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Abstract Event matching is a core in decoupled end-to-end communications, which are extensively applied

to various areas. Event matching seeks the subscriptions that match a given event from a subscription set,

however, this work becomes increasingly complicated in content-based multi-attribute scenarios, where events

and subscriptions are formed in content, and described by multiple attributes. In addition, large-scale systems

are easier to suffer from severe degradation in event matching performance. To this end, this paper presents a

high-efficiency content-based multi-attribute event matching algorithm, called HEM (hybrid event matching),

which is hybridized by 2 different methods. In HEM, the matching on each single attribute (called single-

attribute matching) is processed by a triangle-based matching method or a direct matching method dynamically.

All single-attribute matchings are sorted via a fast near-optimal algorithm, and each of them is carried out

sequentially. In this manner, the searching space of event matching shrinks gradually, so that the searching

performance is boosted along with the process of event matching. Experiments are conducted to evaluate HEM

comprehensively, where it is observed that HEM outperforms 3 state-of-the-art counterparts (TAMA, H-TREE

and REIN) in main criteria, such as event matching time, insertion time and deletion time. Moreover, the gap

of performance between HEM and the counterparts enlarges with the increase of system scale.
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1 Introduction

Decoupled end-to-end communication is a typical pattern in distributed communications, which aims

at realizing full decoupling of time, space and synchronization between information publishers and sub-

scribers [1]. Decoupled end-to-end communication has been extensively adopted in many areas, such as

content delivery service [2], mobile push notification [3], IoT searching [4], content-based routing [5], high

frequency trading [6], network security monitoring [7], and genomic feature matching [8].

In decoupled end-to-end communications, a publisher is defined as an information sender who publishes

events, while, a subscriber is defined as an information receiver based on its submitted subscriptions which
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declare the subscriber’s preferences to certain classes of events. Once the system receives an event from

a publisher, it carries out a searching process for all subscribers whose preferences match the event, then

distributes the event to all matched subscribers. The above searching process is called event matching,

which is a cross point between information input and output, thus, it is a core in decoupled end-to-end

communications, and the event matching performance directly impacts the system performance.

In content-based multi-attribute scenarios, the main characteristics lie in that events and subscriptions

are formed in content, and described by multiple attributes. Therefore, the content-based multi-attribute

event matching has to evaluate an event on each attribute, compare it with subscriptions in content form,

then find out all subscriptions that match the event on all attributes.

The rapid growth of users’ demands has greatly expanded the type and amount of applications of

decoupled end-to-end communications. This trend drives an exponential increase of data scales and

network topologies, thus, event matching needs to cope with high-frequency event inputs and subscription

inputs, and to maintain high performance in high-load systems which contain massive contents and

attributes. In these situations, the searching space of event matching increasingly expands, which results

in high searching costs, meanwhile, the dynamic of system enlarges, which strengthens the intension

of subscription insertions and deletions. Therefore, it is vital and also very challenging to improve the

performance of event matching, which is the bottleneck of the system.

Multiple event matching algorithms have been proposed in recent years. Different models, methods

and patterns are designed to perfect the performance of event matching in content-based multi-attribute

scenarios. In these studies, some algorithms [9–13] improve the performance through wiping off unneces-

sary searching. The final matching result is obtained by carrying out single-attribute matching on each

attribute and then integrating the partial result on each attribute. Some algorithms [14–17] improve the

performance via wiping off redundant subscriptions. The searching space shrinks by simplifying the sub-

scription set, which is done through exploiting the relationships among subscriptions before the process

of event matching.

This paper focuses on reducing unnecessary searching, however, the existing work still lacks flexibility

in the process of event matching, which leads to inefficiency of system, especially in high-load situations.

Actually, for different events, the single-attribute matching varies on different attributes, so methods

can be adjusted to adapt to current context, and moreover, optimization can also be done between two

adjacent single-attribute matchings. To this end, in this paper, we propose a high-efficiency content-based

multi-attribute event matching algorithm, called HEM (hybrid event matching), which is hybridized by

two different methods. HEM supports range-based content descriptions, using a triangle-based matching

method or a direct matching method dynamically to carry out single-attribute matching. The former is

designed based on analytic geometry theories, where subscriptions are mapped to the points in a triangle

area, and the matching is conducted through filtering out unmatched subscriptions with a rectangle in

the area, whereas, the latter picks up the matched subscriptions directly from a partial result set. The

two methods have different matching costs on the same attribute. In the process of event matching of

