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Abstract The Shor algorithm is effective for public-key cryptosystems based on an abelian group. At CRYP-

TO 2001, Paeng (2001) presented a MOR cryptosystem using a non-abelian group, which can be considered as a

candidate scheme for post-quantum attack. This paper analyses the security of a MOR cryptosystem based on

a finite associative algebra using a quantum algorithm. Specifically, let L be a finite associative algebra over a

finite field F. Consider a homomorphism φ : Aut(L) → Aut(H)×Aut(I), where I is an ideal of L and H ∼= L/I.

We compute dim Im(φ) and dimKer(φ), and combine them by dimAut(L) = dim Im(φ)+dimKer(φ). We prove

that Im(φ) = StabComp(H,I)(µ + B2(H, I)) and Ker(φ) ∼= Z1(H, I). Thus, we can obtain dim Im(φ), since the

algorithm for the stabilizer is a standard algorithm among abelian hidden subgroup algorithms. In addition,

Z1(H, I) is equivalent to the solution space of the linear equation group over the Galois fields GF (p), and it is

possible to obtain dimKer(φ) by the enumeration theorem. Furthermore, we can obtain the dimension of the

automorphism group Aut(L). When the map ϕ ∈ Aut(L), it is possible to effectively compute the cyclic group

〈ϕ〉 and recover the private key a. Therefore, the MOR scheme is insecure when based on a finite associative

algebra in quantum computation.

Keywords MOR cryptosystem, cryptanalysis, quantum algorithm, finite associative algebra, hidden subgroup

problem, stabilizer

Citation Wu W Q, Zhang H G, Wang H Z, et al. Cryptanalysis of an MOR cryptosystem based on a finite

associative algebra. Sci China Inf Sci, 2016, 59(3): 032111, doi: 10.1007/s11432-015-5447-y

1 Introduction

A number of quantum algorithms have been presented in the past three decades: the first quantum

algorithm by Deutsch [1], an exponential separation algorithm by Simon [2], a polynomial-time quantum

algorithm to solve the integer factorization problem by Shor [3], an algorithm for the search problem by

Grover [4], and an algorithm to solve the hidden subgroup problem (HSP) by Mosca [5].

The Shor and HSP algorithms pose great challenges to cryptosystems based on abelian groups. Thus,

attempts have been made to find new cryptosystems for post-quantum computation based on non-abelian
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groups. In this context, Ko-Lee [6] presented a public cryptosystem using the braid group, Magliveras [7]

proposed a public cryptosystem that has no message expansion and is based on a non-abelian group,

Lempken [8] presented a new public-key cryptosystem using the covers and logarithmic signatures of

non-abelian groups, and Magliveras [9] presented a simple example of ElGamal encryption using a non-

abelian group. However, the security level and efficiency of such schemes have not reached the level

of classical cryptography, and therefore further studies in this direction are needed. In this context, at

CRYPTO 2001, Paeng et al. [7] presented a MOR scheme using the inner automorphism group. The

MOR cryptosystem is an analog of ElGamal encryption. Later, Paeng et al. generalized the MOR

cryptosystem to the automorphism group.

We first give a short review of previous work addressing the security of MOR. The authors of MOR

briefly discussed the security of the scheme, and showed that there exists a sub-exponential-time algorithm

to attack the MOR cryptosystem based on inner automorphism groups [10]. At PKC 2003, Tobias [11]

discussed security for the group SL(2, Zp) ×θ Zp. At ASIACRYPT 2004, Lee et al. [12] analyzed the

MOR cryptosystem using group extension notation. They showed that the complexity of the MOR

cryptosystem over a group G is log |G| times larger than the DLP over G. Korsten [13] pointed out

that the complexity of the MOR cryptosystem based on the group GL(n, q) ×θ H is less than that of

the discrete logarithm in small fields Fq. Ayan Mahalanobis [14] pointed out that the security of the

MOR cryptosystem is equivalent to that of the ELGamal cryptosystem over the fields Fq. In addition,

Babai [15] pointed that there exists a randomized polynomial-time algorithm that uses number theory

oracles to solve membership testing and the order of the matrix group for factoring and discrete logarithm

given a finite field of odd characteristic and a Lie-type simple group of arbitrary characteristic.

