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Abstract In this paper, we propose a new n-round key recovery attack using modified slender-set linear

cryptanalysis on PRESENT-like cipher with public S-boxes. In our attack, an effective method for distinguishing

the right key from the wrong ones is presented. We apply our attack to PRESENT-80. The experiments

show that we can recover the entire 80 key bits of 12-rounds PRESENT-80 with 232 data complexity, 236 time

complexity, and negligible memory complexity. Furthermore, we investigate an (n+1)-round attack by extending

the n-round key recovery attack. Our method can be used in most PRESENT-like ciphers where the linear layer

is a bit-wise permutation.
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1 Introduction

Block ciphers are one of the most important symmetric cryptographic algorithms and essential compo-

nents in many security systems which are widely used. The cipher AES (Advanced Encryption Standard)

is suitable for most of the applications. However, the hardware requirement for the AES is considered to

be high for extremely constrained devices, such as smart cards, RFID (Radio Frequency IDentification)

tags, mobile devices, various types of embedded systems, and IC (Integrated Circuit) printing applica-

tions. As a result, quite a few new lightweight ciphers have been proposed to provide strong security at

a lower cost than standard solutions.

In recent years, various design strategies for lightweight block cipher have been proposed, such as m-

Crypton [1], HIGHT [2], Hummingbird [3], SEA [4], DESL/DESX/DESXL [5], KATAN/KTANTAN [6],

MIBS [7], and LED [8]. PRESENT [9] is the most remarkable representative lightweight block cipher.

It is proposed by Bogdanov et al. at CHES 2007. In 2012, PRESENT cipher was adopted as ISO/IEC

(International Organization for Standardization/International Electrotechnical Commission) lightweight

cryptography standard. PRESENT cipher is an iterated 31-rounds SPN (Substitution Permutation Net-

work) block cipher with a 64-bit block size and has two variants of key. One has an 80-bit and the other

has a 128-bit. Each round of PRESENT cipher has three layers. The first layer is a substitution layer,
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which consists of 16 parallel applications of the same 4-bit S-box. The second layer is a permutation

layer, which consists of a bit-wise permutation of 64-bit. The last layer is a key addition layer, which

consists of Xor addition by a round key to the text. Due to the small 4-bit S-box, bit-wise permutation,

and Xor addition, PRESENT reaches the bound of around 1000 GE in a hardware implementation.

Nowadays, PRESENT cipher has attracted a lot of attention from cryptographic researchers due to

its strong security, simplicity, and impressive hardware performance. In 2008, Wang [10] presented

a differential cryptanalysis which could attack the 16-rounds PRESENT with 264 data complexity, 232

memory accesses complexity, and 264 time complexity. In 2009, Collard et al. [11] investigated a statistical

saturation attack against PRESENT. They can recover 16 key bits of 15-rounds PRESENT cipher with

235.6 plaintext–ciphertext pairs in practice. There are other two papers about attacks based on linear

hulls for PRESENT in the same year [12,13]. In 2011, Blondeau and Gerard [14,15] presented the multiple

differential cryptanalysis on PRESENT. They used 561 differentials (including 17 input differences and

33 output differences) to attack 18-rounds PRESENT with 264 data complexity, 236 memory accesses

complexity, and 276 time complexity. In 2012, Blondeau et al. [16] proposed a multiple differential

cryptanalysis based on the tools named LLR and χ2-statistical tests and presented experiments performed

on a reduced version of PRESENT. In the same year, Wang et al. [17] focused on the use of so-called

structures in differential attack on PRESENT. They gave a general model and complexity analysis for

structure attacks. Also, they demonstrated structure attacks for 18-rounds PRESENT-80 with 264 data

complexity and 276 time complexity. At CT-RSA 2010, Cho [18] proposed a linear attack on 26 of the 31-

rounds PRESENT cipher. This is the best known cryptanalysis attack on PRESENT cipher up to now.

Cho could break the 26-rounds PRESENT with 264 data complexity, 232 memory accesses complexity,

and 272 time complexity. In 2014, Liu et al. [19] proposed a new method of recovering the secret key of

PRESENT-like cipher with public S-box using a variant of the slender-set differential cryptanalysis.

Linear cryptanalysis [20, 21] is a well-known cryptanalytic technique for analyzing block ciphers. It

was introduced by Matsui in 1993. An important fact about linear cryptanalysis is that it is a known

plaintext attack, making it a more practical and realistic attack model than an attack based on differential

cryptanalysis which requires an attack to choose plaintexts for a successful attack. In 2011 and 2013,

Borghoff et al. [22, 23] introduced a slender-set linear cryptanalysis on PRESENT-like ciphers with key-

dependent secret S-boxes. The work in [23] can recover the secret S-box by looking at Fourier transform

for a group of output masks and every input value for a given S-box. In 2014, Liu et al. [24,25] proposed

an improved slender-set linear cryptanalysis on PRESENT-like cipher with secret S-boxes at FSE 2014.

In [26], Xiaorui Sun and Xuejia Lai considered a distinguishing between the random distribution and

the key-dependent distribution and used them to determine the right key of IDEA (International Data

Encryption Algorithm) cipher. We take our inspiration from the key-dependent attack.

Our contributions. In this paper, we focus on the settings of PRESENT-like cipher where the P-box is a

bit-wise permutation and the S-box is public fixed. Our contributions are twofold. First, we present a new

n-round key recovery attack using modified slender-set linear cryptanalysis on PRESENT-like cipher with

known S-boxes. Our starting point is to study the information leakage between the correct key and the

wrong key using a modified slender-set linear attack. An effective distinguisher for making a distinction

between the correct key and wrong key is proposed. Also, using the method of divide-and-conquer attacks,

we can recover the entire 80 secret key bits of PRESENT-80 with lower time and memory complexity.

