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Abstract Detection of salient objects in an image is now gaining increasing research interest in computer

vision community. In this study, a novel region-contrast based saliency detection solution involving three phases

is proposed. First, a color-based super-pixels segmentation approach is used to decompose the image into

regions. Second, three high-level saliency measures which could effectively characterize the salient regions are

evaluated and integrated in an effective manner to produce the initial saliency map. Finally, we construct a

pairwise graphical model to encourage that adjacent image regions with similar features take continuous saliency

values, thus producing the more perceptually consistent saliency map. We extensively evaluate the proposed

method on three public benchmark datasets, and show it can produce promising results when compared to 14

state-of-the-art salient object detection approaches.
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1 Introduction

Visual attention is a particularly important aspect of human visual system. It enables a person to perceive

salient regions in complex scenes quickly and then selectively evaluate the small pieces of information.

This ability to extract the most relevant (salient) sensory information during an early processing stage

considerably enables effective understanding and rapid reaction in a complex world. Visual saliency

has attracted considerable attention during the last few decades, and has been studied extensively by

researchers in the fields of neurobiology [1], cognitive psychology [2] and computer vision [3–7]. Salient

object detection has a broad range of applications in the fields of computer vision and graphics, including

object detection and segmentation [8], image retrieval [9], image registration [10], image cropping [11],

and so on.

Early computational visual saliency studies focus on fixation prediction. The goal of fixation prediction

is to evaluate a probabilistic map of an image that simulates human eye movement activities. Recently,

visual saliency has been extended to salient object detection for its potential application in other machine

vision fields. This type of model aims to detect regions in a scene that may contain salient objects. This
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(a)                          (b)                           (c)                           (d)                           (e)                           (f)                          (g)

Figure 1 Saliency detection results using state-of-the-art methods as well as ours. (a) Input images; (b) [12] merely

captures object boundary (CA); (c) [4] produces saliency map with ill-defined boundary (RC); (d) [13] some background

regions are incorrectly detected as salient (GS); (e) [14] detects parts of background region as salient (HS); (f) our results

uniformly highlight saliency region and effectively exclude background pixels; (g) ground truth masks (GT).

is also the focus of this study. In generally, a “saliency map” is generated where the intensity of its

pixel represents the possibility of that pixel belonging to the salient object. The entire object is then

segmented from the saliency map using various methods (e.g., simple thresholding).

Saliency detection methods generally follow the center-surround contrast principle of [15]. Although

much progress has occurred regarding the performance of these methods, it remains a problem to detect

salient regions from the complex images. These high-contrast textures and confusing patterns in the

background may be inaccurately detected as salient by these contrast based methods. Figure 1 presents

three scenes of increasing background complexity. The detection results yielded from state-of-the-art

methods either outline object boundaries but fail to extract the interior as shown in Figure 1(b), or have

ill-defined object boundaries as shown in Figure 1(c). The fuzzy results limit the usefulness of these

methods in many applications, such as image segmentation and object recognition.

These results indicate that merely applying the contrast principle is not sufficient for saliency detection.

Thus, some researchers [5, 13] attempt to adopt some prior knowledges to address this problem. In [13],

boundary and connectivity prior were used as additional cues of saliency detection. However, this type of

method may not always function well, because these priors may be valid when the objects are placed near

the image boundaries. For example, some background regions are incorrectly detected as salient by [13]

in Figure 1(d). Based on our analysis, we determine that an effective saliency detection method should

consider the following: (1) Image decomposition. The input image is decomposed into compact and

regular regions. This process can remove image redundancies and reduce the complexity of subsequent

saliency cues evaluation. (2) Region contrast. More discriminative features may be extract from the

regions than pixels. Besides, the small number of regions also ensures efficiency. (3) High-level priors.

These can effectively characterize salient and background regions, yielding accurate saliency detection.

(4) Spatial context optimization. A pairwise graphical model is constructed to smooth raw saliency maps

and augment the dissimilarity between the object and background regions.