Stimulated by these results, this paper analyzes the security of the MOR cryptosystem based on a

finite associative algebra using a quantum algorithm. We point out that the MOR scheme based on a

finite associative algebra L is unsafe if ϕ ∈ Aut(L). There exists a quantum polynomial-time algorithm

to recover the privacy of the MOR scheme.

We assume that readers are familiar with the Shor algorithm and the hidden subgroup problem (HSP)

[3, 5, 16–18]. The HSP is an extension of the Shor algorithm to finite groups. The core of the HSP

algorithm is computation of the period of a function given by quantum oracles.

The organization of this paper is as follows. In Section 2, we introduce the necessary background.

In Section 3, we present the relevant results for quantum attack on the MOR cryptosystem based on

a finite associative algebra considered in this paper. In Section 4, we present a quantum algorithm for

recovering the private key, and we analyze the correctness and complexity of this algorithm. In Section 5,

we draw our conclusions and compare our results with the existing cryptanalysis results for the MOR

cryptosystem.

2 Background

2.1 MOR cryptosystem based on a finite associative algebra

Let L be a finite associative algebra over a finite field F , where F = Fp and p is prime. Next, we describe

MOR cryptography based on a finite associative algebra.

Proposed MOR encryption scheme: Let li, i = 1, . . . , n, be the set of generators of L. If we

express a message m as the product li1 · · · lij , then ϕ(m) = ϕ(li1 ) · · ·ϕ(lij ) and (ϕ)x = ϕx−1(ϕ), where

ϕ ∈ Aut(L). The details are as follows.

Public key: ϕ, ϕx.

Private key: x.

Encryption:

1. Alice expresses the message m ∈ L as the product of li, i = 1, . . . , n;

2. Alice randomly chooses a number y and computes (ϕx)y;

3. Alice computes D = ϕxy(m) = (ϕx)y(m);

4. Alice computes ψ = ϕy;
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5. Alice sends (D,ψ).

Decryption:

1. Bob expresses D as the product of li, i = 1, . . . , n;

2. Bob computes ψ−x and ψ−x(D).

2.2 Stabilizer and hidden subgroup problem (HSP)

For a finite group G and a finite set S, the stabilizer is a subgroup of G, defined by Hx = {g ∈ G|g.x = x}
for any x ∈ S through the group action of G on set S. For an abelian group (e.g., the additive group),

Friedl [16] pointed out that the algorithm for the stabilizer is a standard algorithm for the abelian hidden

subgroup problem (AHSP) connected with the parameter ε.

Proposition 1 ( [16]). Let G be a finite abelian group and α a group action of G. When t =

Ω(log(|G|) log(1/ε)), the stabilizer can be solved in quantum time poly(l) log(1/ε) with error ε.

For a non-abelian group, Hallgren [17] pointed out that there exists an efficient quantum algorithm for

the hidden subgroup problem when H is a normal subgroup of G. Moreover, Childs [18] reduced these

quantum algorithms to finding a normal subgroup H of any group as follows:

Algorithm 1. Finding a normal hidden subgroup [18].

Input: Block box function hiding H E G.

Output: Normal subgroup H .

Step 1. Let K0 := G. For t = 1, . . . , T , where T = O(log |G|).
a) Perform weak Fourier sampling, obtaining an irrep σt ∈ Ĝ.

b) Let Kt := Kt−1 ∩Kerσt.

Step 2. Output KT .

3 Our results for quantum attack on the MOR cryptosystem based on a

finite associative algebra

The MOR cryptosystem is an analog of the ElGamal scheme. Its security is built on the discrete logarithm

problem for the automorphism group of a non-abelian group. The cryptography hypothesis of the MOR

scheme presented in this paper based on the automorphism group of a finite associative algebra is as

follows.