To the 12-rounds PRESENT-80, the experiments show that we can break 12-rounds PRESENT-80 with

232 data complexity, 236 time complexity, and negligible memory complexity. If our attack uses the full

plaintexts, which is 264, our experimental result deduces that at most 25-rounds PRESENT-80 can be

broke with 264 data complexity, 268 time complexity, and negligible memory complexity. Furthermore,

we propose an (n + 1)-round attack by extending the n-round key recovery attack. In this attack, we

use the linear approximations used in n-round key recovery attack. For PRESENT cipher, compared

with the n-round attack, the data complexity of (n + 1)-round attack is about 3.8662 times, and the

time complexity has no increase for recovering the full 80 key bits at a success probability of 90%. We

summarize our attacks and previous attacks in Table 1.

The paper is organized as follows. Section 2 outlines the slender-set linear attack on PRESENT-like
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Table 1 Selected results of attacks on PRESENT cipher (CP: chosen plaintext; KP: known plaintext)

Round Attack type Data Time Ref.

16 Differential cryptanalysis 264 CP 264 Ref. [10]

18 Multiple differential cryptanalysis 264 CP 276 Refs. [14, 15]

18 Structure attack 264 CP 276 Ref. [17]

24 Statistical saturation attack 257 CP 257 Ref. [11]

24 Weak keys attack 263.5 KP 240 Ref. [13]

25 Linear (hull) cryptanalysis 264 KP 296.68 Ref. [12]

26 Linear cryptanalysis 264 KP 272 Ref. [18]

25 Modified slender-set linear attack 264 KP 268 This paper1)

1)Our result deduces from low-round experimental results.

cipher described in [23]. Section 3 presents an n-round key recovery attack based on a modified slender-

set linear cryptanalysis and gives experimental results for our attack on PRESENT-80. In Section 4, we

outline an (n+1)-round key recovery attack by extending the n-round attack and discuss the complexity

of attack. Finally, Section 5 concludes the paper.

2 Preliminaries

In this section, we review the Borghoff’s slender-set linear attack of recovering the secret S-boxes described

in [23].

First, we introduce some basic notations used in this paper. We follow the notations used in [23]. Let

a, b ∈ Fn
2 and a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1). The canonical inner product of a, b on Fn

2 is

denoted by 〈a, b〉, that is,

〈(a0, a1, . . . , an−1), (b0, b1, . . . , bn−1)〉 =
n−1
⊕
i=0

aibi.

For a function H : Fn
2 → Fm

2 , the Walsh or Fourier transform of H at the pair (α, β) ∈ Fn
2 × Fm

2 is

defined by

Ĥ(α, β) =
∑

x∈Fn
2

(−1)〈β,H(x)〉+〈α,x〉.

Next, we introduce the most important equation in Borghoff’s slender-set linear attack. Without loss of

generality, we consider the leftmost S-box S. Assuming that the encryption function F which starts after

the first layer of S-boxes is denoted as

F : F 4
2 × F 60

2 → F 64
2 ,

and the corresponding function with a fixed x is denoted by

Tx : F 60
2 → F 64

2 and Tx(y) = F (x, y).

The whole encryption function of PRESENT-like cipher is denoted by E as

E : F 4
2 × F 60

2 → F 64
2 ,

and the corresponding function with a fixed x is denoted by T ′
x as

T ′
x : F 60

2 → F 64
2 and T ′

x(y) = E(x, y),

then we have

T̂ ′
x(0, β) = T̂S(x)(0, β) = 2−4

∑

a∈F 4
2

(−1)〈a,S(x)〉F̂ ((a, 0), β) ≈ 2−4(−1)〈α,S(x)〉F̂ ((α, 0), β). (1)
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Since the P-box in PRESENT-like cipher is a bit-wise permutation, the mask with low weight after the

first layer of S-boxes should cause less linear active S-boxes through the whole cipher. In other words, the

linear approximations with low-weight masks will have the larger bias. Accordingly, it is reasonable to

assume that α is of weight one. According to (1), for a fixed input x and a given output mask β, we can

estimate the value of 〈α, S(x)〉 depending on the sign of counter T̂ ′
x(0, β), which can be easily done after

encrypting enough plaintexts. By this means, we can partition x into two sets which are equally sized as

V0 and V1 for a given output mask β, where Vγ = {x|〈α, S(x)〉 = γ}, γ = 0, 1. A correct partition of the

set V corresponds to one coordinate function of secret S-box S. If we get all four linearly independent

coordinate functions of secret S-box, such as (〈2i, S(0)〉, 〈2i, S(1)〉, . . . , 〈2i, S(15)〉), 0 6 i 6 3, we can

recover the secret S-box. We summarize the main steps of Borghoff’s linear attack as the following and

for more details, we refer to [23]:

Step 1. Let the output mask β = 04j‖b‖060−4j, 0 6 j 6 15, 1 6 b 6 15. For every leftmost input

0 6 x 6 15, we estimate the value of the counter T̂ ′
x(0, β) by (1) after encrypting enough plaintexts.

Then, we construct the vectors Wβ = (T̂ ′
0(0, β), T̂

′
1(0, β), . . . , T̂

′
15(0, β)) for each output mask β.

Step 2. We transform the three longest vectors (using the Euclidean norm) into a binary vector, where

the coordinates with eight highest counter values are set to ‘1’ and the coordinates with eight lowest

counter values are set to ‘0’.

Step 3. We obtain the coordinate functions of secret S-box using a majority vote among these three

binary vectors.

Step 4. We recover the 4-bit secret S-boxes based on four linearly independent coordinate functions of

secret S-boxes.