Following these four principles, we propose a novel salient object detection method. The proposed

approach first decomposes the image into regular-size regions that meet object boundaries. We then cal-

culate the compactness of a region using its spatial distribution in terms of color, in order to seek regions

that have high possibility of containing a meaningful object. After segmenting the region compactness

map, we obtain the soft foreground regions. A novel global distinctness saliency map is generated by mak-

ing comparisons with the soft foreground regions. The spatial location prior is then used to increase the

difference between the foreground and background. These three cues, i.e., region compactness, objectness-

guided global distinctness and spatial location prior, are integrated to produce the initial saliency map.

Finally, we use a graph-based regularization method that is modified from a pairwise CRF framework to

refine the initial saliency values. The purpose is to produce more consistent saliency maps. We evaluate
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the performance of the proposed method extensively on three well-known datasets and our approach

produces promising results compared to those of state-of-the-art salient object detection algorithms.

The main contribution of this study is two-fold. The first contribution involves three high-level saliency

measures that may effectively characterize a salient object and dramatically increase the accuracy and

robustness of saliency detection methods. The second contribution is an efficient graph regularization

measure, which models the spatial context relationship of the initial saliency map and eventually enhances

the coherence between the salient regions.

The rest of the paper is organized as follows. Section 2 gives a brief review of related saliency detection

methods. Section 3 presents the proposed algorithm which generates the initial saliency map. Section 4

introduces a graph based optimization measure to refine the initial saliency map. Experimental results

and comparisons are described in Section 5. Conclusion and future work are presented in Section 6.

2 Related work

Visual saliency models may be categorized into three types: fixation prediction, salient object detection

and objectness. Fixation prediction models aim to predict where human look in images. Salient object

detection methods are designed to extract the most attention-grabbing objects in a scene. Objectness

algorithms act as a class-generic object detector, which quantifies the possibility of an image window

containing an object of any class [16]. In the following, we briefly review the type of salient object

detection that are most relevant to our approach.

Salient object detection models can be classified into pixel-based methods and region-based methods,

depending on whether the contrast evaluation is defined over pixels or regions. Pixel-based methods

calculate center-surround color contrast of a pixel with its local neighborhood or the whole image pixels

via some features (e.g., color, intensity and orientation). Achanta et al. [17] determined salient region em-

ploying local contrast at various scales using low-level color and luminance features. Goferman et al. [12]

incorporated local low-level cues, global information, center priors and high-level factors to compute a

context aware saliency map. Achanta et al. [3] proposed a frequency-tuned method by measuring the

differences between the feature of individual pixel and the average feature of the entire image. However,

these methods tend to produce saliency maps that highlight the edges rather than the entire salient

object, making them less useful in many applications.

Region-based approaches evaluate color uniqueness over image regions instead of pixels. Cheng et

al. [4] extended the saliency estimation from pixel-wise to patch-level by calculate the contrast of a

segmentation patch with its surrounding patches. More recently, Perazzi et al. [18] formulated the region

contrast evaluation into Gaussian filters, remarkably reducing the running time of saliency detection.

Yan et al. [14] analyzed saliency cues from multi-scale structures in order to tackle small-scale patterns

detection problem. Region-based methods possess two advantages over pixel-based ones. On one hand,

methods could benefit from the high-level features extracted from regions, and could highlight the whole

extent of object. On the other hand, the relatively small number of regions could boost the efficiency

of saliency detection algorithms, accelerating the practical application process of saliency approaches in

other fields.

