
. Supplementary File .

SCIENCE CHINA
Information Sciences

Public verifiability for shared data in cloud storage
with a defense against collusion attacks

WANG ZhongHua1*, HAN Zhen1 & LIU JiQiang1

1School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

Appendix A Scheme construction

Appendix A.1 Basic scheme

The proposed scheme consists of five algorithms: Setup, KeyGen, ReKeyGen, Sign, Verify. Details of the scheme are

described in Figure A1.

Appendix A.2 Data modification details

For the MHT demonstrated in Figure A2, m1’s Ωi = {h(H(m2)), h(e), h(c)}. After receiving the responses from the cloud

server, Uj first generates the rootR with {H(mi),Ωi} to verify the correctness of sigsk(H(R)) by checking e(sigsk(H(R)), g)
?
= e(H(R), gπA).

If it’s wrong, output FALSE; otherwise further computes the new root value based on {H(mi
′),Ωi} and compares it with

R′. If it’s wrong, output FALSE; otherwise Uj computes sigskj
(H(R′)) with Uj ’s private key, and then sends it to the

cloud server for update.

When Uj wants to modify l(l > 2) data blocks simultaneously, first generates the corresponding signatures
{
δ′il

}
il∈L

,

where L represents the indices of the modified data blocks, then sends update information update =
{
il,mil

′, δil
′}

il∈L
to the

cloud server. Upon receiving the messages, firstly the cloud server replaces mil and δil with mil
′ and δil

′ respectively, then

generates the value of new rootR′ at a time with the modified blocks, lastly sends Pupdate=
{
H(mil),Ωil , sigsk(H(R)), R′}

il∈L

to Uj , where Ωil means the node siblings on the path from the leaves
{
h(H(mil))

}
il∈L

to the root R of the MHT. For ex-

ample, as shown in Figure A2,
{
m′

1,m
′
3,m

′
5

}
’s Ωil il∈{1,3,5} = {h(H(m2)), h(H(m4)), h(H(m6)), h(g)}. After receiving the

responses from the cloud server, Uj could generate the root R with
{
H(mil),Ωil

}
and the new root R′ with

{
H(m′

il
),Ωil

}
only once. Consequently, the computation and communication overheads of Uj and the cloud server could be lowered

significantly. Nevertheless, when multi-user intend to modify multi-block, the above method can not be adopted. That’s

because users may modify the same data block at some point. If the method is used, there will be an inconsistency of

the relationship between the shared data and the root R. Most importantly, the revoked user could tamper with data

arbitrarily, however, the tampered data is not detected by the TPA and other valid users.

Appendix B Security analysis

As defined in ref. [7], the threat model of our scheme mainly includes two types of attacks, called as external security attack

and internal security attack.

Appendix B.1 Security of related works

As presented in letter, ref. [4–6] focus on the problem of integrity verification of the shared data with user revocation.

Unfortunately, they have severe security issues when user revocation happens. A detailed analysis could be illustrated as

follows.

Ref. [4] achieved the integrity of the shared data by utilizing the idea of proxy re-signatures. When the data owner

has revoked a group general user, the cloud server needs to convert the revoked user’s signatures into a valid group user’s.

*Corresponding author (email: wangzhonghua@bjtu.edu.cn)

2 Wang Z H, et al. Sci China Inf Sci

Setup. Let G1 and G2 be two groups of prime order p, g be a generator of G1, e: G1 × G1 → G2 be a

bilinear map, ω be another generator of G1. The global parameters are (G1,G2,e, p, g, ω,H), where H is

a hash function with H : {0, 1}
∗
→ G1. h is a cryptographic hash function. The total number of blocks

in the shared data is n, so the shared data could be represented as M = (m1, ...,mn). The total number

of users in the group is d.

KeyGen. Data owner A chooses πA ∈ Z
∗

p as private key SKA randomly, and outputs public key

PKA = gπA . Group general user Uj also generates a random πj ∈ Z
∗

p as Uj ’s private key SKj , and

outputs public key PKj = gπj , where j ∈ {1, ..., d}. A and Uj generate personal secret ǫl ∈ Z
∗

p and

output gπlǫl respectively, where l ∈ {0, d}. Suppose the secret produced by A is ǫ0, A sends gπAǫ0 to

group user Uj and the TPA.

ReKeyGen. The cloud server generates a unidirectional re-signing key rkj→A from Uj to A as follows:

1) the cloud server generates a random y ∈ Z
∗

p and sends it to A; 2) A sends πAǫ0
y

to Uj ; 3) Uj sends
πAǫ0
πjǫjy

to the cloud server; 4) the cloud server recovers rkj→A = πAǫ0
πjǫj

.

Sign. Given private key SKA and secret ǫ0, block mk ∈ Zp, where k ∈ [1, ...,n], A produces the

signature on block mk as: δk = (H(mk)ω
mk)πAǫ0 ∈ G1, denotes the set of signatures by δ = {δk}. Then

A generates a root R based on the construction of MHT, where the leave nodes of the tree are ordered

set of BLS hashes of H(mk). Afterwards, A signs the root R with private key SKA as: sigskA
(H(R))←

(H(R))πA .