Discrete logarithm problem (DLP). Let L be a finite-dimensional associative algebra over the

finite field F , where F = Fp and p is prime. Let l1, l2 ∈ L be such that ϕr(l1) = l2 mod p for some

r ∈ Z, where ϕ ∈ Aut(L). Given ϕ, ϕr ∈ Aut(L), find an r such that ϕr(l1) = l1 mod p.

Theorem 1. Consider an n-dimensional finite associative algebra L and ϕ ∈ Aut(L). Then there exists

a polynomial-time O(n2) quantum algorithm to solve the above discrete logarithm problem.

This directly yields the following theorem.

Theorem 2. Consider an n-dimensional finite associative algebra L and ϕ ∈ Aut(L). Then there exists

a polynomial-time O(n2) quantum algorithm to recover the private key of the MOR scheme based on a

finite associative algebra.

4 Proof of Theorem 2

In this section, we present the proof of Theorem 2 as follows. We first describe the quantum algorithm

to attack the MOR scheme based on an associative algebra. Then, we illustrate the correctness of the

algorithm. Finally, we illustrate the time complexity of the quantum algorithm.



Wu W Q, et al. Sci China Inf Sci March 2016 Vol. 59 032111:4

4.1 The quantum algorithm

Before presenting our quantum algorithm, we introduce a modified version of the discrete logarithm

quantum algorithm on a cyclic group. Let the cyclic group be G = Z/pZ, with m = |G| the order of G

and N = km, k ∈ Z+.

Algorithm 2. Modified version of discrete logarithm.

Input: The cyclic group G = 〈e〉, the rank N , and an element d ∈ G.
Output: a = logde .

Step 1. Set up the uniform superposition

|Z/NZ × Z/NZ〉 = |Z/kmZ × Z/kmZ〉 = 1

km

∑

x,y∈Z/kmZ

|x, y, 0〉.

Step 2. Compute the oracle Uf and store f(x, y) in the third register, where the function f(x, y) = dxey

and (x, y) ∈ |Z/kmZ×Z/kmZ〉. Since x = i1N+i2m+x, y = j1N+j2m +y, x, y ∈ {0, . . . ,m−1}, i1, j1 ∈
Z+, i2, j2 = 0, 1, . . . , k − 1, then f(x, y) = dxey = dxey. Thus, we obtain

1

m

∑

x′,y′∈Z/mZ

|x′, y′, f(x′, y′)〉.

Step 3. Discard the third register. Since f(x, y) = f(x′, y′) = ex
′ logd

e +y′

, let Gz = {(x′, y′) ∈ |Z/mZ×
Z/mZ〉 : z = x′ logde +y

′}. Create the superposition

|Gz〉 =
1√
m

∑

x′∈Z/mZ

|x′, z − x′ logde〉.

Step 4. Applying the quantum Fourier transform over Z/mZ × Z/mZ, we obtain

1
3
√
m

∑

x′,y′,w∈Z/mZ

λ
tx′+w(z−x′ logd

e)
m |t, w〉 = 1√

m

∑

w∈Z/mZ

λwz
m |w logde , w〉.

Step 5. By the quantum measure, we can obtain the quantum state |w logde , w〉 with uniformly random

w ∈ Z/mZ.
Step 6. Repeating this process, we can obtain the other quantum state |w′ logde , w

′〉, and the proba-

bility of (w,w′) = 1 is at least 0.61. In this case, we can find u, v such that uw + vw′ = 1. Compute

uw logde +vw
′ logde = logde .

Step 7. Output a.

Note 1. Algorithm 2 shows that there exists an efficient quantum algorithm for solving the discrete

logarithm problem in Z/pZ, even if the order of the cyclic group has been expanded several times.