Contrast-based saliency detection methods usually have poor performance in complex scenes. Thus,

lots of domain knowledge from other fields have been applied to the saliency estimation. In [19], Han et

al. explored the properties of the foreground regions and proposed a probabilistic computational model

by integrating objectness likelihood with appearance rarity for visual saliency detection. The background

priors that treates the image boundaries as pseudo background were studied in [5,13,20]. Han et al. [21]

learned latent patterns from the background using the deep learning architecture to separate salient

regions from complicated images. The influence of heterogeneous background on visual saliency was

studied in [22]. Wu and Shen [23] utilized low-rank and sparse matrix decomposition methods for saliency

detection. Liu et al. [24] learned a Partial Differential Equations (PDE) system from an image for binary

saliency estimation. Chang et al. [25] constructed a graphical model to integrate objectness and saliency.
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(a)                                       (b)                                                                (c)                                                                    (d) 
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Figure 2 The architecture of our pipeline. (a) The input image; (b) the image decomposition; (c) the calculation of three

saliency measures and the saliency integration; (d) the final saliency map after saliency optimization.

Li et al. [26] explored the combination of fixation prediction and salient object segmentation.

There also exist some learning-based methods in the literature. The task of salient region detection are

generally formulated as a binary labeling problem. Khuwuthyakorn et al. [27] combined salient features

using a mixture of support vector machines (SVMs) to extract salient object from an image. Liu et al. [28]

extracted salient regions from both a picture and sequential images by using CRF learning. Jiang et al. [6]

modeled saliency estimation as a regression problem and learned to integrate different regional features

employing a random forest. Although impressive performances have been realized by these methods, they

usually needs time-consuming training, which is not feasible in many applications.

3 Proposed approach

The proposed method consists of three procedures. First, the input image is segmented into super-pixel

regions. Second, we use three saliency estimation measures to calculate the saliency value of each region.

These saliency measures include region compactness, objectness-guided global distinctness and spatial

location prior. A two-layer framework is then employed to integrate these three measures into a master

saliency map. Finally, we construct a graphical model to refine the integrated saliency values and produce

the more consistent saliency map. Figure 2 shows the pipeline of the proposed method. Details of these

steps are provided in the following sections.

3.1 Image decomposition

The edge-preserving smoothness measure in [29] is first used to smooth the input image. It effectively

removes the small-amplitude details and retains the high-contrast foreground object edges in the mean-

time. To capture further the structural characteristics of the smoothed image, a color-based super-pixels

segmentation approach [30] is used to decompose the image into regions that have regular size and meets

the object boundaries well. This structural model V :

V = {ν1, ν2, ν3, . . . , νK}, (1)

which contains K image regions effectively alleviates the influence of cluttered noises in images. Besides,

this image decomposing measure guarantees the computation efficiency of subsequent saliency measures.

Unlike previous decomposition techniques that rely on large-scale segmentation [4, 14], our approach

decomposes images into super-pixels. This kind of representation is less likely to cross object boundaries,
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(a)                                                                               (b)

Figure 3 Region compactness measure: (a) input image; (b) region compactness saliency map. We notice that compact-

ness measure could effectively characterize salient object and clearly distinguish it from the background.

thus generating high quality segmentations. Moreover, using the regular super-pixel as the unit for salien-

cy estimation facilitates the integration of different saliency cues in subsequent calculation procedures. As

shown in Figure 2(b), our soft abstraction approach clusters pixels into compact and boundary-preserving

super-pixel regions. We fix the number of super-pixel regions to 200 to balance accuracy and efficiency.

3.2 Region compactness

Low-level saliency cues (e.g., color contrast) are generally known to perform poorly in data-driven salient

object detection. Therefore, introducing some high-level saliency priors in order to characterize salient

regions effectively is essential. We observe that the colors belonging to the background generally spread

over the entire image, while colors belonging to the foreground object concentrate within a small part

of regions. That is to say, there is a larger probability of being salient for regions with compact color

distribution or less color variance in the spatial domain [31]. Therefore, we adopt region compactness as

our first saliency measure. The compactness score Ck of region k is defined as the inverse of its color

spatial variance:

Ck = (
K
∑

j=1

wcolor(ck, cj) · d
2
spa(pj , uk))

−1, k ∈ V . (2)

The Gaussian function is used as weight to measure the color similarity of two regions:

wcolor(ck, cj) =
1

zk
· exp(−

d2color(ck, cj)