HEM, all single-attribute matchings are deployed to a queue. HEM sorts the single-attribute matchings

based on the matching rate for current event, and decides which method from the two is employed for

each single-attribute matching. The above two steps are carried out by executing a fast near-optimal

algorithm, which efficiently solves the optimization problem derived by the event matching cost model

of HEM with only a small computation cost. Then, these single-attribute matchings are conducted

sequentially according to the sequences and methods on attributes, where the partial result output from

a previous single-attribute matching is used to be the input of the next single-attribute matching. Finally,

the output from the last single-attribute matching at the end of the queue is the matching result. In

such way, HEM filters out unmatched subscriptions or selects matched ones step by step, so that the

searching space of each single-attribute matching shrinks gradually. Thus, this mechanism can promote

the event matching performance efficiently, especially in high loading situations with massive contents and

attributes. Besides, HEM uses arrays to store and arrange subscriptions, so it has very fast subscription

insertion and deletion, since these operations can be completed in a constant time due to the direct

random access of arrays. Hence, HEM is also very adaptable to high dynamic scenarios.



Fan W H, et al. Sci China Inf Sci February 2016 Vol. 59 022315:3

Experiments are conducted to evaluate the performance of HEM extensively, where the number of

subscriptions, the number of attributes, and the width of range-based constraints are chosen as parameters

to form different communication scenarios. HEM is compared with several recent typical counterparts

(TAMA, H-TREE and REIN). We also analyze the fast near-optimal algorithm used in HEM, and

compare it with the optimal algorithm to evaluate the impact to event matching performance. The

experiment results demonstrate that HEM outperforms its counterparts to a large extent in main criteria,

such as matching time, insertion time and deletion time. Moreover, the superiority is more significant

when system scale increases.

Our main contributions in this paper are as follows:

(1) We design two different methods to cope with single-attribute matching, where, the triangle-based

matching method transforms the searching to analytic geometry problems, and filters out unmatched sub-

scriptions via a rectangle in a triangle area. The direct matching method picks up matched subscriptions

from a subscriptions set directly.

(2) We design a queue-like workflow to model the process of event matching, where a fast near-optimal

algorithm is adopted to decide the sequence and method on each attribute. The fast near-optimal

algorithm can efficiently solves the optimization problem derived by HEM with only a small cost.

(3) The performance of HEM is evaluated extensively in multiple scenarios, and is compared with

several counterparts. Moreover, the fast near-optimal algorithm is analyzed in detail, and is compared

with the optimal algorithm.

The rest of this paper is organized as follows: Section 2 discusses the related work. Section 3 defines

relevant terminologies employed in HEM. Section 4 presents the design, details and analysis of HEM.

Section 5 shows the experiment results and evaluations of the performance of HEM. Section 6 concludes

our work.

2 Related work

Currently, event matching is a hot issue in decoupled end-to-end communications. The related work

can be generally divided into two categories: wiping off unnecessary searching and wiping off redundant

subscriptions. HEM belongs to the category of wiping off unnecessary searching.

The performance of event matching can be enhanced by wiping off unnecessary searching. TAMA [9]

builds up a layered index structure for each attribute, and bisects each layer into cells, where corresponding

subscriptions are placed based on the ranges of its constraints. TAMA collects the partial result on each

attribute by traversing corresponding cells from the top layer to the bottom layer, then obtains the

final result from all partial results via a counting algorithm. The main drawbacks of TAMA are that it

can only support approximate matching, and it needs extra storage since a subscriptions may be stored

into multiple cells, and also it uses the counting algorithm which can not effectively wipe off unnecessary

searching. H-TREE [10] is based on a tree-like index structure, which connects several specified attributes

layer by layer. In each layer, the range of each attribute is partitioned into several partially overlapped

cells. A subscription is mapped into a single or multiple cells based on the center locations and width of

its constraints. In this way, H-TREE groups similar subscriptions, so that event matching can be only

carried out in related groups. However, the performance of H-TREE is restricted by width of constraint.

Subscriptions with wide constraints are split and stored into too many cells, which lead to increase of

storage costs and deterioration of the performance of event matching comparatively. REIN [11] uses

two bucket lists to store the low values and high values of constraints in subscriptions, respectively.

Unmatched subscriptions are excluded by traversing the two bucket lists. A bit set is employed to cache

partial results. Although, the dynamics among each single-attribute matching are still not fully utilized

since partial results are simply accumulated in the process of event matching. Further, the insertion and

deletion of a subscription need to operate both bucket lists, which generates extra costs.