Verify. The TPA could verify the integrity of the outsourced shared data stored in the cloud server

via a challenge-and-response protocol. The detailed process is as follows:

(1) Challenge message generation. Firstly, the TPA generates gr, where r is a random in Z
∗

p. Next,

the TPA picks a random c-element subset I of set [1,n] to locate the c selected random blocks. For each

i ∈ I, the TPA chooses a random vi ∈ Z
∗

q ⊆ Zp, where q is a prime. Lastly, the TPA sends {i, vi}i∈I and

gr to the cloud server.

(2) Proof generation. Upon receiving {i, vi}i∈I and gr, the cloud server computes

µ =
∑

i∈I

vimi, φ =
∏

i∈I

φi
vi =

∏

i∈I

e(δi, g
r)

vi =
∏

i∈I

e((H(mi)ω
mi)πAǫ0 , gr)vi (1)

In addition, the cloud server will also provide the TPA with a small amount of auxiliary information

{Ωi}i∈I , which are the node siblings on the path from the leaves {h(H(mi))}i∈I to the root R of the

MHT. Finally, the cloud server generates proof P=
{

µ, φ, {H(mi),Ωi}i∈I , sigsk(H(R))
}

and responds the

TPA with it.

(3) Verify proof. Based on the responses from the cloud server, at the beginning the TPA generates

root R with {H(mi),Ωi}i∈I and authenticates sigsk(H(R)) by checking:

e(sigskA
(H(R)), g)

?
= e(H(R), gπA), (2)

if it is failed, the TPA outputs FALSE and reports it to the group users. Otherwise, the TPA checks

φ
?
= e(

∏

i∈I

(H(mi))
viωµ, gπAǫ0r). (3)

If it is true, the TPA believes the correctness of the shared data; otherwise the shared data has been

corrupted. Finally, the TPA reports the verification result to the group users.

Figure A1 Details of our proposed scheme.

However, as the re-signature key from Ui to Uj is rki→j = πj/πi, if the revoked user Ui colludes with the cloud server, they

will be able to obtain Uj ’s private key πj by computing πiπj/πi. Consequently, one of them could tamper with some block

mi to m∗
i and forge the signature δ∗i = (H(idi)ω

m∗
i)πj of m∗

i , here H is a hash function, idi means the block index, ω is

a generator of a group with prime order. Then the cloud server replaces the previous block mi and signature δi with them

respectively, but the TPA and other valid group users would believe that this operation is performed by Uj , because the

signature δ∗i is generated with Uj ’s private key.

Ref. [5] achieved the objective that the revoked user Ui and the cloud server could not obtain Uj ’s private key πj even

if they have collusion. Unfortunately, they are still able to deceive the TPA and other valid group users. Specifically,

firstly Ui generates the signature δ∗i = (uB∗
i gm

∗
i α

2
)πi of m∗

i with Ui’s private key πi, here B∗
i is a hash value of the block

Wang Z H, et al. Sci China Inf Sci 3

h() h(g)

h(H(m1)) h(H(m2)) h(H(m3)) h(H(m4)) h(H(m5)) h(H(m6)) h(H(m7)) h(H(m8))

R=h(a)

h(b) h(c)

h(d) h(e) h(f) h(g)

R=h()

h() h()

h() h()

'a

'b 'c

'd 'e 'f

3(('))h H m 5((')h H m1(('))h H m h(H(m2)) h(H(m4)) h(H(m6)) h(H(m7)) h(H(m8))

Figure A2 MHT structure.

name and the time stamp, u and g are two generators of a group with prime order, α is a random number. During the

verification process, the cloud server generates the proof for the selected signatures including δ∗i by computing e(δ∗i , g
π0r
πi) =

e((uB∗
i gm

∗
i α

2
)πi , g

π0r
πi) = e((uB∗

i gm
∗
i α

2
), g)π0r, which could be viewed as that generated by the master user U0 (i.e. data

owner) with U0’s private key π0, here r is a random number. As the TPA merely utilizes the final value of proof from the

cloud server to verify the integrity of the shared data, regardless of concrete information used for computing the proof, so

the TPA could not find that m∗
i has been tampered with.

In ref. [6], the author claimed that secure group user revocation could be achieved with vector commitment and verifier-

local revocation group signature. Nevertheless, the revoked user Ui could still forge a signature of the tampered data

and pass the verification in the proposed scheme. The detailed explanation is presented as follows. Suppose Ui wants

to modify some shared data mi to m∗
i . Firstly, Ui generates the new commitment C∗ with the old commitment C, m∗

i

and mi; next, Ui computes T1 = uα and T2 = Aiv
α, where u, v and α are three random numbers, and Ai means the

revocation token corresponding to Ui’s private key xi; thirdly, Ui computes the challenge value c with C∗, T1, T2 and

some random numbers; lastly, Ui outputs the signature of m∗
i , which is produced with T1, T2, c, xi and some random

numbers. When the TPA runs the integrity verification algorithm, firstly, the TPA verifies the validity of signature of m∗
i

by comparing the received challenge value c with that computed locally. Secondly, by checking e(T2/Ai, u)
?
= e(T1, v) the

TPA decides whether the signer of the signature is a revoked user or not. As the data utilized by the TPA for computing

the challenge value c is the same as that utilized by Ui, so the signature of m∗
i is valid. However, as long as Ui modifies

T1 or T2, e(T2/Ai, u) = e(Aiv
α/Ai, u) ̸= e(vα, u) ̸= e(uα, v) ̸= e(T1, v). Consequently, the TPA will believe that the signer

generating the signature of m∗
i has not been revoked.