2µ2
c

), (3)

where zk is the normalization term that guarantees
∑K

j=1 wcolor(ck, cj) = 1. dcolor(ck, cj) measures the

color distance of two regions in the Euclidean space. Parameter µ2
c controls the degree of color similarity,

it is set to 20 in all experiments. The dspa(pj , uk) in (2) denotes the spatial distance between the position

centroid of two regions in the Euclidean space. uk in (2) is the weighted mean position of region k:

uk =

K
∑

j=1

wcolor(ck, cj) · pj . (4)

We present an example in Figure 3 to demonstrate the effectiveness of our compactness measure. In

Figure 3(a), the two purple petunias are more compact compared to the brown mood beneath them, thus

should be considered more salient, as demonstrated from the compactness saliency map in Figure 3(b).

It is proven to be an effective measure to capture object information and accurately distinguishes salient

regions from background. Besides, our compactness measure can uniformly highlight salient object for

taking into consideration the relative spatial information.

3.3 Objectness-guided global distinctness

The distinctness of an image color is considered the most important contributor to visual saliency [31,32].

Foreground regions usually possess more distinct colors than the background regions. Global regional
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contrast is generally measured by calculating the color differences of different image regions in a global

manner. While the global contrast method may detect regions with distinct color, it can’t handle all

kinds of images, especially when the foreground objects possess similar color to the background regions.

If the rough position of the salient regions could be located before calculating the global regional contrast,

the robustness of this saliency cue would increase. We segment the region compactness saliency region

using an adaptive threshold to obtain the “soft” foreground and background. The threshold is set to

twice the mean region compactness value of an image. The objectness likelihood of super-pixel region

j ∈ V is defined as

o(νj) =

{

1, if Cj >
∑K

i=1
2Ci

K
,

0, otherwise.
(5)

As the segmentation is coarse, we measure the contrast between regions k ∈ V and the “soft” fore-

ground regions, aiming to suppress the regions inside the “soft” foreground similar to the outside part,

while highlighting the outside regions similar to the inside part. Based on this principle, we define the

objectness-guided global distinctness as our second saliency measure. Given K regions, the objectness-

guided global distinctness Dk of region k is calculated as

Dk =
K
∑

j=1

wspa(pk, pj) ·
o(νj)

d2color(cj , ck)
, k ∈ V . (6)

We use Gaussian weight wspa(pk, pj) = exp(−
d2
spa(pk,pj)

2µ2
d

) to measure the spatial distance of region k and

region j. Parameter µ2
d controls the range of distance, and we empirically fix it to 0.2.

The proposed objectness-guided global distinctness measure assigns larger saliency value to regions

whose color is less distinct to the “soft” foreground regions or whose spatial distance is closer to the

“soft” foreground regions. Note that we calculate the objectness-guided global distinctness procedure

in CIELab color space, because it is perceptually accurate. In addition, this measure is calculated in

region-level, which guarantees the efficiency of this procedure.

3.4 Spatial location prior

Photographers tend to align object of interest at the center of photos. Thus, we employ this prior to

depress the saliency of background pixels and define it as our third saliency measure. Some literatures

have studied the effect of center prior on saliency estimation [33, 34]. However, previous center priors

assign larger saliency weight to the centroid of an image [12]. It may fail to function when salient

objects are away from the image center. We present a more accurate spatial location prior to solve this

problem. Because the proposed region compactness maps give the rough location of the salient region,

the compactness saliency score is used as the weight to estimate the object center pcenter. The definition is

pcenter =
1

M

K
∑

j=1

Dj · pj , (7)

where M =
∑

jDj is the normalization term that ensures all the weights add up to one, Dj is the region

compactness saliency score of j, Pj is the mean position of region j. Our spatial location prior Lk of

region k is evaluated by measuring the distance of the region to the estimated object center Pcenter:

Lk = exp

(

−
d2spa(pk, pcenter)

2µ2
m

)

, k ∈ V , (8)

where parameter µ2
m represents the range of distance, we fix µ2

m to 0.15 in all experiments.