Next, we integrate the discussion and present a quantum algorithm 3 to recover the private key.

Algorithm 3. Break the MOR based on a finite associative algebra.

Input: The finite associative algebra L, ϕ(l), and ϕ(la).

Output: The private key a.

Step 1. Initialize A = GL(dH , F ) and B = GL(dI , F );

Step 2. Set up D = A×B;

Step 3. Compute Comp(H, I) = StabD(ρ) using Algorithm 1, where ρ ∈ Hom(H,End(I)) is defined

by (5) in Subsection 4.2.1;

Step 4. Compute C = StabComp(H,I)(µ + B2(H, I)) using Algorithm 1, where µ ∈ Z2(H, I) satisfies

L = Lε.

Step 5. Compute φ(E) = C by corollary 1 and the order |E| in Subsection 4.2.2.

Step 6. Set U = Ker(φ) and compute |U |.
Step 7. Set P ← E + U and compute |P | = |E|+ |U | = N .

Step 8. Set ϕ(l)→ e and ϕ(l)a → d.
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Step 9. Compute a = logde using Algorithm 2.

Step 10. Output a.

4.2 Correctness of the quantum algorithm

How to compute the dimension of the automorphism map is crucial to our quantum algorithm. In this

paper, we consider the automorphism map on a finite associative algebra.

Consider a finite associative algebra L = H ⊕ I, where I is an ideal. The automorphism group of L

can be defined as

Aut(L) = {σ ∈ GL(dL, F )|σ(l1 ◦ l2) = σ(l1) ◦ σ(l2), σ(c1l1 + c2l2) = c1σ(l1) + c2σ(l2)}, (1)

where ∀l1, l2 ∈ L, c1, c2 ∈ F and dL = dim(L).

Given the definition of the ideal I and the direct product of the group, there exists a homomorphism

map as follows:

φ : Aut(L)→ Aut(H)×Aut(I). (2)

φ transforms α to (αH , αI), where α ∈ Aut(L) and αH ∈ Aut(H), αI ∈ Aut(I). The addition of

φ can be defined as φ(α(1) + α(2)) = φ(α(1)) + φ(α(2)). The multiplication of φ can be viewed as

φ(α(1)α(2)) = φ(α(1))φ(α(2)) = (α
(1)
H , α

(1)
I )(α

(2)
H , α

(2)
I ) = (α

(1)
H α

(2)
H , α

(1)
I α

(2)
I ) for the group direct product,

where α(i) ∈ Aut(L), i = 1, 2, and (α
(1)
H , α

(1)
I ), (α

(2)
H , α

(2)
I ) ∈ Aut(H)× Aut(I).

Thus, our overall approach is to respectively compute dim Im(φ) and dimKer(φ), and combine them

to give dimAut(L) = dim Im(φ) + dimKer(φ). Next, we describe the calculation process.

4.2.1 Compute dim Im(φ)

We compute the image of the homomorphism φ in two steps.

In the first step, we determine the compatible pairs Comp(H, I) for computing Im(φ). For this, we

can define the compatible pairs as follows:

Comp(H, I) = {(α, β) ∈ Aut(H)×Aut(I)|β(h◦a) = α(h)◦β(a), β(a◦h) = β(a)◦α(h), a ∈ I, h ∈ H}, (3)

where the operation ◦ denotes the multiplication of the finite associative algebra L.

Proposition 2. The set of compatible pairs Comp(H, I) is a subgroup of (Aut(H),Aut(I)).

Proof. Let ∀(αi, βi) ∈ Comp(H, I), i = 1, 2; then (α1, β1)(α2, β2) = (α1α2, β1β2). Thus, β1β2(a ◦ h) =
β1(β2(a) ◦ α2(h)) = β1β2(a) ◦ α1α2(h) and β1β2(h ◦ a) = β1(α2(h) ◦ β2(a)) = α1α2(h) ◦ β1β2(a), where
a ∈ I, h ∈ H . So (α1α2, β1β2) ∈ Comp(H, I). It is clear that (α−1

i , β−1
i ) ∈ Comp(H, I) by definition.

