis measurement on all nodes except for target

nodes can complete 2-unicast session and all measurements are parallelized.

We claim that swapping operator Uswap can be realized with inputs In(Gr) = {S′
1, S

′
2} and outputs

Out(Gr) = {T1, T2}. In other words, 2-unicast session can be completed by X-basis measurement on all

intermediate nodes Media(Gr) = {S1, S2,M1,M2,M3,M4} and also on the input nodes {S′
1, S

′
2} over the

grail network with bottleneck channel (M1,M2), (M3,M4).

4 Extended butterfly network

In this section, we attempt to generalize the method discussed above to a more general network and

accordingly, provide a solution to the problems of transmission congestion and the lower transmission

rate on upcoming large-scale quantum communication. We concentrate on a general network supporting

4-unicast session. It is worth noting that we restrict entanglement resource on 2D and 3D cluster state

in which the neighbor sites of each node are no more than four or six. Thus we generalize our study to 4-

unicast session. For the general k-unicast session, cluster state on higher dimension would be introduced.

As state in Lemma 2, a solvable network should satisfy two conditions

• The network graph corresponds to a cluster,

• Constructing eigenvalue equations that satisfy the condition of Eq. (9).

Now, we prove the solvability of extended butterfly network from the above two aspects.

A general network topology supporting 4-unicast session can be seen in Figure 9(a). Each source

aims to communicate with its corresponding target and all source-target pairs share a single bottleneck

channel. Unlike butterfly and grail networks, the extended butterfly network fails to correspond to a

cluster naturally. Therefore, we introduce eight additional nodes making the network graph to be 3D

cubic lattice of size 18-particle as illustrated in Figure 9(b). In this modified graph, links (S1, T2) and
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Figure 9 (a) Extended butterfly network G4; (b) modified graph related to G4; (c) each source introduces an additional

quantum system in state |+〉 and perform CZ operation to obtain a 22-particle cluster.

(S4, T3) share a common channel (1, 4) as well as (S1, T4) and (S2, T3) share (2, 3), (S4, T1) and (S3, T2)

share (5, 7), (S3, T4) and (S2, T1) share (6, 8). We will show that even in this restricted and modified

network, 4-unicast session can be realized by single qubit measurement and free classical communication.

According to Scheme 1, a bipartition on Figure 9(b) is given by

V1 = {S1, S2, S3, S4, C2, 3, 4, 7, 8}, V2 = {C1, 1, 2, 5, 6, T1, T2, T3, T4}.

Similarly, sources introduce four additional input quantum systems S′
1, S

′
2, S

′
3, S

′
4 and we have

• In(G4) = {S′
1, S

′
2, S

′
3, S

′
4},

• Media(G4) = {S1, S2, S3, S4, C1, C2, 1, . . . , 8},
• Out(G4) = {T1 = out(S′

1), T2 = out(S′
2), T3 = out(S′

3), T4 = out(S′
4)}.

Besides, the unitary operations to complete this 4-unicast session can be considered as identity trans-

formation I with

Iσ
S′
i

x I† = σ
S′
i

x , Iσ
S′
i

z I† = σ
S′
i

z , i = 1, . . . , 4, (26)

on the input quantum systems In(G4) and resulting states are output from corresponding target quantum

systems Out(G4).

Now we construct eigenvalue equations that satisfy the condition of Eq. (9).

• The cluster state over network G4 shown in Figure 9(b) can be represented as follows:

∑

x1···x9∈{0,1}
|x1 · · ·x9〉S1,S2,S3,S4,C2,3,4,7,8|+(x1,x2,x3,x4)〉C1 |+(x1,x4,x7)〉1|+(x1,x2,x6)〉2

|+(x3,x4,x8)〉5|+(x2,x3,x9)〉6|+(x3,x5,x8,x9)〉T1 |+(x4,x5,x7,x8)〉T2 |+(x1,x5,x6,x7)〉T3 |+(x2,x5,x6,x9)〉T4 . (27)