3.5 Integration

The aforementioned three saliency measures perform differently in saliency detection, as shown in Figure 4

(b)–(d). Therefore, it is essential to integrate these measures to obtain an accurate master saliency map.
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(a)                               (b)                               (c)                                (d)                               (e)                               (f)

Figure 4 Saliency map of different procedure. (a) The input image; (b) region compactness map; (c) objectness-guided

global distinctness map; (d) spatial location prior map; (e) the two-layer integration saliency map; (f) the final saliency

map employing a graphical model.

(a)                                                    (b)                                                         (c)

Figure 5 Spatial context optimization via graph regularization. We adopt the graph regularization measure which is

modified from a pairwise CRF framework (b) to model spatial context relationships of the initial saliency map (a), and get

the more consistent saliency map (c).

Motivated by the saliency combination framework in [35], we introduce a similar two-layer integration

structure. It is made up of two layers: the base layer and the enhancement layer. They are elaborately

described in the following.

• Base layer: In this layer, we seek regions both salient in compactness and distinctness. To this end, we

investigate two approaches to integrate these two cues. The first approach is weighted sum of individual

cues, i.e., Bk = w1Ck +w2Dk. The second integration scheme uses multiplication, i.e., Bk = Ck ·Dk. We

empirically select the latter, for it could better assign higher salient value to salient regions and depress

the background regions.

• Enhancement layer: It corresponds to spatial location prior measure. This layer complements the

base layer by assigning larger saliency value to object center. As such, the proposed approach further

enlarges the dissimilarity between foreground and background regions.

We first normalize the region compactness Ck, objectness-guided global distinctness Dk and spatial

location prior Lk to the range [0,1], then we use the proposed structure to integrate the three measures.

The master saliency score S̃k of region k is calculated as the product of the base layer and the enhancement

layer:

S̃k = Bk · Lk = Ck ·Dk · Lk, k ∈ V . (9)

After the saliency integration of the complementary two layers, we get a more accurate saliency map

(see Figure 4(e)).

4 Spatial context optimization via graph regularization

The saliency integration map S̃ is limited in that saliency values are not continuous even between adjacent

regions with similar patterns (see Figure 5(a)). We intend to produce the consistent saliency map S (see

Figure 5(c)) where the entire salient regions are uniformly highlighted, object boundary discontinuity

is well preserved and background pixels are effectively suppressed. From this point of view, saliency
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estimation can be modeled as a foreground labeling task, i.e., assigning value closer to 1 to object region

and value closer to 0 to background region. Towards this goal, we adopt a modified Conditional Random

Fields (CRF) framework [36] to model spatial context relationships and enforce the consistence of the

initial saliency map.

In the CRF framework, given the observation priori D, the posterior distribution S is formulated as

Gibbs distribution:

P (S|D) =
1

Z
· exp(−E(S|D)), (10)

where Z is normalization constant which is called the partition function. The corresponding Gibbs energy

is written as E(S) = − logP (S|D) − logZ. Generally, an undirected graph G = (V ,N ) is constructed,

where V is the set of random variables. The neighborhood system N of random field is defined by the

sets Ni, ∀i ∈ V , where Ni denotes all neighbors of the variable Si. In this study, we use a pairwise CRF

whose energy can be written as the sum of unary and pairwise potentials as

E(S) =
∑

i∈V

ψi(Si) +
∑

i∈V,j∈Ni

φij(Si, Sj), (11)

The Maximum a Posteriori(MAP) labeling S∗ of random field is

S∗ = argmaxP (S|D) = argminE(S). (12)

In our modified framework, the set of random variables S = {S1, S2, . . . , SK} correspond to super-

pixels V = {ν1, ν2, ν3, . . . , νK}. The neighborhood Ni of random variable ∀i ∈ V denotes all adjacent

super-pixels of the variable Si (see Figure 5(b)). The image color sets C = {C1, C2, . . . , CK} represent the

observation priori D = {D1, D2, . . . , DK}. The unary potential corresponds to the initial saliency score,

while the pairwise potential maximize label agreement between adjacent variables. It effectively increases

the consistence of neighboring super-pixel regions. The pairwise energy function is formulated as