Borghoff et al. pointed out that they might get one or more sets with the form of {x|〈2i, S(x)〉 =

0}, 0 6 i 6 3 by repeating the steps described above for other value of β = 04j‖b‖060−4j with different

0 6 j 6 15, 1 6 b 6 15. Based on Borghoff’s slender-set linear attack, Liu et al. [24, 25] investigated an

improved slender-set linear cryptanalysis of recovering the secret S-box uniquely at FSE 2014.

3 n-round key recovery attack

In this section, we explain the approach of our new n-round key recovery attack using a modified slender-

set linear cryptanalysis on PRESENT-like cipher with public fixed S-boxes.

Notation. Throughout this section, assuming that α is a binary vector, the Hamming weight of α is

denoted by wt(α). The complementary vector of α is denoted by α.

We measure the data complexity in units which is equivalent to a known plaintext. We measure the

time complexity of our attack in units which is equivalent to simple operation.

According to the attack of recovering the secret S-box using slender-set linear cryptanalysis, one naive

method of recovering the round key is that we can combine the public S-box S and round key Xor

addition as a new key-dependent and unknown “secret S-box” S′. First, we recover the ‘secret S-box’ S′

completely by the slender-set linear attack. According to S′(x) = S(x⊕ k), we can determine the round

key k uniquely. The main steps of this method can be described as Algorithm 1.

However, to recover the secret round key, there is no need to recover the ‘secret S-box’ S′ completely,

which requires higher data complexity. In the following section, we present a new method of recovering

the secret key using a modified slender-set linear cryptanalysis.

3.1 Principle of our attack

Let S-box S(x) : {0, 1}m → {0, 1}m be a bijective mapping. We have the following proposition described

in Theorem 1.

Theorem 1. Let S-box S(x) : {0, 1}m → {0, 1}m be a bijective mapping and αi, αj ∈ {0, 1}m. Given

two vectors

Vαi
= (〈αi, S(0)〉, 〈αi, S(1)〉, . . . , 〈αi, S(2

m − 1)〉),
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Algorithm 1 n-round key recovery attack: method 1

Require: The public S-box S;

The “secret S-box” S′ recovered by slender-set linear attack;

Ensure: The candidate key K;

1: n = 0;

2: for k = 0 to 2m − 1 do

3: for x = 0 to 2m − 1 do

4: if S′(x) = S(x⊕ k) then

5: n ⇐ n+ 1;

6: Continue;

7: else

8: Break;

9: end if

10: end for

11: if n = 2m then

12: K ⇐ k;

13: Break;

14: end if

15: end for

16: return The value of K.

Table 2 The probability distribution of wt(V ⊕ U) = k for the cipher PRESENT, where V,U ∈ {V1, V2, . . . , V15,

V̄1, V̄2, . . . , V̄15}

k Probability (%) k Probability (%) k Probability (%)

0 3.3333 6 0 12 0

2 0 8 93.3333 14 0

4 0 10 0 16 3.3333

Table 3 The probability distribution of wt(V ⊕ U) = k for randomly chosen vectors V,U

k Probability (%) k Probability (%) k Probability (%) k Probability (%)

2 0.1243 6 18.2751 10 30.4584 14 0.8702

4 3.0458 8 38.0730 12 9.1375 16 0.0155

Vαj
= (〈αj , S(0)〉, 〈αj , S(1)〉, . . . , 〈αj , S(2

m − 1)〉),

it holds that

wt(Vαi
⊕ Vαj

) =

{

2m, i = j,

2m−1, i 6= j,

and

wt(Vαi
⊕ V̄αj

) =

{

0, i = j,

2m−1, i 6= j.

With the notation in Theorem 1, for the cipher PRESENT, m = 4. We can compute the prob-

ability distribution of wt(V ⊕ U) (see Table 2), where V, U ∈ {V1, V2, . . . , V15, V̄1, V̄2, . . . , V̄15}, Vα =

(〈α, S(0)〉, 〈α, S(1)〉, . . . , 〈α, S(15)〉), 1 6 α 6 15.

Let V, U be randomly chosen vectors with wt(V ) = wt(U) = 8. We can compute the probability

distribution of wt(V ⊕ U) by Lemma 1. A numerical calculation of Lemma 1 for various values of k is

given in Table 3.

Lemma 1 ([24, 25]). With the notation above, let α, β be random vectors and wt(α) = wt(β) = 8

with α = (0, a1, a2, . . . , a15), β = (0, b1, b2, . . . , b15), ai, bi ∈ {0, 1}, 1 6 i 6 15. Then, the probability of

wt(α⊕ β) = k is equal to

p(wt(α⊕ β) = k) =
C

(16−k)/2
8 C

(16−k)/2
7

C7
15

,

where k = 2, 4, 6, 8, 10, 12, 14, 16.
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According to the probability distribution shown in Tables 2 and 3, we present a distinguisher for

determining whether the vector belongs to the set {V1, V2, . . . , V15, V̄1, V̄2, . . . , V̄15} or belongs to the set

consisting of randomly chosen vectors. For a randomly chosen vector V with wt(V ) = 8, the probability

distribution of wt(V ⊕ Vα) = k will be similar to the distribution described in Table 3. For a vector

V ∈ {V1, V2, . . . , V15, V̄1, V̄2, . . . , V̄15}, the probability distribution of wt(V ⊕ Vα) = k will be close to the

distribution described in Table 2. This is the information leakage for recovering the round key with public

S-box in our attack.

