Darwin: A Neuromorphic Hardware Co-Processor for Spiking Neural Networks SHEN JunCheng^{1,3}, MA De², GU ZongHua^{1*}, ZHANG Ming¹, ZHU XiaoLei³, XU XiaoQiang¹ XU Qi¹, SHEN YangJing²& PAN Gang¹ ¹College of Computer Science, Zhejiang University, Hangzhou, 310027, China ²Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, 310018, China ³Institute of VLSI design, Zhejiang University, Hangzhou, 310027, China ### The Leaky Integrate and Fire (LIF) Model • A simplified model of biological neuron, where the membrane voltage V is described as: $$C_m \frac{dV}{dt} = g_l(V_{rest} - V) + I$$ - V_{rest} is the resting membrane potential; - C_m is the membrane capacitance; - g_l is the membrane conductance; - I is the input current. When V rises up to reach the firing threshold V_{th} , a spike is triggered, and V rapidly rises to a large value, then reset to $V = V_{reset}$. Afterwards, there is a refractory period T_{ref} , when the neuron is not responsible to input spikes. ### LIF Model: An Example - **Membrane potential rises** upon each input spike, and gradually leaks and returns to resting membrane potential - When **input spikes** arrive in close timing proximity, the membrane potential reaches threshold and fires an output spike ### **LIF Model: Discrete Time Version** - Discrete-time version is necessary to implement the LIF model in digital logic. - Consider a post-synaptic neuron with index *j*, connected to possibly multiple presynaptic neurons with indices denoted as *i*. The membrane potential of neuron *j* satisfies the following discrete time equation: $$V_{j}(t) \leftarrow V_{j}(t-1)(1-\Delta t/\tau_{m}) + \sum_{i} S_{ij}V_{max}w_{ij}$$ $$V_{j}(t) \leftarrow H(V_{th} - V_{j}(t)) \cdot V_{j}(t)$$ $$S_{i}(t) \leftarrow H(V_{i}(t) - V_{th})$$ - $V_j(t)$ is the membrane potential of neuron j at time step t, - Δt is simulation time step size; - $\tau_m = C_m/g_l$ is time constant of the RC circuit model of the cell membrane; - $S_{ij} = \{0, 1\}$ denotes whether neuron *i* fires a spike at time step *t*; - V_{max} denotes the maximum voltage change to a neuron caused by receiving an incoming spike; - w_{ij} indicates the weight of the synapse that connects pre-synaptic neuron ito the post-synaptic neuron j; it is positive if the synapse excitatory; negative if it is inhibitory; - V_{th} is the firing threshold; - $H(x) = \begin{cases} 1, x \ge 0 \\ 0, x < 0 \end{cases}$ is the unit step function. ### **Overall Micro-Architecture of Darwin** #### **Features:** - 2048 neurons, 15 different synaptic delays, and $2048^2 = 4,194,304$ synapses; - AER format for both input and internal spikes; - Multiple logical neurons implemented on 8 physical neuron units with time multipexing. ### **Key Parameters of the Micro-Architecture** **Memory allocation:** Use registers, local SRAM, off-chip SDRAM for different types of data. | Data name | Location | Memory used | Note | |-------------|----------|-------------------|-------------------------------------| | N_{decay} | Register | 32 bits | The decay parameter. | | β_d | Register | 5 bits | The scaling factor difference. | | V_{th} | Register | 32 bits | The firing threshold voltage. | | T_{ref} | Register | 8 bits | The refractory period. | | Local slots | SRAM | 128Kbytes | The local SRAM slots for the memory | | | | | subsystems in neuron units. | | Synapse | Off-chip | Depend on network | The attribution of synapses. | | attribution | DRAM | scale | | # Data Structure for Storing Synapse Weights in External DRAM When the router receives an internal AER with pre-synaptic neuron ID of i, the router fetches the index linker[i] denoting the location of the starting address of the synapse attributes. Then the router reads the ith line of the internal topology table. Each synapse attribute starting from the address linker[i] corresponds to a "1" in the topology table line. If the router detects the kth "1" in the jth column of line i, it sends the synapse word with index (linker[i] + k) to the weight-delay queue of post-synaptic neuron with ID j. ### **Chip Fabrication** **ASIC version** of Darwin NPU has been fabricated in SMIC's 180nm CMOS process, with area of 5x5 mm² and 70MHz @worst case. Its power consumption is 0.84mw/MHz for a typical application with 1.8V power supply. Chip photo and development board # **Application Case 1: Handwritten Digit Recognition** - 4-layer SNN, with full feedforward connection between layers; - L_0 : input layer of 784 neurons; - L_1 and L_2 : two hidden layers with 500 neurons each; - L_3 : output layer of 10 neurons, each representing a number between 0-9; - Darwin works at 25MHz for this application . # **Application Case 2: EEG Decoding of Motor Imagery** - 4-layer SNN, with full feedforward connection between layers, and recurrent connection within L_2 - L_0 : input layer of 6 neurons - L_1 : hidden layer of 50 neurons - L_2 : hidden layer of 100 neurons, with full recurrent connections within the layer - L_3 : output layer of 2 neurons, each representing a binary decision of either left or right imagery motion. - Darwin works at 25MHz for this application # **Application Case 2: EEG Decoding of Motor Imagery** - *Emotiv* headset: sense a user's brain waves - *Darwin* NPU: classify whether the user is thinking of left or right, and then control the basketball's movement to follow the white ball. - Results: achieve accuracy of 92.7%. The SNNs is trained by 4000 imagery motion samples, and tested under 4000 real-time captured samples SCIENCE CHINA PRESS ### **Conclusions** - A highly configurable NPU is designed for spiking neural networks; - Supporting a maximum of 2048 neurons, 15 different synaptic delays and $2048^2 = 4,194,304$ synapses; - The Darwin NPU was fabricated by standard 180nm CMOS technology with area size of 5x5 mm² and 70MHz clock frequency @worst case. It consumes 0.84mW/MHz with 1.8 V power supply for typical applications; - The configurability and efficiency of the hardware is proven by two learning-based classification applications.