E(S) =
∑

i∈V

(Si − S̃i)
2 + λ

∑

i∈V,j∈Ni

wij · (Si − Sj)
2. (13)

The weight wij = exp(− d2
color(ci,cj)

2σ2
w

) measures the color similarity of the two adjacent variables, σ2
w

controls the degree of similarity, and we empirically fix σ2
w to 0.1. The parameter λ in (13) is set to 20

to balance the initial saliency score and the value contributed from adjacent variables.

We modify the CRF framework in two aspects: (1) The CRF algorithm uses discrete random variable

which may take a value from sets of labels (e.g., L = {1, 0}), while we assign continuous value to

each random variable, i.e., Si ∈ [0, 1]. As such, the optimized continuous value represents more precise

probability that a super-pixel belongs to the salient object. (2) In CRF framework, the MAP inference

is done via graph cut based algorithm, while in our formulation, both terms in (13) are convex functions.

It may be solved efficiently by employing analytic methods.

The solution to the pairwise energy function is

S∗ = (I + 2λ(D −W ))−1S̃, (14)

where I denotes an identity matrix, D is a diagonal matrix, where dii =
∑

j wij , W represents the weight

matrix, S̃ is the vector of initial saliency values. Figure 5(c) presents the refined map. It indicates that

we get more accurate saliency map with consistent foreground and background after the optimization

procedure. In addition, the object boundary is well preserved.

5 Experimental evaluations

In this section, we evaluate the performance of the proposed method and compare it with 14 state-of-

the-art salient object detection algorithms. These methods are chosen based on the following criteria:
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Figure 6 Precision recall curves comparison with fourteen state-of-the-art salient detection methods on dataset M-

SRA10K.

AC [17], CA [12], LC [37], FT [3] and MSS [38] are pixel contrast based methods, HC [4], RC [4], GC [32]

and SF [18] adopt global regional contrast, MC [39] evaluates saliency via graph construction, GS [13]

and RBD [20] use background prior, HS [14] detects saliency in a hierarchical manner, and DRFI [6]

adopts a supervised learning method to classify salient and background regions. It is worth noting that

DRFI and RBD are the top 2 approaches for salient object detection in the recent benchmark conducted

by Ali Borji et al. [40].

5.1 Evaluation datasets

We have evaluated the results of the proposed method on three well known datasets: (1) MSRA10K1),

(2) DUT-OMRON [34] and (3) SED2 [41]. They were also selected as standard benchmark datasets

in [40]. Besides, all the three datasets have accurate pixel-wise binary masks.

MSRA10K: It is a challenging dataset containing 10000 images with complex scenarios. Note that it

covers the whole 1000 images of the widely accepted ASD [3] dataset.

DUT-OMRON: It contains 5168 images selected from more than 140000 images. These images generally

contain cluttered background and are annotated with both bounding boxes and pixel-wise binary masks.

SED2: It is a sub-dataset of SED [41] and has 100 images containing two salient objects. Objects of this

dataset is annotated manually by three users. It is selected to evaluate the performance of the proposed

method with multi-objects images.

5.2 Comparison with state-of-the-art methods

Three evaluation metrics are adopted to assess the performances of all the 15 salient object detection

approaches.

Precision-recall (PR) curve: In the first evaluation, we compare different methods using precision-

recall measure [40]. Precision is calculated as the percentage of pixels that are correctly assigned salient,

while recall measures the percentage of detected salient pixels to ground truth masks. we first segment

the normalized saliency maps using the fixed threshold that varies from [0:0.05:1] and then compare the

obtained binary saliency maps to ground truth masks to obtain the precision-recall curve.