The performance of event matching can be also improved through decreasing the scale of subscription

set before event matching. The main principle is to merge similar subscriptions according to their relation-
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ships. Literatures [14, 15] organize subscriptions via tree-like structures, and Hilbert space-filling curve

is adopted to reduce the multi-dimensional searching space to one-dimensional space. A normalization

method is used in Beretta [16], which enables efficient parametric and structural updates of subscriptions.

Literature [17] proposes a similarity-based filter clustering to reduce overall event traffic and performs

self-tuning summary precision selection to optimize throughput. Wiping off redundant subscriptions is a

previous step before the process of event matching, thus, HEM is compatible with these algorithms, and

the performance can be further promoted via them.

3 Relevant terminologies

Attributes are descriptions of an object from different aspects. In content-based multi-attribute scenarios,

events and subscriptions can be described by multiple attributes when they show multiple characteristics.

The quantification of an attribute is defined as the attribute value of the attribute. We define a set, which

consists of all attributes in the system, as A = {a1, a2, ..., aM}, where am ∈ A. The attribute value of

am is denoted by vm. For simplicity, we define the low value of the attribute value of am as 0, and the

high value as Rm, thus the range of am can be expressed as [0, Rm].

An event, which is published by a publisher at a certain time, location and area, is a conceptual

encapsulation of information. According to application context, event can be called message, notification

or publication as well. In content-based multi-attribute scenarios, an event is described by multiple

attributes and their attribute values, so here, we define an event withM attributes asE = {v1, v2, ..., vM}.

A subscriber can subscribe or unsubscribe subscriptions. A subscription is the preference of a sub-

scriber to a certain class of events. In content-based multi-attribute scenarios, a subscription is com-

posed of multiple quantified constraints which correspond to the attributes in A, and is expressed as

Sn = {c
(n)
1 , c

(n)
2 , ..., c

(n)
M }. We represent all N subscriptions in the system as a set S = {S1,S2, ...,SN}.

HEM supports range-based constraints, that is, a constraint consisting of an interval in the range of

its corresponding attribute. The type of an interval is partitioned into 4 categories: left-inclusive and

right-inclusive, left-exclusive and right-inclusive, left-inclusive and right-exclusive, left-exclusive and right-

exclusive.

Given A = {a1, a2, ..., aM}, S = {S1,S2, ...,SN} and E = {v1, v2, ..., vM}, Sn matches E when all

constraints in Sn ∈ S satisfy their corresponding attribute values in E, that is, for each vm in E,

vm ∈ c
(n)
m . The set that includes all matched subscriptions is defined as result set, and we express it as

Ŝ = {Sn|Sn ∈ S ∧ (Sn matches E)}. For an attribute am ∈ A, Sn partially matches E on am if c
(n)
m

satisfies vm. The set that includes all partially matched subscriptions is defined as partial result set, and

we express it as S(m) = {Sn|Sn ∈ S ∧ (Sn partially matches E on am)}, and is generally referenced as

S̃.

4 Design, details and analysis of HEM

In this section, firstly, we introduce the basic idea of HEM and its features; secondly, the triangle-based

matching method and the direct matching method utilized for single-attribute matching are explained

respectively; thirdly, the workflow of event matching of HEM is described, including the event matching

cost model of HEM and the fast near-optimal algorithm used to determine sequences and methods.

4.1 Overview of HEM

HEM makes improvements on both the single-attribute matching and the integration of partial results.

HEM constructs a queue, which is actually an ordered sequence of the single-attribute matchings on all

attributes. The partial result output by a previous single-attribute matching is taken as the input of

the next single-attribute matching. For an event, HEM first evaluates the matching rate of the event on

each attribute, then decides the sequence of each attribute in the queue. Then according to a fast near-

optimal algorithm, HEM chooses the better method from the triangle-based matching method and the
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direct matching method for each single-attribute matching. Finally, the matching result can be obtained

at the end of the queue.

The choice of sequence and method for each attribute is the dynamic factor in HEM, which is deter-

mined by the event and the corresponding matching costs of the two methods. We establish the event

matching cost model of HEM, and then design a fast near-optimal algorithm based on several observa-

tions from the model. The algorithm can provide near-optimal solutions, but only costs O(M logM +M)

time.

Different from existing algorithms, such as TAMA [9], H-TREE [10] and REIN [11], etc., which only

employ a single method to carry out event matching, conversely, HEM uses two methods adaptively to

improve event matching performance via fully utilizing the different characteristics of the two methods.

Moreover, the existing algorithms neglect the fact that a subscription unmatches an event as long as any

one of its constraints does not satisfy the event on the corresponding attribute. Thus, HEM conducts

event matching sequentially, and the partial result of a next single-attribute matching is searched from

its previous single-attribute matching. Unmatched subscriptions are filtered out at each single-attribute

matching gradually, and in this way, the searching space shrinks in the process of event matching, so the

performance is promoted.