Thus, the set of compatible pairs Comp(H, I) is a subgroup.

Next we show that the subgroup Comp(H, I) is the stabilizer of Aut(H) × Aut(I). We define the

stabilizer as

StabAut(H)×Aut(I)(ρ) = {(α, β) ∈ Aut(H)×Aut(I)|(α, β)ρ = ρ}, (4)

where the map ρ ∈ Hom(H,End(I)) satisfies ρ(h)(a) = a ◦ h. Let the group Aut(H) × Aut(I) act on

ρ via

σρ(h) = β(ρ(α−1(h)))β−1, (5)

where h ∈ H, a ∈ I, σ ∈ Aut(H)×Aut(I). We have the following theorem:

Theorem 3. The set of compatible pairs Comp(H, I) is equal to StabAut(H)×Aut(I)(ρ).

Proof. Let (α, β) ∈ Comp(H, I). It is clear that (α−1, β−1) ∈ Comp(H, I). Let h ∈ H, a ∈ I, α ∈
Aut(H), β ∈ Aut(I). By (3), we obtain a ◦ h = β(β−1(a) ◦ α−1(h)), a ∈ I, h ∈ H . Since ρ(h)(a) = a ◦ h,
we have ρ(h)(a) = β(β−1(a)◦α−1(h)). By (5), we obtain ρ(h) = β(ρ(α−1(h)))β−1 and ρ(h) = (α, β)ρ(h).

So Comp(H, I) = StabAut(H)×Aut(I)(ρ), as desired.
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In the second step, we compute dim Im(φ). Consider a sequence {Cn,−∞ < n < ∞} in the category

of modules and dn ∈ Hom(Cn−1, Cn), satisfying

· · · −→ Cn−1d
n−1

−→Cn dn

−→Cn+1d
n+1

−→ · · · , (6)

such that dndn−1 = 0.

The condition dndn−1 = 0 is equivalent to Im(dn−1) ⊆ Ker(dn). Let Zn = Ker(dn) and Bn =

Im(dn−1). Then Zn/Bn is called the nth cohomology group. Cn, Zn, and Bn are called n-dimensional

cochains, cocycles, and coboundaries, respectively. Next, we present the definition of the second coho-

mology group:

C2(H, I) = {ε : H2 → I}, (7)

Z2(H, I) = {ε ∈ C2(H, I)|ε(h1 ◦ h2, h3)− ε(h1, h2 ◦ h3) = h1 ◦ ε(h2, h3)− ε(h1, h2) ◦ h3}, (8)

B2(H, I) = {ε ∈ C2(H, I)|ε(h1, h2) = ν(h1 ◦ h2)− h1 ◦ ν(h2)− ν(h1) ◦ h2}, (9)

Z1(H, I) = {ν : H → I|ν(h1 ◦ h2) = h1 ◦ ν(h2) + ν(h1) ◦ h2}, (10)

where h1, h2, h3 ∈ h[15].
Lemma 1. B2(H, I) ⊆ Z2(H, I).

Proof. By (8) and (9),

h1 ◦ ε(h2, h3)− ε(h1 ◦ h2, h3) + ε(h1, h2 ◦ h3)− ε(h1, h2) ◦ h3
= h1 ◦ ν(h2 ◦ h3)− h1 ◦ h2 ◦ ν(h3)− h1 ◦ ν(h2) ◦ h3 + h1 ◦ h2 ◦ ν(h3)
− ν(h1 ◦ h2 ◦ h3) + ν(h1 ◦ h2) ◦ h3 − h1 ◦ ν(h2 ◦ h3) + ν(h1 ◦ h2 ◦ h3)
− ν(h1) ◦ h2 ◦ h3 + h1 ◦ ν(h2) ◦ h3 − ν(h1 ◦ h2) ◦ h3 + ν(h1) ◦ h2 ◦ h3 = 0.