Appendix B.2 Security of proposed scheme

Theorem 1. Suppose CDH assumption holds in G1, this proposed scheme is existentially unforgeable under adaptive

chosen message attack (EUF-CMA) in the Random Oracle model for an external adversary Aout. Concretely, if Aout can

generate a forgery of a signature against this proposed scheme with the time of t and advantage of ϵ after making at most

qH hash queries, qsi secret generation queries, qs signing queries, qrs re-signing queries, and requesting at most qK public

keys, then there exists a (t1, ϵ1)-algorithm B that can solve the CDH problem in G1 with t1 6 t+ qHTG1
+ qsTG1

+2qrsTp

and ϵ1 > ϵ/qHqK . Here TG1
means one exponentiation time on G1 takes, Tp means one pairing operation time on G2 takes.

Theorem 2. Suppose DL assumption holds in G1, this proposed scheme is existentially unforgeable under adaptive chosen

message attack (EUF-CMA) in the Random Oracle model for an internal adversary Ain. Concretely, if Ain can generate

a forgery of root R signature against this proposed scheme with the time of t′ and advantage of ϵ′ after making at most qH
hash queries, at most qK public keys queries (includes uncorrupted key generation queries and corrupted key generation

queries), qsi secret generation queries, qs signing queries and qrk re-signing key generation queries, then there exists a (t2,

ϵ2)-algorithm B that can solve the DL problem in G1 with t2 6 t′ + qsTG1
and ϵ2 > 1

qH
(ϵ′ − 1

qK
− qs

2|p|
).

Proof. Suppose B is given as input a DL challenge tuple (g, ga) with unknown a ∈ Z∗
p, algorithm B’s goal is to output a.

algorithm B acts as the challenger and plays the EUF-CMA game with Ain in the following way.

Setup. Algorithm B gives public system parameters (G1,G2,e, p, g, ω,H) to Ain, here Random Oracle H is controlled by

B. Algorithm B also maintains hash list Hlist and key list Klist which are initially empty.

Hash oracle queries Qhash. At any time Ain can issue the random oracle queries H. On receipt of an H query on

X ∈ Zp, if this query has appeared in the Hlist with a tuple (X,α), returns the predefined value as the result of the query.

Otherwise, chooses α′ ∈ G1 randomly, then adds the tuple (X,α′) into the list Hlist and responds with H(X) = α′.

In this phase, Ain issues a series of queries as in the definition of the EUF-CMA game and B answers these queries for

Ain as follows:

Uncorrupted key generation query (i) QUkeygen. B chooses xi ∈ Z∗
p randomly and defines pki = (ga)xi , Yi = 0.

Next, it adds the tuple (i, pki, xi, Yi) to Klist and returns pki to Ain.

4 Wang Z H, et al. Sci China Inf Sci

Corrupted key generation query (i) QCkeygen. B chooses xj ∈ Z∗
p and defines pkj = gxj , Yj = 1. Next, it adds the

tuple (j, pkj , xj , Yj) to Klist and returns (pkj , xj) to Ain.

Secret generation query (i) Qsecinfo. B retrieves Klist, if Yi = 1, B returns ϵi to Ain, otherwise returns aϵi ∈ Z∗
p to

Ain.

Signing query (i) Qsign. Firstly, Ain inputs public key pki and message m. Afterwards, B retrieves Klist to obtain the

corresponding private key xi, and checks Hlist whether it contains a tuple (m,α) or not. If it is true, returns signature

δ = αxi to Ain; otherwise B chooses α′ ∈ G1 randomly and adds the tuple (m,α′) to Hlist, finally returns signature

δ = (α′)xi to Ain.

Re-signing key generation query (i, j) Qrekey. B retrieves Klist, if Yi = Yj , B returns
xjϵj
xiϵi

to Ain; if Yi = 0, Yj = 1,

returns
axjϵj
xiϵi

to Ain; if Yi = 1, Yj = 0, returns
xjϵj
axiϵi

to Ain.

Forgery. Ain finishes the queries in the phase and outputs a target message m∗ and a target public key pk∗. B responds

as follows:

• Recovers tuple (pk∗, x∗, Y ∗) from Klist, here Y ∗ = 0, pk∗ = (ga)x
∗
.

• computes α∗ = H(am∗) ∈ G1 and outputs the target signature δ∗ = (α∗)ax
∗
.

Ain verifies the correctness of the forgery signature δ∗ by comparing e(δ∗, g) with e(α∗, gax
∗
), B outputs am∗ from Hlist

as a response to the solution to the DL problem in G1.

Analysis. Next analyse the probability of solving the DL problem in G1 for B successfully. The event AskH∗ denotes Ain

queries am∗ to H, the event Askpubkey denotes Ain queries pk∗ to Qkeygen, the event signErr denotes Ain could generate

valid signatures without querying H. As long as AskH∗ does not happen, the simulation of H is perfect.