For every 0 6 j 6 15, 1 6 b 6 15, we consider the output masks β = 04j‖b‖060−4j. Assuming that

we get 15× 16 = 240 vectors, Wβ = (T̂ ′
0(0, β), T̂

′
1(0, β), . . . , T̂

′
15(0, β)) after encrypting enough plaintexts

with the same secret key. In this paper, we transform the 240 vector Wβ into the binary vectors using

the method derived in Subsection 4.1 of [24, 25].

First, for every β and every 0 6 i 6 15, we compute

R
(i)
β = T̂ ′

0(0, β)− T̂ ′
i (0, β),

and we transform each of these vectors (R
(0)
β ,R

(1)
β , . . . ,R

(15)
β ) into binary vectors (B

(0)
β ,B

(1)
β , . . . ,B

(15)
β ),

where the coordinates with eight highest counter values are set to ‘1’ and the coordinates with eight lowest

counter values are set to ‘0’. If B
(0)
β is equal to ‘1’, then we transform the vector (B

(0)
β ,B

(1)
β , . . . ,B

(15)
β )

into the complementary vector Bi = (B
(0)
β ,B

(1)
β , . . . ,B

(15)
β ). If B

(0)
β is equal to ‘0’, then we let Bi =

(B
(0)
β ,B

(1)
β , . . . ,B

(15)
β ). These 240 binary vectors contain the reliable information about the coordinate

functions of “secret S-box” S′, that is, (〈2i, S′(0)〉, 〈2i, S′(1)〉, . . . , 〈2i, S′(15)〉), 0 6 i 6 3 . We start with

the method of partitioning 240 binary vectors Bi into four parts and for more details, we refer to [24,25].

We define the distances between two binary vectors Bi and Bj by

DBi,Bj
= wt(Bi ⊕ Bj),

where 1 6 i, j 6 240 and wt(Bi ⊕Bj) is the Hamming weight of Bi ⊕Bj .

Definition 1 ( [24, 25]). Given 240 binary vectors Bi, 1 6 i 6 240. Let ξ, τ > 0 and DBi,Bj
=

wt(Bi ⊕Bj) be the Hamming distances between binary vectors Bi and Bj , where 1 6 j 6 240. The

similarity degree of Bi and Bj is defined by

SBi,Bj
= g(Bi, Bj) +

∑

16k6240
k 6=i,k 6=j

(f(Bi, Bk) + f(Bj , Bk)),

where the function

g(Bi, Bj) =

{

ξ, if wt(Bi ⊕Bj) > t,

0, others.

and

f(Bi, Bj) =

{

τ, if wt(Bi ⊕Bj) > t,

0, others.

According to Definition 1, the higher the SBi,Bj
, the higher the possibility for two vectors Bi and Bj

in the same partition. For two random binary vectors α, β with wt(α) = wt(β) = 8, the probability of

wt(α⊕ β) = k is derived in Lemma 1 by

p(wt(α⊕ β) = k) =
C

(16−k)/2
8 C

(16−k)/2
7

C7
15

,

where k = 2, 4, 6, 8, 10, 12, 14, 16. According to Table 3, one can see that the probability of wt(Bi ⊕Bj) =

16 is equal to 0.0155%. Such a small probability means that: If we have wt(Bi ⊕Bj) = 16, there must be

a very strong correlation between two binary vectors Bi and Bj . That is, the vectors Bi and Bj should
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Algorithm 2 Partitioning 240 binary vectors into four parts

Require:

The 240 binary vectors Bi, 1 6 i 6 240;

The value of t, ξ, τ ;

Ensure: Four partitions Φ1,Φ2,Φ3,Φ4;

1: According to the value of t, ξ, τ , for every 1 6 i, j 6 240, we compute the similarity degrees SBi,Bj
;

2: Construct r priority sets Ωk, 1 6 k 6 r;

3: Choose binary vector w ∈ Ωk, where the value of |Ωk| is maximal. We mark w and sort 240 binary vectors in descending

order up to the value of Sw,Bj
, 1 6 j 6 240;

4: l = 1;

5: while l 6 4 do

6: n = 1;

7: for j = 1 to 240 do

8: if Bj is unmarked then

9: Add Bj into the set Φl and n ⇐ n+ 1;

10: else if n 6 60 then

11: Continue;

12: else

13: Break;

14: end if

15: end for

16: end while

17: return Four partitions Φ1,Φ2,Φ3,Φ4.

be in the same partition. Therefore, we treat the binary vectors which hold DBi,Bj
= 16 as the priority

vectors. The method of partitioning 240 binary vectors can be described as Algorithm 2.

For every candidate key k ∈ {0, 1}4 and α ∈ {0, 1}4\{0}, we compute all the vectors V
(k)
α = (〈α, S(0⊕

k)〉, 〈α, S(1 ⊕ k)〉, . . . , 〈α, S(15 ⊕ k)〉) and their complementary vectors V̄
(k)
α , where the S(x) is known.

We propose Assumption 1 for constructing the distinguisher in our attack. To keep it simple, we denote

the distribution described in Table 2 as D1 and the distribution described in Table 3 as D0.

Assumption 1. Let α ∈ {0, 1}4\{0}, k ∈ {0, 1}4. Let S(x) be a public S-box and the binary vec-

tors Bi. Given sets {V
(k)
1 , V

(k)
2 , . . . , V

(k)
15 , V̄

(k)
1 , V̄

(k)
2 , . . . , V̄

(k)
15 }, where V

(k)
α = (〈α, S(0 ⊕ k)〉, 〈α, S(1 ⊕

k)〉, . . . , 〈α, S(15 ⊕ k)〉). The probability distribution of wt(Bi ⊕ V
(k)
α ) and wt(Bi ⊕ V̄

(k)
α ) is similar to

distribution D0 for each incorrect candidate k. The distribution of wt(Bi ⊕ V
(k)
α ) and wt(Bi ⊕ V̄

(k)
α ) is

similar to distribution D1 for a correct k, respectively.