So B2(H, I) ⊆ Z2(H, I) holds.

Z2(H, I) yields a new algebra. More precisely, every element µ ∈ Z2(H, I) induces a new extension

Lµ = H ⊕µ I. The new multiplication bracket is defined as

(h1, a1) ◦µ (h2, a2) = (h1 ◦ h2, µ(h1, h2) + h1 ◦ a2 + a1 ◦ h2). (11)

Lemma 2. The vector space Lµ is a finite associative algebra.

Proof. We prove that the new multiplication bracket satisfies the associative law. We have, ∀hi ∈
H, ai ∈ I, i = 1, 2, 3 and µ ∈ Z2(H, I),

((h1, a1) ◦µ (h2, a2)) ◦µ (h3, a3)

= (h1 ◦ h2, µ(h1, h2) + h1 ◦ a2 + a1 ◦ h2) ◦µ (h3, a3)

= (h1 ◦ h2 ◦ h3, µ(h1 ◦ h2, h3) + h1 ◦ h2 ◦ a3 + µ(h1, h2) ◦ h3 + h1 ◦ a2 ◦ h3 + a1 ◦ h2 ◦ h3),
(h1, a1) ◦µ ((h2, a2) ◦µ (h3, a3))

= (h1, a1) ◦µ (h2 ◦ h3, µ(h2, h3) + h2 ◦ a3 + a2 ◦ h3)
= (h1 ◦ h2 ◦ h3, µ(h1, h2 ◦ h3) + h1 ◦ h2 ◦ a3 + h1 ◦ µ(h2, h3) + h1 ◦ a2 ◦ h3 + a1 ◦ h2 ◦ h3).

So the associative law holds. Lµ is a finite associative algebra, as desired.

Further, the action of Comp(H, I) on Z2(H, I) can be defined via (α, β)µ(h1, h2) = βµ(α−1(h1),

α−1(h2)). Let µ ∈ Z2(H, I) such that L = Lµ. We have the following theorem.

Theorem 4. Im(φ) is equal to StabComp(H,I)(µ+B2(H, I)).

Proof. Let (α, β) ∈ StabComp(H,I)(µ + B2(H, I)). Since B2(H, I) is a subspace of Z2(H, I), then

(α, β)µ ≡ µ mod (B2(H, I)). Thus, there is an element ε ∈ B2(H, I) such that (α, β)ε+(α, β)µ = µ and

µ(α(h1), α(h2)) = β(µ(h1, h2) + ε(h1, h2)).
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Let υ : H → I induce ε ∈ Bn(H, I). Then we define a map ψ : L→ L as ψ(h, a) = (α(h), β(a)+βυ(h))

for a ∈ I, h ∈ H . In the following, it remains to show that ψ is a homomorphism of the associative

algebra Lµ:

ψ((h1, a1) ◦µ (h2, a2))

= ψ(h1 ◦ h2, µ(h1, h2) + h1 ◦ a2 + a1 ◦ h2)
= (α(h1 ◦ h2), βµ(h1, h2) + β(h1 ◦ a2) + β(a1 ◦ h2) + βν(h1 ◦ h2))
= (α(h1) ◦ α(h2), βµ(h1, h2) + α(h1) ◦ β(a2) + β(a1) ◦ α(h2)
+ βε(h1, h2) + α(h1) ◦ βυ(h2) + βυ(h1) ◦ α(h2))

= (α(h1) ◦ α(h2), µ(α(h1), α(h2)) + α(h1) ◦ (β(a2) + βν(h2)) + (β(a1) + βν(h1)) ◦ α(h2))
= (α(h1), β(a1) + βν(h1)) ◦µ (α(h2), β(a2) + βν(h2))

= ψ(h1, a1) ◦µ ψ(h2, a2).

Thus, StabComp(H,I)(µ+B2(H, I)) ⊆ Im(φ).