As described before, Ain issues at most qK public keys queries, so Pr[Askpubkey] = 1/qK . In the signing simulation, if

a signature δ is valid, AskH denotes Ain queries X to H, we have Pr[valid|¬AskH] 6 1
2|p|

, where |p| denotes the length

of element in G1. Ain issues at most qs signing queries, so Pr[signErr] 6 qs
2|p|

. Thus, succeed could be represented as the

event AskH∗ ∨Askpubkey ∨ signErr, which denotes Ain succeeds in forging the target signature δ∗. Then

ϵ′ = Pr[succeed] = Pr[AskH∗ ∨Askpubkey ∨ signErr] 6 Pr[AskH∗] + Pr[Askpubkey] + Pr[signErr],

Since Pr[Askpubkey] = 1/qK and Pr[signErr] 6 qs
2|p|

, so we have

Pr[AskH∗] > ϵ′ − Pr[Askpubkey]− Pr[signErr] > ϵ′ −
1

qK
−

qs

2|p|
,

Meanwhile, if AskH∗ happens, B will be able to solve the DL problem in G1, then

ϵ2 > 1

qH
Pr[AskH∗] > 1

qH
(ϵ′ −

1

qK
−

qs

2|p|
).

From the description of the simulation, B requires one extra exponentiation on G1 for each Qsign, so its running time t2 is

Ain’s running time t′ plus qsTG1
.

According to what we discussed above, we give the security analyses of external attack and internal attack with Theorem

1 and Theorem 2 respectively. Specifically, as shown in Theorem 1, if the advantage of an external adversary(i.e. an attacker

outside the system) for generating a forgery of a valid signature under the external security game is non-negligible, then we

can find an algorithm to solve the CDH problem in G1 with a non-negligible probability(t1 6 t+ qHTG1
+ qsTG1

+ 2qrsTp,

ϵ1 > ϵ/qHqK), which contradicts to the assumption that the CDH holds in G1. Similarly, as stated in Theorem 2, if

the advantage of an internal adversary(i.e. a revoked user) for generating a forgery of root R signature under the internal

security game is non-negligible, then we can find an algorithm to solve the DL problem in G1 with a non-negligible

probability(t2 6 t′ + qsTG1
, ϵ2 > 1

qH
(ϵ′ − 1

qK
− qs

2|p|
)), which contradicts to the assumption that the DL holds in G1.

Therefore, it is computationally infeasible to generate a forgery of a signature in our proposed scheme under the CDH and

the DL assumptions. 2

Appendix C Overhead analysis

We use ExpG1
and MulG1

to denote the complexity of one exponentiation operation and one multiplication operation on

group G1 respectively, use ExpG2
and MulG2

to denote the complexity of one exponentiation operation and one multipli-

cation operation on group G2 respectively, use HashG1
to denote the complexity of one hash operation on group G1, use

Pairing to denote one pairing operation on e : G1 × G1 → G2, use n to denote the number of the whole shared data blocks,

use c to denote the number of the shared data selected by the TPA, use η to denote the number of group users that modify

the selected shared data, use Y to denote the number of data blocks last modified by the revoked users.

Appendix C.1 Computation overhead

Appendix C.1.1 Computation overhead of related works

To verify the integrity of the selected shared data, ref. [1] costs the TPA 2Pairing + ExpG1
+MulG1

+ cFprp operations,

where only Fprp operation is related to the number of the selected shared data. That’s because the identifier of every

selected shared data needs performing this operation. For the cloud server, not only every selected shared data but also the

corresponding signatures need performing ExpG1
and MulG1

operations.

In ref. [4], when the TPA verifies the integrity of the shared data uploaded by the data owner, the TPA first performs

Wang Z H, et al. Sci China Inf Sci 5

cHashG1
+ cExpG1

+ (c− 1)MulG1
operations to generate the proof related to the identifier of every selected shared data,

then the TPA multiplies the result with the shared data block proof from the cloud server. Besides the block proof, the

cloud server also performs cExpG1
+ (c − 1)MulG1

operations to generate the proof for the signatures. Finally, the TPA

outputs the verification result by 2pairing operations. When the data owner revokes some group users, the cloud server only

re-signs the signatures generated by the revoked users, the total cost of proof generation is the same as before. However,

the TPA needs to consider the number of group users modifying the selected shared data, which has an effect on the proof

generated by the cloud server, because the number of the subproof is proportionate to it.

In the verification process described in ref. [5], the TPA transfers plenty of complex operations on group G1 to the cloud

server. When the data owner revokes some group users, the TPA performs ηExpG1
operations to generate a challenge set

for every group user modifying the selected shared data. Besides generating the proof, the cloud server still performs ExpG1

operation for every selected data block last modified by the revoked users.

In ref. [6], at the beginning, the TPA verifies the correctness of signature produced with the shared data commitment

and some group user’s private key, which only costs the TPA constant times operations, but the verification cost of the

selected shared data is linear in its number. The cloud server performs (c− 1)ExpG1
+(c− 2)MulG1

operations to generate

the proof for every selected shared data. For the user revocation, the TPA performs more 2pairing operations on G2 and

one division operation on G1 to authenticate the identity of the signer, the cloud server has no changes.