Figure 6 presents the fixed threshold precision-recall curves on dataset MSRA10K. It indicates that

our result is comparable to RBD [20], MC [39] and HS [14]. Among them, RBD and MC is similar to our

algorithm in graph construction, HS is similar to ours in that both methods utilize a multi-layer approach

to analyze saliency cues. It is worth noting that DRFI, which model saliency using a supervised learning

framework, outperforms the alternative data-driven methods in precision. However, this kind of methods

needs exhaustive training on large-scale dataset, limiting its usability in many potential applications.

Besides, our method is more accurate than all other approaches. Figures 7 and 8 present the results on

DUT-OMRON and SED2 respectively. Both of them show similar results to MSRA10K and demonstrate

the robustness of the proposed method over different kinds of datasets.

1) http://mmcheng.net/gsal/.
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Figure 7 Precision recall curves comparison with fourteen state-of-the-art salient detection methods on dataset DUT-

OMRON [34].

 

 

Ours
RC
MSS
HC
AC
LC

 

 

DRFI
RBD
Ours
HS
MC

 

 

Ours
GC
SF
GS
CA
FT

Recall

0    0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0

Recall

0    0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0

Recall

0    0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0

P
re

ci
si

o
n

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

P
re

ci
si

o
n

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

P
re

ci
si

o
n

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Figure 8 Precision recall curves comparison with fourteen state-of-the-art salient detection methods on dataset SED2 [41].
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Figure 9 Adaptive threshold precision and F-measure comparison of saliency maps over three databases. (a) MSRA10K;

(b) DUT-OMRON [34]; (c) SED2 [41].

F-Measure: In the second evaluation, we binarize the saliency map using an image-independent

adaptive threshold as in [3,4,14]. We set the threshold to twice the mean saliency value in all experiments.

Neither precision or recall can comprehensively evaluate the performance of saliency maps, thus we also

calculate F-Measure. It is formulated as the weighted harmonic average of precision and recall:

Fβ =
(1 + β2) · Precision ·Recall

β2 · Precision + Recall
. (15)

We set β2 = 0.3 as in [3, 4, 14], putting more weight to precision than recall. Figure 9 illustrates the

precision and F-Measure results over three datasets. We can notice that the proposed method achieves

comparable F-Measure performance to the top benchmark approaches (i.e., DRFI, RBD and MC) and

consistently exceeds others. Besides, our approach obtains the best performance on the precision after

we perform the threshold segmentation. This high precision means that the proposed approach could

effectively depress the background regions when compared to alternate ones (see the visual comparison

results in Figure 10).

Mean absolute error: Although being commonly used, precision-recall curve is limited in that

neither the precision or recall measure considers the true negative counts, as pointed in [18, 32]. In the

third evaluation, we calculate the mean absolute error (MAE). It is defined as the difference between the
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(a)              (b)              (c)               (d)              (e)              (f)               (g)              (h)              (i)               (j)               (k)              (l)

Figure 10 Qualitative comparison of saliency maps over complex scenes with cluttered background. We make comparison

with discriminative region feature integration (DRFI), robust background detection (RBD), hierarchical saliency (HS),

markov chain saliency (MC), global cues saliency (GC), filter based saliency (SF), geodesic saliency (GS), context-aware

(CA), and frequency tuned saliency (FT). (a) Inputs; (b) GT; (c) ours; (d) DRFI; (e) RBD; (f) HS; (g) MC; (h) GC; (i) SF;

(j) GS; (k) CA; (l) FT.

Table 1 MAE: Mean absolute error

Datasets LC AC FT CA MSS HC RC SF HS MC GC GS DRFI RBD Ours

MSRA10K 0.233 0.227 0.235 0.237 0.203 0.215 0.252 0.175 0.149 0.145 0.139 0.147 0.118 0.108 0.126

DUT-OMRON 0.246 0.190 0.250 0.254 0.177 0.310 0.290 0.183 0.227 0.186 0.197 0.173 0.155 0.144 0.175

SED2 0.204 0.206 0.206 0.229 0.192 0.193 0.196 0.180 0.157 0.162 0.185 0.153 0.130 0.130 0.148

original saliency map S and its ground truth mask GT:

MAE =
1

W ·H

W
∑

x=1

H
∑

y=1

|S(x, y)−GT(x, y)|, (16)

where W and H are the image width and image height respectively. We present the results in Ta-

ble 1, which shows that the proposed method achieves top 4 performance over all the three datasets. It

demonstrates that our approach could assign relatively precise value to the large-scale background region.