Let (α, β) ∈ Im(φ). Then there exists ψ ∈ Aut(Lµ) such that φ(ψ) = (α, β). Our task is to prove

β(µ(h1, h2) + ε(h1, h2)) = µ(α(h1), α(h2)) as follows:

(α(h1 ◦ h2), βµ(h1, h2) + βν(h1 ◦ h2))
= ψ(h1 ◦ h2, µ(h1, h2)) = ψ((h1, 0) ◦µ (h2, 0)) = ψ(h1, 0) ◦µ ψ(h2, 0)
= (α(h1), βν(h1)) ◦µ (α(h2), βν(h2))

= (α(h1) ◦ α(h2), µ(α(h1), α(h2)) + α(h1) ◦ βν(h2) + βν(h1) ◦ α(h2))
= (α(h1 ◦ h2), µ(α(h1), α(h2)) + βν(h1 ◦ h2)− βε(h1, h2)).

Hence, β(µ(h1, h2)+ε(h1, h2)) = µ(α(h1), α(h2)). Further, (α, β)µ ≡ µ mod B2(H, I) and hence (α, β) ∈
StabComp(H,I)(µ+B2(H, I)), as desired.

Corollary 1. Let (α, β) ∈ StabComp(H,I)(µ + B2(H, I)), where µ ∈ Z2(H, I) such that L = Lµ and

ν ∈ Z1(H, I). Then ψ(h, a) = (α(h), β(a) + βν(h)) such that the map ψ is a preimage of (α, β) under φ.

Note 2. By the above theorem, Im(φ) can be obtained as a stabilizer of the cocycle. The theorem

provides a method for computing the preimages. Thus, it can compute dim Im(φ) by calling the quantum

Algorithm 1 [18].

4.2.2 Compute dimKer(φ)

The following theorem yields a description of Ker(φ), which can be used to compute generators for this

kernel.

Theorem 5. Ker(φ) ∼= Z1(H, I).

Proof. Let σ ∈ Ker(φ) have the form σ(li) = li + ali , where li = hi + ai ∈ L, hi ∈ H, ai, ali ∈ I. Then

al1◦µl2 = σ(l1 ◦µ l2)− l1 ◦µ l2
= σ(l1) ◦µ σ(l2)− l1 ◦µ l2
= (l1 + al1) ◦µ (l2 + al2)− l1 ◦µ l2
= (h1 + a1 + al1) ◦µ (h2 + a2 + al2)− (h1 + a1) ◦µ (h2 + a2)

= h1 ◦ h2 + µ(h1, h2) + h1 ◦ a2 + h1 ◦ al2 + a1 ◦ h2 + al1 ◦ h2
− (h1 ◦ h2 + µ(h1, h2) + h1 ◦ a2 + a1 ◦ h2)
= h1 ◦ al2 + al1 ◦ h2.

Further, al1 = al2 if l1 ≡ l2 mod (I). Therefore, it yields a map υ : H → I via υ(hi) = ahi
.

Thus, we define a group homomorphism from the multiplicative group Ker(φ) to the additive group

V , namely, Ker(φ)→ V : σ → υ. So the map Ker(φ) is bijective and it is also an isomorphism.
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Let h1, . . . , hdH
and e1, . . . , edI

be respectively the bases of H and I. Then {h1, . . . , hdH
, e1, . . . , edI

}
is a basis of L, where dH = dim(H) and dI = dim(I). Thus,





υ(h1) = a11e1 + · · ·+ a1dI
edI

,

υ(h2) = a21e1 + · · ·+ a2dI
edI

,
...

υ(hdH
) = adH1e1 + · · ·+ adHdI

edI
.