Appendix C.1.2 Computation overhead of our scheme

As shown in Section Appendix A, when the TPA verifies the shared data uploaded by the data owner initially, the TPA

performs one ExpG1
operation to generate the challenge message at the beginning, and then the cloud server performs

c(Pairing+ExpG2
)+(c-1)MulG2

operations to generate the proof information. To verify the integrity of the shared data,

the TPA needs to perform c(log2 n)HashG1
+3Pairing+(c+2)ExpG1

+cMulG1
operations. To revoke a group user, the data

owner A only needs to perform one ExpG1
operation to generate the information used for verifying data integrity. If the valid

group users or A wants to verify the integrity of the shared data after revoking a group user, firstly the TPA performs 2ExpG1

operations to generate the challenge message, and then the cloud server conducts at most c(Pairing+ExpG2
+ExpG1

)+(c-

1)MulG2
operations to generate the proof information, lastly the TPA performs the same operations as before to verify the

integrity of the shared data.

Appendix C.1.3 Comparison and analysis

Now firstly we compare our proposed scheme with the ref. [1,4–6] in terms of computation overhead, the result is summarized

in Table C1. As shown in Table C1, as the cloud server in ref. [6] needs to performs c(c−1)ExpG1
+c(c−2)MulG1

operations

for the selected data, obviously, our proposed scheme is better than ref. [6]. However, compared with ref. [1,4,5], our proposed

scheme may be not perfect in the total computation overheads of the TPA and the cloud server, the reason is that the

TPA in our proposed scheme needs to perform c(log2 n)HashG1
operations to verify the value of root R in MHT based on

the selected data(as illustrated in Section Appendix D.1, the computation time of HashG1
is the most longest one, which

is about 2.7 times as long as that of Pairing). Nevertheless, it should be noted that the extra computation is necessary

to achieve the correctness of integrity verification of the shared data, especially in the case of data modification and user

revocation. Generally, in the process of data sharing, the group users modify the shared data frequently and the data

owner often revokes the group users. Thus, the TPA rarely verify the integrity of the shared data which is uploaded by

the data owner initially. Furthermore, when the TPA runs the verification process in the case of user revocation, η plays

an important role in the process of ref. [4,5], however, which is neglected in our proposed scheme. Besides, the verification

time of the TPA in our scheme is related to the value of n. On the assumption of keeping c unchanged, if the size of each

data block is increased in our proposed scheme, the verification cost of our scheme will be reduced significantly. So the

extra computation of the verification process is not a severe issue in the cases of secure user revocation and data block of

large size.

When a group user Uj modifies a data block, to prevent Uj tamper with the shared data maliciously without being

detected by the TPA, Uj and the cloud server need to perform a series of operations containing data computing and

information transmission. Thus, with a gradual increasement of the number of data blocks modified by the group user, it will

bring a heavy overhead of computation and communication to the user and the cloud server. Consequently, we have to admit

that it has an important effect on the proposed scheme for data modification. However, we could adopt a method to reduce

the overhead of computation and communication. In particular, as described in Section Appendix A.2, suppose a group user

Uj intends to modify l blocks simultaneously, firstly Uj needs to perform l(2ExpG1
+HashG1

+mulG1
) operations to generate

the signatures of new data blocks; afterwards, the cloud server merely performs (log2 n+1)HashG1
operations to generate the

response to the update information; in the end, Uj performs 2(log2 n+1)HashG1
+2Pairing+ExpG1

operations to check the

value of new root R′. If we use the method of single data block modification, the cloud server will perform l(log2 n+1)HashG1

operations to generate the response totally, and Uj needs to perform 2l(log2 n+1)HashG1
+2Pairing+ExpG1

operations to

check the value of R′. Therefore, with the method of a single user updating multi-block discussed in Section Appendix A.2,

the computation efficiency of the user and the cloud server can be improved drastically. Nevertheless, it should be noted

that this method is not appropriate to the case of multi-user updating the data blocks.

6 Wang Z H, et al. Sci China Inf Sci

Fprp denotes a pseudorandom permutation in ref. [1], n is the number of the shared data blocks, ∗ denotes the operation

actually is one division operation on G1 or G2(could be viewed as MulG1
and MulG2

), ∅ denotes user revocation is not

supported in ref. [1].

Table C1 Comparison between our scheme and ref. [1, 4–6] in computation overhead

Basic scheme Scheme with user revocation

Comp.cost(TPA) Comp.cost(cloud server) Comp.cost(TPA) Comp.cost(cloud server)

2Pairing+ExpG1
2cExpG1

Ref. [1] +MulG1
+cFprp +2(c-1)MulG1

∅ ∅

(c+ 1)ExpG1
(η − 1)(MulG1

+MulG2
)

Ref. [4] +c(MulG1
+HashG1

) cExpG1
+(c-1)MulG1

+(η + 1)pairing Y ExpG1

+2pairing +(c+ 1)ExpG1
+cExpG1

+(c-1)MulG1

+c(MulG1
+HashG1

)