• Entangle the source inputs quantum system in state |+〉S′
i
, i = 1, . . . , 4 with the cluster state

generated above by CZ, we get the cluster state of size 22 (as shown in Figure 9(c)). The new cluster

state can be represented as

∑

x1,··· ,x9∈{0,1}
|x1 · · ·x9〉S1,S2,S3,S4,C2,3,4,7,8|+(x1)〉S′

1
|+(x2)〉S′

2
|+(x3)〉S′

3
|+(x4)〉S′

4

|+(x1,x2,x3,x4)〉C1 |+(x1,x4,x7)〉1|+(x1,x2,x6)〉2|+(x3,x4,x8)〉5|+(x2,x3,x9)〉6
|+(x3,x5,x8,x9)〉T1 |+(x4,x5,x7,x8)〉T2 |+(x1,x5,x6,x7)〉T3 |+(x2,x5,x6,x9)〉T4 . (28)

• Select correlation centers to construct 2× 4 eigenvalue equations as

|Φ〉G4 = K(S1,T1,C1,5,7)|Φ〉G4 = σ(S1,T1,C1,5,7)
x |Φ〉G4 ,

|Φ〉G4 = K(S2,T2,C1,1,5)|Φ〉G4 = σ(S2,T2,C1,1,5)
x |Φ〉G4 ,

|Φ〉G4 = K(S3,T3,C1,1,3)|Φ〉G4 = σ(S3,T3,C1,1,3)
x |Φ〉G4 ,

|Φ〉G4 = K(S4,T4,C1,3,7)|Φ〉G4 = σ(S4,T4,C1,3,7)
x |Φ〉G4 . (29)
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|Φ〉G4 = K(S′
1,C2,2,4)|Φ〉G4 = σ(S1,T1)

z σ
(S′

1,C2,2,4)
x |Φ〉G4 ,

|Φ〉G4 = K(S′
2,C2,4,8)|Φ〉G4 = σ(S2,T2)

z σ
(S′

2,C2,4,8)
x |Φ〉G4 ,

|Φ〉G4 = K(S′
3,C2,6,8)|Φ〉G4 = σ(S3,T3)

z σ
(S′

3,C2,6,8)
x |Φ〉G4 ,

|Φ〉G4 = K(S′
4,C2,2,6)|Φ〉G4 = σ(S4,T4)

z σ
(S′

4,C2,2,6)
x |Φ〉G4 . (30)

• We measure all intermediate nodes in X-basis, getting the result state |ψ〉(G4) with the following

eigenvalue equations that satisfy Eq. (9):

σ
(S′

1,T1)
x |ψ〉(G4) = σ

(S′
1)

x (Iσ(T1)
x I†)|ψ〉(G4) = (−1)rc1+r5+r7 |ψ〉G4 ,

σ
(S′

2,T2)
x |ψ〉(G4) = σ

(S′
2)

x (Iσ(T2)
x I†)|ψ〉(G4) = (−1)rc1+r1+r5 |ψ〉G4 ,

σ
(S′

3,T3)
x |ψ〉(G4) = σ

(S′
3)

x (Iσ(T3)
x I†)|ψ〉(G4) = (−1)rc1+r1+r3 |ψ〉G4 ,

σ
(S′

4,T4)
x |ψ〉(G4) = σ

(S′
4)

x (Iσ(T4)
x I†)|ψ〉(G4) = (−1)rc1+r3+r7 |ψ〉G4 . (31)

σ
(S′

1,T1)
z |ψ〉(G4) = σ

(S′
1)

z (Iσ(T1)
z I†)|ψ〉(G4) = (−1)rs1+rc2+r2+r4 |ψ〉G4 ,

σ
(S′

2,T2)
z |ψ〉(G4) = σ

(S′
2)

z (Iσ(T2)
z I†)|ψ〉(G4) = (−1)rs2+rc2+r4+r8 |ψ〉G4 ,

σ
(S′

2,T2)
z |ψ〉(G4) = σ

(S′
2)

z (Iσ(T2)
z I†)|ψ〉(G4) = (−1)rs3+rc2+r6+r8 |ψ〉G4 ,

σ
(S′

2,T2)
z |ψ〉(G4) = σ

(S′
2)

z (Iσ(T2)
z I†)|ψ〉(G4) = (−1)rs4+rc2+r2+r6 |ψ〉G4 . (32)