Let bi12, c
j
r2, and c

l
2r be respectively structure constants. Then the multiplication table can be defined as

h1 ◦ h2 =

dH∑

i=1

bi12hi, er ◦ h2 =

dI∑

j=1

cjr2ej, h2 ◦ er =
dI∑

l=1

cl2rel. (12)

From ν(h1 ◦ h2) = ν(h1) ◦ h2 + h1 ◦ ν(h2), we obtain that

dH∑

i=1

bi12

dI∑

j=1

aijej =

dI∑

s=1

a1s

dI∑

j=1

cjr2ej +

dI∑

t=1

a2t

dI∑

l=1

cl2rel, (13)

where the parameter bi12, c
j
r2, c

l
2r ∈ F are given by the multiplication bracket of L and the ait are variables.

So the computation of Ker(φ) is equivalent to solving a linear equation system.

In our quantum algorithm, we must know the dimension of Ker(φ), but need not know all the solutions

of Ker(φ). When hi ◦hj run through all cases, we obtain a system of equations containing dHdI variables

and dH(dH − 1) equations. By the enumeration theorem for solutions of matrix equations over finite

fields [19], we know that the dimension of Ker(φ) is pk, where k is the dimension of the solution space

and p is prime. Thus, we can obtain k from a computer calculation of the coefficient determinant.

Thus, we obtain dim Im(φ) and dimKer(φ), and combine them to give dimAut(L) = dim Im(φ) +

dimKer(φ). Thus, we can recover the private key a by calling the quantum Algorithm 2.

4.3 Complexity of the quantum algorithm

Algorithm 3 needs two stabilizer (or hidden normal subgroup) computations and one discrete logarithm

computation. This is the main part of the algorithm. In Algorithm 3, the order |D| 6 pd
2
H+d2

I < pn
2

,

where n = dH + dI . Without loss of generality, let the prime p < 2k, k ∈ Z+, and the order |D| < 2kn
2

.

Thus, the time complexity of the stabilizer (or hidden normal subgroup) problem computation is at most

O(kn2) [18].

In addition, the time complexity of the discrete logarithm computation is polynomial in the input

size. Therefore, the time complexity of Algorithm 2 is O(n2). Thus, the MOR scheme based on a finite

associative algebra is unsafe, and there exists an effective quantum algorithm to compute the private key

a in this case.

5 Conclusion

In this paper, we have provided a cryptanalysis of the MOR cryptosystem based on a finite associative

algebra using a quantum algorithm. If the map belongs to the automorphism group of a finite associative

algebra, the private key is insecure and there exists an effective quantum algorithm to solve it. From

the analysis in this paper, the stabilizer is a very important part of the algorithm, since there exists

an effective quantum algorithm to compute the stabilizer even in a non-abelian group. This paper has

shown that Im(φ) = StabComp(H,I)(µ+ B2(H, I)) and Ker(φ) ∼= Z1(H, I). We can compute dimAut(L)

in polynomial time using a quantum algorithm. We can simulate the calculation of the discrete logarithm

and recover the private key from the public key using a quantum algorithm. Thus, the computational
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Table 1 Comparison of current cryptanalysis results

Author Cryptography group Current cryptanalysis results

Paeng [10] Non-abelian group Sub-exponential-time algorithm

Lee [12] Non-abelian group Complexity log |G| times larger than that of DLP

Korsten [13] GL(n, q)×θ H Complexity less than that of DLP in small fields Fq.

Tobias [11] SL(2, Zp)×θ Zp No harder than SL(2, Zp)

Babai [15] Odd-characteristic matrix group Randomized quantum polynomial-time algorithm

Babai [15] Lie-type simple group Randomized quantum polynomial-time algorithm

Our scheme Finite associative algebra Quantum polynomial-time complexity O(n2)

complexity of the algorithm is O(n2). From the above discussion, it is seen that the map of the new

public cryptosystem is nonlinear. Otherwise, it may be unsafe when faced with a quantum computer.

This paper has analysed the security of the MOR cryptosystem using a quantum algorithm. Table 1

compares the current cryptanalysis of the MOR cryptosystem with several existing results.
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