We propose a new method for distinguishing the correct key from the incorrect key based on Assump-

tion 1. Without loss of generality, we consider the vectors in the first partition Φ1. Assuming that ξi ∈

Φ1, 1 6 i 6 60, we exhaust k ∈ {0, 1}4 and compute the set {V
(k)
1 , V

(k)
2 , . . . , V

(k)
15 , V̄

(k)
1 , V̄

(k)
2 , . . . , V̄

(k)
15 }.

If k is the correct key, the distribution of wt(ξi ⊕ V
(k)
α ) and wt(ξi ⊕ V̄

(k)
α ) should be similar to the distri-

bution D1. In other words, the values of wt(ξi ⊕ V
(k)
α ) and wt(ξi ⊕ V̄

(k)
α ) are approximately equal to ‘8’.

The values of max16α615{wt(ξi ⊕ V
(k)
α ),wt(ξi ⊕ V̄

(k)
α )} and min16α615{wt(ξi ⊕ V

(k)
α ),wt(ξi ⊕ V̄

(k)
α )} are

approximately equal to ‘16’ and ‘0’. Respectively, if k is a wrong key, the distribution of wt(ξi ⊕ V
(k)
α )

and wt(ξi ⊕ V̄
(k)
α ) is different from the distribution D1.

χ2-method has already proved out to be useful, particularly in distinguisher of two distributions. We

propose a method of computing the distance between the distribution wt(ξi ⊕ V
(k)
α ), wt(ξi ⊕ V̄

(k)
α ) and

the distribution D1 using χ2-statistics method by

Dk =

4
∑

i=1

∑

ξj∈Φi











(Mj − 16)2 +N2
j +

15
∑

α=1,V (k)
α 6=Mj

V (k)
α 6=Nj

(

(wt(ξj ⊕ V
(k)
α )− 8)2 + (wt(ξj ⊕ V̄

(k)
α )− 8)2

)











, (2)

where

Mj = max
16α615

{

wt(ξj ⊕ V
(k)
α ),wt(ξj ⊕ V̄

(k)
α )

}

, Nj = min
16α615

{

wt(ξj ⊕ V
(k)
α ),wt(ξj ⊕ V̄

(k)
α )

}

.
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Table 4 The value of Dk with 4-bit round key being (0111)2

Candidate k k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

Value of Dk 18480 18592 18720 18584 18456 19360 18592 17728

Candidate k k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14 k = 15

Value of Dk 19224 19088 19360 19227 18744 18608 18448 20432

According to Assumption 1, one can see that the distribution with lowest distanceDk should correspond

to the correct key. Assuming that S-box is 4-bit to 4-bit, our attack can be described as Algorithm 3.

We initialize the upper bound value of Dk as m = 232 in Algorithm 3.

Algorithm 3 n-round key recovery attack: method 2

Require: The public S-box S(x);

Four partitions Φ1,Φ2,Φ3,Φ4 based on the text pairs after n-round encryptions;

Ensure: The candidate key K;

1: m = 232;

2: Compute the set {V
(k)
1 , V

(k)
2 , . . . , V

(k)
15 , V̄

(k)
1 , V̄

(k)
2 , . . . , V̄

(k)
15 };

3: for k = 0 to 15 do

4: Compute the distance Dk;

5: if Dk 6 m then

6: m ⇐ Dk;

7: K ⇐ k;

8: end if

9: end for

10: return The value of K.

3.2 Application to PRESENT-80

In this section, we apply the key recovery attack on the cipher PRESENT using the 80-bit key. PRESENT

is an 64-bit SPN block cipher. The round function consists of round key, S-boxes, and permutations.

The number of rounds is 31. The pseudo-code of PRESENT cipher is shown in Algorithm 4. For further

details, the reader is referred to [9].

(1) Round key K: 64-bit round key is Xored to the text.

(2) S-box S: 16 parallel 4-bit S-boxes.

(3) P-box P: a fixed bit permutation.

Algorithm 4 The pseudo-code of PRESENT cipher

Require: 64-bit plaintext X; main key K;

Ensure: 64-bit ciphertext C = EK(X);

1: Derive the round keys Ki (1 6 i 6 32) from the main key K;

2: STATE = X;

3: for i = 1 to 31 do

4: Add round key Ki to STATE;

5: STATE = S(STATE);

6: STATE = P (STATE);

7: end for

8: Add round key K32 to STATE;

9: return

We assume that the 4-bit secret round key of the leftmost S-box is (0111)2. In our experiment, let

τ = 1, ξ = 2, t = 10 (see Definition 1 and Algorithm 2).

First, we get the 240 binary vectors Bi, 1 6 i 6 240 after encrypting 232 plaintexts. Then, we obtain

four sets Φ1,Φ2,Φ3,Φ4 using Algorithm 2. For every 0 6 k 6 15, we compute the set {V
(k)
1 , V

(k)
2 , . . . , V

(k)
15 ,

V̄
(k)
1 , V̄

(k)
2 , . . . , V̄

(k)
15 }. According to the elements ξj ∈ Φi, 1 6 j 6 60, 1 6 i 6 4, it is easy to calculate

the distance Dk, which is defined as (2). Then, we can recover the secret 4-bit key using Algorithm 3.