6ExpG1
+3Pairing c(ExpG1

+ ExpZq) (η+7)ExpG1
+MulG1

(Y+c)ExpG1
+ cExpZq

Ref. [5] +2MulG2
+MulG1

+(c-1)(MulG1
+MulG2

) +3Pairing+2MulG2
+(c-1)(MulG1

+MulG2
)

+c(Pairing+ExpG2
) +c(Pairing+ExpG2

)

(c+5)ExpG1
+4ExpG2

(c+ 5)ExpG1
+ 4ExpG2

Ref. [6] +(2c+ 5)pairing c(c− 1)ExpG1
+(2c+ 7)pairing c(c− 1)ExpG1

+(c∗ + 1)MulG1
+c(c− 2)MulG1

+(c+ 1)∗MulG1
+MulG1

+c(c− 2)MulG1

+3MulG2
+MulG2

∗ +3MulG2
+MulG2

∗

c(log2 n)HashG1
c(Pairing+ExpG2

) c(log2 n)HashG1
c(Pairing+ExpG2

)

Our scheme +(c+3)ExpG1
+(c-1)MulG2

+(c+4)ExpG1
+Y ExpG1

+(c-1)MulG2

+3Pairing+cMulG1
+3Pairing+cMulG1

Appendix C.2 Communication overhead

Appendix C.2.1 Communication overhead of related works

In ref. [1], when the TPA verifies the integrity of the shared data, the challenge message contains {i, vi}, whose total length

is c(|n| + |q|), |n| is the size of an element of set [1,n], |q| is the size of an element of Zq . The length of proof information

from the cloud server is 2|p|, where |p| is the size of an element of Zp.

In ref. [4], the length of challenge message from the TPA is c(|n|+ |q|), the length of proof from the cloud server is 2|p|;
when some group users are revoked, in addition to the proofs for the selected data block and the signatures, the cloud server

also sends the block identifiers, so the length of the total proof is 2η|p|+c|id|, where |id| is the size of a block identifier.

In ref. [5], the communication cost for the integrity verification mainly comes from the log records, the challenge message

and the proof information. To verify the integrity of the selected shared data, the length of challenge message from the

TPA is c|n|+|p|+|q|, the proof generated by the cloud server contains a random set based on the indices of the select blocks

and the computation results related to the data blocks and the signatures, so the length is (c + 3)|p|. When some group

users are revoked, the length of challenge message is c(|n|+ |log|)+(η+2)|p|+|q|, where |log| is the length of a log file used

for recording the event of updating data. The length of proof generated by the cloud server is still (c+ 3)|p|.
In ref. [6], the challenge message contains the indices of the selected data blocks and several random numbers, whose

length is c|n|+8|p|; the cloud server generates the corresponding proof based on the indices, which includes every committed

message and auxiliary information, whose length is (2c + 9)|p|. When some group users are revoked, the communication

overheads of the TPA and the cloud server remains unchanged.

Appendix C.2.2 Communication overhead of our scheme

In this proposed scheme, the communication cost for the integrity verification mainly refers to the challenge message

generated by the TPA and the proof information produced by the cloud server. As shown in Section Appendix A, the

challenge message of basic scheme contains {i, vi} and gr, whose total length is c(|n| + |q|)+|p|, where |n| is the size of

an element of set [1,n], |q| is the size of an element of Zq , |p| is the size of an element of Zp; the proof information

P=
{
µ, ϕ, {H(mi),Ωi}i∈I , sigsk(H(R))

}
, whose total length is 3|p|+c(|p|+log2 n|p|). Considering the scheme supporting

user revocation in the letter, the challenge message contains {i, vi}, gr
′
and g

(
ϵ0+ρ
ϵ0

)r′
, whose total length is c(|n|+ |q|)+2|p|;

the length of the proof information is the same as that of the basic scheme.

Wang Z H, et al. Sci China Inf Sci 7

|log| denotes the length of the log file used for recording data update in ref. [5], |id| denotes the size of a block identifier in

ref. [4].

Table C2 Comparison between our scheme and ref. [1, 4–6] in communication overhead

Basic scheme Scheme with user revocation

Comm.cost(TPA) Comm.cost(cloud server) Comm.cost(TPA) Comm.cost(cloud server)

Ref. [1] c(|n|+ |q|) 2|p| ∅ ∅
Ref. [4] c(|n|+ |q|) 2|p| c(|n|+ |q|) 2η|p|+c|id|
Ref. [5] c|n|+|p|+|q| (c+ 3)|p| c(|n|+ |log|) (c+ 3)|p|

+(η+2)|p|+|q|
Ref. [6] c|n|+ 8|p| (2c+ 9)|p| c|n|+ 8|p| (2c+ 9)|p|

Our scheme c(|n|+ |q|)+|p| 3|p|+c(|p|+log2 n|p|) c(|n|+ |q|)+2|p| 3|p|+c(|p|+log2 n|p|)

Appendix C.2.3 Comparison and analysis

Now we compare our proposed scheme with ref. [1, 4–6] in terms of communication overhead, the result is summarized

in Table C2. As shown in Table C2, compared with ref. [1, 4–6], the increased communication overhead of our proposed

scheme is mainly the size of verification information related to MHT, which is an important shortcoming of this scheme.