We can conclude that identity operator I can be realized with inputs {S′
1, S

′
2, S

′
3, S

′
4} and outputs

{T1, T2, T3, T4}. In other words, 4-unicast session can be completed by X-basis measurement on all

intermediate nodes {S1, S2, S3, S4, 1, 2, 3, 4, 5, 6, 7, 8} and also on the input nodes {S′
1, S

′
2, S

′
3, S

′
4} over the

network G4.

5 Discussion and conclusion

5.1 Resource consumption

Raussendorf et al. [24] introduce three parameters as the metrics M(G) = (S,O, T ) of the resource con-

sumption with spatial resources S, operational resources O and temporal resources T . Spatial resources

S are defined as the number of particles in the required cluster state associated to a given network

G. In this paper, S > |VG| since additional quantum systems are probably introduced to complete the

given communication task. The computation is driven by one-qubit measurement only. Thus, a single

one-qubit measurement is one unit of operational resources, and the operational resources O are defined

as the total number of one-qubit measurements involved. Since each cluster qubit is measured at most

once, we have O 6 S. As for the temporal resources, specified by the logical depth T is the minimum

number of measurement rounds to which the measurements can be parallelized. In this paper, all the

measurement can be parallelized. Thus the measurement round equals one.

Specially, M(G(B)) = (|S1, S2, C1, C2, T1, T2|, |In(G(B))
⋃

Media(G(B))|, 1) = (6, 6, 1). For our protocol

over butterfly network, the spatial resources S reaches the lower bound, i.e., S = 6 = |VG(B)
|. The

operational resources consumption is 6 and all the measurement can be performed simultaneously, thus

logical depth T equals 1.

For the grail network, also no additional quantum system is introduced except for the input systems. We

have S = |{S1, S2, C1, C2, C3, C4, T1, T2}| = 8. All nodes except for the target nodes are measured in X-

basis simultaneously, we haveO = |In(Gr)⋃Media(Gr)| = 8 and T = 1. Thus we haveM(Gr) = (8, 8, 1).

For the extended butterfly network G4, apart from the input systems, eight more additional systems

were introduced to form a 3D cubic lattice. Thus we have S = |{S1, . . . , S4, T1, . . . , T4, 1, . . . , 8, C1, C2}| =
18. All nodes except for the target nodes are measured in X-basis simultaneously, we have O= 18 and
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T = 1. Thus M(G4) = (18, 18, 1). Because of the additional quantum systems 1 to 8, the spatial resources

S = 18 is greater than |VG4 | = 10.

In conclusion, the spatial resources are no less than the network size, but the operational resources are

always less than the spatial resources. It should be noted that the temporal resources independent of the

network size are always a constant. The analysis reveals that resources consumption mostly reaches the

lower bounds.

5.2 Conclusion

The problems of transmission congestion and higher resources consumption are the first concern in large-

scale quantum network communication. Efficient protocols for given communication tasks should be

presented. The quantum multi-unicast network coding based on global entanglement state is considered.

In this paper, we first solve how to pre-share cluster state which is a basic resource for our protocols over

distant communication nodes. With the bigraph property of a cluster, we give a constant-step scheme as

the network scale increases. Parallel operations lead to the significant reduction of the temporal resource

cost. Further, we study the solvability of several quantum network with bottleneck channels. Local

measurement and free classical communication drive the information transmission. Specific measurement

basis and orders are designed. Based on the stabilizer formalism, we confirm, under the above measure-

ment model, the solvability of butterfly and grail networks which are two classical networks in network

coding. Because no additional nodes are introduced to these network graphs, the resource consumption

reaches the lower bounds. Also, we give a generalization to a more general network supporting four-

unicast session. Eight additional nodes are introduced making this graph corresponding to a cluster.

Even in this restricted and modified network, 4-unicast session is solvable with lower resource cost.
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