The calculated values of Dk, k = 0, 1, . . . , 15 are shown in Table 4.
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Table 5 The complexity recovering the 80 bit key of 6–12-rounds of PRESENT-80

Round 6 7 8 9 10 11 12

Our

Data complexity 217 219.2 221.5 223.9 226.3 228.6 232

Time complexity 221 223.2 225.5 227.9 230.3 232.6 236

Success probability 88.5% 90.0% 88.0% 91.0% 92% 90.5% 90.5%

In [18]

Data complexity 214.8 217.5 220.1 222.7 225.3 227.9 230.5

Time complexity 232.8 234 234 234 234 234 234

Success probability 95% 95% 95% 95% 95% 95% 95%

According to the definition of Dk, the value k with minimum Dk should correspond to the correct

key. From Table 4, we can see that the value of Dk with k = 7 is minimal, which is equal to 17728.

Thus, we can recover the 4-bit round key of the leftmost S-box as k = (0111)2. Using this method, we

can determine the round key of 16 S-boxes one by one. The remaining secret key bits (80 − 64 = 16)

can be recovered by exhaustive search. Therefore, the time complexity is equal to 16× 232 + 216 ≈ 236.

However, the data complexity of recovering 80 bit key using our attack can be reduced. The plaintexts

for recovering the leftmost secret key can be used in recovering remaining secret key. That is to say that

the plaintext of form x‖r can be treated as the plaintext of form ri‖x
′‖rj . Thus, the data complexity can

be approximately reduced to 232 . In our linear attack, the memory complexity is equal to 60 vectors,

which is approximately equal to 26 and may be negligible.

The best known attack to PRESENT is the linear hull cryptanalysis of 26-rounds PRESENT-80 pro-

posed by Cho [18]. In Cho’s attack on 26-rounds PRESENT, they used the 24-rounds linear characteristic

holding with the capacity of 2−55.38 (see Table 1 in [18]). Due to the limitation of the full range of 264

text pairs, Cho can only obtain 8 bits advantage of 32 bits candidate key. The remaining 80 − 32 = 48

bits key is combined with the 232−8 = 224 candidate keys. Hence, the time complexity of Cho’s 26-rounds

attack is 264 + 248 · 224 ≈ 272.

For the low-round PRESENT, we perform Cho’s attack algorithm which recovers 32 bits of the round

key using the (n− 2)-round linear characteristic. The computational complexity of Steps 3 and 4 of the

attack algorithm is equal to 232 · 232 + 9 · 28 · 232 ≈ 264, which is hardly practical due to the restriction

of computational resources. To perform Cho’s low-round attack in practice, they targeted to recover the

16 bits of the last round key using (n − 1)-round linear characteristic. According to (2) in [18], the full

advantage (16 bits) of the attack with the success probability 95% is achieved by the data complexity

of N (r+1) ≈ 29.08
/

C(r), where C(r) is the capacity of r rounds linear characteristic. We know that the

capacity of 6–11 rounds linear characteristic, that is, C(6) = 2−8.42, C(7) = 2−11.00, C(8) = 2−13.61,

C(9) = 2−16.22, C(10) = 2−18.82 and C(11) = 2−21.43 (see Table 1 in [18]). Thus, the data complexities of

7–12 rounds can be calculated as N (7) = 217.5, N (8) = 220.08, N (9) = 222.69, N (10) = 225.3, N (11) = 227.9,

and N (12) = 230.5. The time complexity of Steps 3 and 4 of the attack algorithm requires N · 216

operations. If the data complexity is greater than 216, this computational complexity can be reduced

greatly by removing the repeated computations. Hence, Steps 3 and 4 can be done by 216 ·216 operations.

The total time complexity can be denoted as min{216, N} · 216 + 9 · 28 · 216 ≈ 232. Furthermore, we can

recover another 3 × 16 = 48 bits of round key by changing the input S-boxes and the output S-boxes.

Then, the time complexity of the low-round attack is 4 · (min{216, N} · 216 + 9 · 28 · 216) + 216. For

instance, the data complexity of the Cho’s 12-rounds attack is N (12) = 230.5, and the time complexity

is 4 · (216 · 216 + 9 · 28 · 216) + 216 ≈ 234 in total. Table 5 compares the complexity in our attack on

6–12-rounds PRESENT-80 with that of [18]. As can be seen, our complexities are very close to that of

Cho’s work, which is the best known result.

In [18], Cho pointed out that 26-rounds PRESENT-80 can be broke with 264 data complexity, 272

time complexity, and 232 memory complexity. If our attack uses the full plaintexts, which is 264, our

experimental result deduces that at most 25-rounds PRESENT-80 can be broke with 264 data complexity,

268 time complexity, and negligible memory complexity (see Figure 1).
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Figure 1 The experimental result and empirical evaluation of linear attack on reduced variants of PRESENT-80.
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Figure 2 (n+ 1)-round linear attack.

4 (n + 1)-round key recovery attack

In this section, we explain how to apply a key recovery attack against (n + 1)-round PRESENT-like

cipher with public S-box using slender-set linear cryptanalysis.

Notation. In this section, it is assumed that the jth 4-bit secret key in the ith round is defined by

ki,j . The symbol & represents the bit-wise AND. In this section, we measure the data complexity in

units which is equivalent to a chosen plaintext/chosen ciphertext. We measure the time complexity of

our attack in units which is equivalent to simple operation.

4.1 Extensions of the attack

This section describes the extended distinguisher for (n + 1)-round key recovery attack using slender-

set linear cryptanalysis presented in Section 3. For instance, we apply our method on the cipher

PRESENT-80.

Next, we outline how to recover the leftmost 16-bit secret key k1,1, k1,2, k1,3, k1,4 in the first round

and the leftmost 4-bit key k2,1 in the second round. We extend the distinguisher described in Section 3

by adding 1-round encryption of the PRESENT cipher at the top, as shown in Figure 2.