However, ref. [4–6] have the common security problem caused by the collusion between the revoked user and the cloud

server, to make secure user revocation, our scheme needs the extra communication overhead. In addition, as illustrated in

Section Appendix D, an element of G1 and Zp is |p|=160 bits, assume the size of the shared file is 1GB, the size of each

block is 1MB, the extra communication overhead in our scheme is c log2 n|p| ≈ 90KB. Compared with the block size, it is

negligible. Meanwhile, with an increasement of the size of the shared data block, the extra communication overhead in our

proposed scheme could be reduced significantly. So the extra communication overhead of the verification process is not a

severe issue in the cases of secure user revocation and data block of large size.

when some group user Uj modifies the shared data, to prevent Uj from tampering with the shared data maliciously

without being detected by the TPA, Uj and the cloud server need to perform the process of related information transmission.

As presented in Section Appendix C.1.3, we could employ a method to reduce the communication overhead when the group

user intends to modify multi-block simultaneously. In particular, as described in Section Appendix A.2, suppose a group

user Uj intends to modify l blocks simultaneously, first of all, the length of update information produced by Uj is l(2|p|+|m|),
where |m| is the length of every data block. Secondly, the length of response from the cloud server is (n + 2)|p| at the

most. Suppose the set of leaf nodes corresponding to the l blocks is represented as Nodel, (n + 2)|p| means that every

element in Nodel is any one of two leaf nodes, which have the same parent node. For example, as depicted in Figure A2,

Nodel={h(H(m1)), h(H(m3)), h(H(m5)), h(H(m7))}. At last, Uj needs to send sigskj
(H(R′)) to the cloud server, whose

length is only |p|. However, if we use the method of single data block modification, the total length of information produced

by Uj is l(3|p| + |m|), and the length of response from the cloud server is l(log2 n|p| + 3|p|). When l = n
2
, the length

of response of the former method has its maximum value, so the total communication cost of Uj and the cloud server is

(2n + 3)|p| + n
2
|m|. However, the total communication cost of the latter method is (3n + n

2
log2 n)|p| + n

2
|m|. Obviously,

with the method of a single user updating multi-block discussed in Section Appendix A.2, the total communication cost

of the user and the cloud server could be reduced significantly. Nevertheless, as discussed in Section Appendix C.1.3, this

method is not appropriate to the case of multi-user updating the shared data.

Appendix D Experimental evaluation

We evaluate the performance of our proposed scheme and the schemes proposed in ref. [1, 4–6]. We utilize java Pairing

Based Cryptography (jPBC 1.2.1) library to implement cryptographic operations, and utilize Hadoop Distributed FileSystem

(HDFS) and MapReduce to implement upload/ download operations for file blocks and proof generation respectively, which

come from a famous open source cloud computing system hadoop2.2.0 64bit. All the experiments are tested under ubuntu

with an Intel(R) Xeon(R) E5620 @2.40GHz processor and 64GB memory over 50 times. In the following experiments, we

assume the size of an element of G1 and Zp is |p|=160 bits, the size of an element of Zq is |q|=80 bits, the size of each

block is 4KB. For the simplicity of the construction of MHT and evaluating the influence of file size on the verification

performance, the size of the selected shared files is 64MB, 128MB, 256MB and 512MB. To evaluate the influence of group

size, we varies the revoked user number from 50 to 450.

Appendix D.1 Experimental evaluation on basic scheme

Next we give the comparison of verification time cost of the basic scheme at first. As shown in Figure D1, after the data

owner uploads the shared data to the cloud server initially, when the TPA runs the verification process with the cloud

server, the computation cost for them in ref. [1,4,5] is almost equal, the reason is that the computation cost is only linear in

the number of the selected shared data, regardless of the shared files size. As shown in Table C1, the cloud server in ref. [6]

performs c(c − 1)ExpG1
+ c(c − 2)MulG1

operations to generate the proof for the selected shared data, so if we make the

experiment evaluation for ref. [6] with the same number of the selected shared data, the experimental result is very imperfect.

Based on the experiment, when the selected block number c is 460 and the selected shared file size is 64MB, the time of

verification process in ref. [6] is the same as that of our proposed scheme with c ≈ 128. So the experiment results related to

8 Wang Z H, et al. Sci China Inf Sci

64 128 192 256 320 384 448 512
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

File Size(MB)

V
er

ifi
ca

tio
n

Ti
m

e(
m

s)

(a) Block Size=4KB, c=460

Our scheme

Ref.[1]

Ref.[4]

Ref.[5]

4 8 12 16
0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

x 10
5

Block Size(KB)

V
er

if
ic

at
io

n
T

im
e(

m
s)

(b) File Size=8MB, c=460

Our scheme

Ref.[1]

Ref.[4]

Ref.[5]

Figure D1 Computation cost involved in the TPA and the cloud server in basic scheme. (a)data block of the same size;

(b)data blocks of different size.