Qualitative comparisons: Figure 10 gives the visual comparison of the proposed method and the

state-of-the-art algorithms. It indicates that our saliency maps accurately highlight the entire object and

match the annotated ground truth masks well. When processing challenging images with complex back-

ground or multi-objects in the foreground, our proposed method can still produce high-quality saliency

maps that consistently outperform state-of-the-art algorithms.

5.3 Validation of saliency measures

Our method uses various saliency cues and optimization measure. To analyze their respective significance

in overall saliency estimation, we also evaluate each individual component on the ASD [3] dataset. The

precision-recall results of different procedures in the proposed method are reported in Figure 11. We

observe that region compactness cue and objectness-guided global distinctness cue have already achieved

high-precision detection performance, and the two-layer saliency structure results achieve better detection

accuracy than the individual component. It demonstrates that aggregating different saliency cues could

contribute to the performance of saliency evaluation. Furthermore, the graph regularization measure

further refines the results of the two-layer integration.
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Figure 11 Validation of the proposed saliency measures. It indicates that individual compactness and distinctness

measure already performs well, and the two-layer structure and graph regularization measure significantly improves detection

accuracy.

Table 2 Comparison of the average runtime

Method AC FT MSS RC SF GS GC HS MC DRFI RBD Ours

Time (s) 0.15 0.09 0.088 0.15 0.16 0.35 0.06 0.6 0.53 1.17 0.39 0.19

Code C++ C++ C++ C++ C++ Matlab C++ EXE Matlab C++ Matlab C++

Example 1                                                            Example 2                                                             Example 3

Figure 12 Example images for which the proposed algorithm fail to produce good saliency maps. For each example, the

left is the input image, the middle is saliency map and the right is the ground truth.

5.4 Computational efficiency

The computational efficiency comparison of the competitive algorithms is listed on Table 2. The time is

evaluated as the average running time producing 10000 saliency maps on MSRA10K dataset on a laptop

with 2.4 GHz Intel CPU and 4 GB RAM. The proposed method keeps low running time, while producing

high-accuracy saliency maps. The most time-consuming part of our method is the image decomposi-

tion section (about 50%), which guarantees the evaluation efficiency in subsequent initial saliency value

assigned part (about 40%) and saliency optimization part (about 10%).

5.5 Limitation

Saliency algorithms based on saliency cues which merely derives from color may not always generate

accurate estimation. If there happens the salient regions share similar color with background (see Fig-

ure 12(a)), or the salient regions are cluttered (see Figure 12 (b) and (c)), the proposed method only

highlights part of the salient regions, failing to assign consistent saliency value to the whole object. We

would investigate alternate pattern cues (e.g., texture) and integrate them into our framework for future

research. It is believed to dramatically benefit the saliency estimation, especially when detecting objects

of irregular shape in natural scenes.

6 Conclusion

In this study, we propose a novel region-contrast based saliency estimation method. This method is re-

alized by integrating three high-level saliency measures, then employing a pairwise energy minimization

graphical model. It can generate saliency maps that uniformly highlight the salient regions and effective-

ly suppress the background regions. We evaluate the proposed method extensively on three benchmark

datasets and make comparison with 14 state-of-the-art algorithms. Experimental results varify the detec-



Wu X M, et al. Sci China Inf Sci March 2016 Vol. 59 032104:13

tion accuracy and efficiency of our method. Saliency map could be smoothed via weighted guided image

filter in [42] with the input image as the guidance image. As such, the structure of the input image can

be transferred to the saliency map better. This topic will be studied in our future research.
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