According to Figure 2, we can see that

y = S
(y)
k (z) = ((S(z1 ⊕ k1,1)&8)‖(S(z2 ⊕ k1,2)&8)‖(S(z3 ⊕ k1,3)&8)‖(S(z4 ⊕ k1,4)&8)). (3)

In Section 3, we distinguish the correct key from the wrong ones using the information from the partition
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of each input x of S-box in the first round. Using a similar method, we try to use the information from the

partition of each input y of S-box in the second round shown in Figure 2. Being different from the n-round

key recovery attack, the partition of the values y refers to more secret round key as k1,1, k1,2, k1,3, k1,4.

In the following, we outline how to recover the secret key k1,1, k1,2, k1,3, k1,4 and k2,1.

We define the (n + 1)-round encryption function as E(z, r). Let the plaintext be with the form of

z1‖z2‖z3‖z4‖ri and every β = 04j‖b‖060−4j, 0 6 j 6 15, 1 6 b 6 15. To perform the (n + 1)-round

attack, we should estimate the Walsh of the (n + 1)-round encryption function E(z, r) with the low-

weight output masks β for every fixed input y using the text pairs. That is, we should compute the

value of w
(z)
i,β = (−1)〈β,E(z,ri)〉, where each ri ∈ F 48

2 is chosen uniformly at random and z = z1‖z2‖z3‖z4.

As naive implementation, we can calculate the value of Walsh directly using the text pairs. However,

(n+ 1)-round attack considers each fixed input y in the second round. For randomly chosen plaintexts,

the probability of this event is relatively low (about 2−12), so many plaintext pairs are wasted and the

data complexity will increase. We can reduce the data complexity using precomputation.

For each k = k1,1‖k1,2‖k1,3‖k1,4 by exhaustive search and for every mask β = 04j‖b‖060−4j, 0 6 j 6 15,

1 6 b 6 15, we partition w
(z)
i,β into the sets Ω

(y)
k,β according to the value of y, 0 6 y 6 15 in (3). For every

0 6 y 6 15, it holds that |Ω
(y)
k,β | ≈ N × 2−12, where N is the number of plaintexts.

We define the function corresponding to fixing the input z = z1‖z2‖z3‖z4 of (n+ 1)-round encryption

function E as Tz , that is,

Tz : F 48
2 → F 64

2 and Tz(r) = E(z, r).

For a selection of masks β = 04j‖b‖060−4j, 0 6 j 6 15, 1 6 b 6 15, we estimate the counters T̂z(0, β) =
∑

ω∈Ω
(y)
k,β

ω , Fk,y(0, β). Assuming that we have got the value of Fk,y(0, β), we may consider the vectors

Wβ = (Fk,0(0, β), Fk,1(0, β), . . . , Fk,15(0, β)) and transform these vectors into binary vectors Bk,i using

the method described in Section 3. Our (n+ 1)-round attack is based on Assumption 2.

Assumption 2. Assuming that k = (k1,1, k1,2, k1,3, k1,4) and K = (k, k2,1). Let α ∈ {0, 1}4, \{0},

S(x) be a public S-box and the binary vectors Bk,i are obtained using the known plaintexts with the

first 16-bit fixed to z1, z2, . . . , z4. Given sets {V
(k2,1)
1 , V

(k2,1)
2 , . . . , V

(k2,1)
15 , V̄

(k2,1)
1 , V̄

(k2,1)
2 , . . . , V̄

(k2,1)
15 },

where V
(k2,1)
α = (〈α, S(0 ⊕ k2,1)〉, 〈α, S(1 ⊕ k2,1)〉, . . . , 〈α, S(15 ⊕ k2,1)〉). The probability distribution of

wt(Bk,i ⊕ V
(k2,1)
α ) and wt(Bk,i ⊕ V̄

(k2,1)
α ) is similar to distribution D0 for each wrong candidate K. The

distribution of wt(Bk,i ⊕ V
(k2,1)
α ) and wt(Bk,i ⊕ V̄

(k2,1)
α ) is similar to the distribution D1 for a correct K,

respectively.

In (n+1)-round key recovery attack, we use the similar technique presented in Section 3 for computing

the distance between the distribution wt(Bk,i ⊕ V
(k2,1)
α ),wt(Bk,i ⊕ V̄

(k2,1)
α ) and the distribution D1. If

the attack works properly, the distribution with lowest distance should correspond to the correct key. We

summarize the main steps of (n+ 1)-round attack as the following.

Step 1. For each plaintext of the form as z1‖z2‖z3‖z4‖ri and every β = 04j‖b‖060−4j, 0 6 j 6 15,

1 6 b 6 15, we compute the value of w
(z)
i,β = (−1)〈β,E(z,ri)〉 by precomputation.

Step 2. For a candidate keyK = (k1,1, k1,2, k1,3, k1,4, k2,1) and each mask β = 04j‖b‖060−4j, 0 6 j 6 15,

1 6 b 6 15, we partition w
(z)
i,β into the sets Ω

(y)
k,β according to the value of y, 0 6 y 6 15, which can be

calculated by (3).

Step 3. After the partition of w
(z)
i,β , we estimate the Walsh T̂ z(0, β) using the counters Fk,y(0, β) =

∑

ω∈Ω
(y)
k,β

ω.

Step 4. We obtain the 240 binary vectors Bk,i based on the vectors Wβ = (Fk,0(0, β), Fk,1(0, β), . . . ,

Fk,15(0, β)). Then, we partition these 240 binary vectors Bk,i into four parts Φ1,Φ2,Φ3,Φ4 using Algo-

rithm 2.