0 4 8 12 16 20 24 28 32
0

1

2

3

4

5

6

7

x 10
6

Modified Block Num

C
om

pu
ta

tio
n

C
os

t(m
s)

(c) File Size=8MB, Block Size=4KB

muti−time update

one time update

0 4 8 12 16 20 24 28 32
0

100

200

300

400

500

600

700

800

900

1000

1100

Modified Block Num

C
om

m
un

ic
at

io
n

C
os

t(K
B)

(d) File Size=8MB, Block Size=4KB

muti−time update

one time update

Figure D2 Performance cost involved in multi-block modification. (a) Computation cost; (b) Communication cost.

ref. [6] is not shown here and in Section Appendix D.2. With regard to our scheme, in Figure D1(a), the verification time is

about 7 to 9 times as long as that of ref. [1,4,5]. The reason is that the TPA needs to perform a lot of HashG1
operations to

verify the value of root R in MHT based on the selected data blocks. Besides, the computation time of HashG1
and Pairing

is more than that of ExpG1
,MulG1

,ExpG2
and MulG2

(the computation time of ExpG1
,MulG1

,ExpG2
,MulG2

,HashG1
and

Pairing is about 18ms,0.1ms,2ms,14ms,57ms and 21ms in our experiments). However, the computation cost of this scheme

is not only related to the number of the selected shared data, but also the size of the shared data blocks. So if the size is

increased, the verification time will be shortened. As depicted in Figure D1(b), with the size of the data block increased,

the computation cost in our scheme could be declined significantly. Therefore, the results shown in Figure D1 has confirmed

the analysis in Section Appendix C.1.3.

Appendix D.2 Experimental evaluation on dynamic scheme

In this section, to begin with, the experiment result of data modification process is demonstrated. As shown in Figure D2,

when single group user modifies multi-block, the costs of computation and communication are depicted in Figure D2(a) and

Figure D2(b) respectively. It can be seen that the costs of the user and the cloud server in the data modification process

could be reduced significantly with the method proposed in Section Appendix A.2. Thus, the results have confirmed the

analyses in Section Appendix C.1.3 and Section Appendix C.2.3.

Next we show the results of verification cost in the case of single revoked user modifying multi-block between ref. [4,5] and

our proposed scheme. Afterwards, we give the experiment analysis of verification cost in the case of multi-user modifying

multi-block, where each group user is supposed to modify different data blocks. As shown in Figure D3(a), after the data

owner revokes a group user, the running time of integrity verification process is related to the number of the shared data

modified by the revoked user. In particular, as Shown in Table C1, when the TPA intends to check the integrity of the

shared data in the case of one user revocation, the cloud server needs to perform the extra operation(Y ExpG1
) between

ref. [4, 5] and our proposed scheme. Consequently, with the increasement of the number of the shared data modified by

the revoked user, the verification time of ref. [4, 5] and our proposed scheme will get longer. However, it should be noticed

Wang Z H, et al. Sci China Inf Sci 9

20 40 60 80 100
0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

x 10
5

Modified Block Num

V
er

ifi
ca

tio
n

Ti
m

e(
m

s)

(e) File Size = 8MB, Block Size=4KB, c=460

Our scheme

Ref.[4]

Ref.[5]

50 100 150 200 250 300 350 400 450
0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

x 10
5

Revoked User Num

V
er

if
ic

at
io

n
T

im
e(

m
s)

(f) File Size = 8MB, Block Size=4KB, c=460

Our scheme

Ref.[4]

Ref.[5]

Figure D3 Computation cost involved in the TPA and the cloud server in dynamic scheme. (a) Single revoked user

modifies multi-block; (b) multi-user modify multi-block.

that the verification time in our proposed scheme is the longest, which is a problem we have to face. When the data

owner revokes multi-user, the running time of integrity verification process is demonstrated in Figure D3(b). Obviously, the

running time of ref. [4, 5] and our proposed scheme will still grow longer with the increasement of the number of revoked

users. Nevertheless, the growth rate of our proposed scheme is the least(from 50 users to 450 users, our growth rate is 2.7%,

ref. [4] and ref. [5] are 38% and 29% respectively). As analyzed in Section Appendix C.1.3, the number of revoked users is

not related to the verification time in our scheme. Therefore, we believe that the verification time in ref. [4, 5] will grows

rapidly with the increasement of the number of revoked users.

References

1 Kwon O, Koo D Y, Shin Y J, et al. A secure and efficient audit mechanism for dynamic shared data in cloud storage.

The Scientific World Journal, 2014, 2014: 1-16

2 Wang B Y, Li B C, Li H. Oruta: privacy-preserving public auditing for shared data in the cloud. IEEE Transactions

on Cloud Computing, 2014, 2: 43-56

3 Wang B Y, Li B C, Li H. Knox: privacy-preserving auditing for shared data with large groups in the cloud. In:

Proceedings of ACNS, Singapore, 2012. 507-525

4 Wang B Y, Li B C, Li H. Panda: public auditing for shared data with efficient user revocation in the cloud. IEEE

Transactions on Services Computing, 2013, 8: 92-106

5 Yuan J W, Yu S C. Public integrity auditing for dynamic data sharing with multi-user modification. In: Proceedings

of IEEE INFOCOM, Toronto, 2014. 2121-2129

6 Jiang T, Chen X F, Ma J F. Public integrity auditing for shared dynamic cloud data with group user revocation. IEEE

Transactions on Computers, 2015.

7 Ateniese G, Hohenberger S. Proxy re-signatures: new definitions, algorithms and applications. In: Proceedings of

ACM CCS, New York, 2005. 310-319