Step 5. We compute the set {V
(k2,1)
1 , V

(k2,1)
2 , . . . , V

(k2,1)
15 } and compute the distance between the dis-
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tributions D0 and D1 as

DK =

4
∑

i=1

∑

ξj∈Φi















(Mj − 16)2 +N
2
j +

15
∑

α=1,V
(k2,1)
α 6=Mj

V
(k2,1)
α 6=Nj

(

(wt(ξj ⊕ V
(k2,1)
α )− 8)

2

+ (wt(ξj ⊕ V̄
(k2,1)
α )− 8)

2
)















,

where

Mj = max
16α615

{

wt(ξj ⊕ V
(k2,1)
α ),wt(ξj ⊕ V̄

(k2,1)
α )

}

, Nj = min
16α615

{

wt(ξj ⊕ V
(k2,1)
α ),wt(ξj ⊕ V̄

(k2,1)
α )

}

,

V (k2,1)
α = (〈α, S(0 ⊕ k2,1)〉, 〈α, S(1 ⊕ k2,1)〉, . . . , 〈α, S(15⊕ k2,1)〉),

and the value k2,1 is the leftmost candidate key of the second round.

Step 6. The candidate 20-bit key K = (k1,1, k1,2, k1,3, k1,4, k2,1) corresponding to the lowest distance

DK is treated as the correct key. Our attack can be described as Algorithm 5.

Algorithm 5 (n+ 1)-round key recovery attack

Require: The public S-box S(x);

Four partitions Φ1,Φ2,Φ3,Φ4 based on the text pairs after (n+ 1)-round encryptions;

Ensure: The candidate key k1,1, k1,2, k1,3, k1,4 and k2,1;

1: m = 232;

2: for k1,1 = 0 to 15, k1,2 = 0 to 15, k1,3 = 0 to 15, k1,4 = 0 to 15, k2,1 = 0 to 15 do

3: Compute the distance DK ;

4: if DK 6 m then

5: m ⇐ DK ;

6: (k1,1, k1,2, k1,3, k1,4, k2,1) ⇐ K;

7: end if

8: end for

9: return The value of (k1,1, k1,2, k1,3, k1,4, k2,1).

4.2 Discussion the complexity of attack

This section estimates the data and time complexities of the (n + 1)-round key recovery attack using

slender-set linear cryptanalysis. First, we introduce a useful theorem about the success probability and

the data complexity of linear cryptanalysis in [27].

Theorem 2 ([27]). Let PS be the probability that a linear attack on an m-bit subkey, with a linear

approximation of probability p, with N known plaintext blocks, delivers an a-bit or higher advantage.

Assuming that the linear approximation’s probability to hold is independent for each key tried and is

equal to 1/2 for all wrong keys, we have for sufficiently large m and N :

N =

(

Φ−1(PS) + Φ−1(1 − 2−a−1)

2

)2

× |p− 1/2|−2.

In the (n+1)-round attack, the linear approximations under (n+1)-round with fixed input z1,i, z2,i, . . . ,

z4,i are same as the linear approximations under n-round with fixed input y. Let N(n) denote the known

plaintexts of n-round key recovery attack, and N(n+1) denote the known plaintexts of (n + 1)-round

attack. Next, we examine the data complexity of (n + 1)-round attack comparing with that of n-round

attack.

Note that (n + 1)-round attack can recover a(n+1) = 20 key bits (k1,1, k1,2, . . . , k1,4 and k2,1), while

n-round attack only recovers a(n) = 4 key bits (k1,1). According to Theorem 2, we can calculate the data

complexity N(n+1) and N(n). Then, the ratio N(n+1)/N(n) can easily be deduced as

Rn+1,n =
N(n+1)

N(n)
=

(

Φ−1(PS) + Φ−1(1 − 2−20−1)

Φ−1(PS) + Φ−1(1− 2−4−1)

)2

. (4)
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Table 6 The data complexity ratio of (n+ 1)-round to n-round for various values of success probability of PS , according

to (4)

Success probability PS = 0.95 PS = 0.90 PS = 0.85 PS = 0.8 PS = 0.75 PS = 0.5

Ratio 3.4827 3.8662 4.1942 4.5091 4.8288 6.9225

A numerical calculation of (4) for various values of success probability of PS is given in Table 6.

According to Table 6, one can see that the data and time complexities of (n+ 1)-round attack which

recovers extra 16 key bits are 3.8662 times comparing with that of n-round attack with success probability

90%. We repeat this method (4 times) until all the 64-bit keys of first round have been recovered. We

recover the remaining secret key bits (80 − 64 = 16) by exhaustive key search. Hence, compared with

the n-round attack, the data complexity of (n + 1)-round attack is about 3.8662 times, and the time

complexity has no increase for recovering the full 80 key bits compared with that of n-round attack at a

success probability of 90%.

However, the discussion about the complexity of (n+1)-round attack is a preliminary work which may

not be accurate estimation. It is a possible direction of future research.

5 Conclusion

In this paper, we propose a new modified slender-set method to recover the round key to PRESENT-

like cipher with public fixed S-boxes with lower time and memory complexity. We present experiments

performed on reduced version of PRESENT-80, as detailed in Table 5. Our experiments suggest that

25-rounds PRESENT-80 could be broke with approximately 264 data complexity, 268 time complexity,

and negligible memory complexity.

Furthermore, we present an (n+ 1)-round attack by extending the n-round key recovery attack. The

theoretical model suggests that the data complexity of (n + 1)-round attack is about 3.8662 times, and

the time complexity is nonincreasing for recovering the full 80 key bits compared with that of n-round

attack at a success probability of 90%. We hope our results to be useful in researching the new key

recovery attack on PRESENT-like cipher that uses bit-wise permutation.

An interesting open question is to find a more efficient method of distinguisher for making a distinction

between the correct key and wrong key. Furthermore, the theoretical model for complexity of recovering

the secret round key would be a possible direction of future work.
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