4.2 Methods used for single-attribute matching

Given A = {a1, a2, . . . , aM}, S = {S1,S2, . . . ,SN}, for E = {v1, v2, . . . , vM} and Sn = {c
(n)
1 , c

(n)
2 , . . . ,

c
(n)
M } ∈ S, single-attribute matching decides whether Sn partially matches E on am ∈ A by checking

if c
(n)
m satisfies vm. Here, HEM uses a triangle-based matching method or a direct matching method to

handle the single-attribute matching on am.

HEM uses intervals to express range-based constraints, as were aforementioned, which can be catego-

rized by 4 types according to the boundary types of constraints. For c
(n)
m , we express its low value as

c
(n)
m .low value, the boundary type of its low value as c

(n)
m .low value type, its high value as c

(n)
m .high value,

and the boundary type of its high value as c
(n)
m .high value type. The values of boundary type are picked

up from EXCLUSIVE and INCLUSIVE.

Since range-based constraints are expressed as intervals, the single-attribute matching is transformed

into interval searching.

The single-attribute matchings are connected end to end in a queue, that is to say, current single-

attribute matching is carried out based on the partial result set S̃ from its previous single-attribute

matching.

4.2.1 The triangle-based matching method

The idea of triangle-based matching method is inspired from analytic geometry theories. The method

maps a subscription into a point in a two-dimensional area, according to the constraint of the subscription

on current attribute. For am ∈ A and Sn ∈ S, the coordinate of c
(n)
m mapped by the triangle-based

matching method is formulated by c
(n)
m .x = (c

(n)
m .high value − c

(n)
m .low value)/2 + c

(n)
m .low value and

c
(n)
m .y = (c

(n)
m .high value − c

(n)
m .low value)/2, respectively, where c

(n)
m .x is the mapped value of c

(n)
m on

x-axis, which is actually the middle point in the range of c
(n)
m . c

(n)
m .y is the mapped value of c

(n)
m on y-axis,

which is actually the length from the middle point to the border of the range of c
(n)
m . According to all

possible distributions of coordinates from c
(n)
m with range [0, Rm] via the above mapping mechanism, all

coordinates are located in an isosceles triangle area, as is shown in Figure 1. The short sides L1 and L2

of the triangle are formulated as

L1 : y = x, L2 : y = −x+Rm. (1)

L1 and L2 restrict c
(n)
m , which means that c

(n)
m cannot be mapped out of Rm.

The basic principle of single-attribute matching on am via the triangle-based matching method is to

find out all subscriptions whose constraints on am do not satisfy vm, then exclude them from S̃, thus,
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the rest subscriptions in S̃ all partially match E on am. We have the following theorems to describe all

situations that a subscription unmatches an event on an attribute.

Theorem 1. Given am, vm of E and c
(n)
m of Sn, we say c

(n)
m does not satisfy vm when (1) c

(n)
m .

high value type = EXCLUSIVE, c
(n)
m .high value 6 vm, or (2) c

(n)
m .high value type = INCLUSIVE,

c
(n)
m .high value < vm.

Theorem 2. Given am, vm of E and c
(n)
m of Sn, we say c

(n)
m does not satisfy vm when (1) c

(n)
m .

low value type = EXCLUSIVE, c
(n)
m .low value > vm, or (2) c

(n)
m .low value type = INCLUSIVE,

c
(n)
m .low value > vm.

Proof . As is formally mentioned, the single-attribute matching is transformed into interval searching.

So a constraint does not satisfy an event when the corresponding attribute value of the event locates out

of the interval of the constraint. Thus, the 4 conditions listed in Theorem 1 and Theorem 2 cover all

possibilities that the interval of c
(n)
m does not contain vm.

Theorem 3. If any one of the 4 conditions in Theorem 1 and Theorem 2 holds, then Sn unmatches E.

Proof . Sn matches E only if every constraint in Sn satisfies its corresponding attribute value in E,

otherwise Sn unmatches E. If any one of the conditions in Theorem 3 holds, it means c
(n)
m does not

satisfy vm on am, so Sn unmatches E.

The triangle-based matching method adopts a special analytic geometry approach to handle the single-

attribute matching. For vm of E on am, as shown in Figure 2, we put vm on x-axis based on its value,

then starting from which, we draw two lines l1 and l2 to partition the triangle area into 2 triangle subareas

(Subarea 1 and Subarea 2) and 1 rectangle subarea (Subarea 3). l1 is parallel to L2, so the coordinate

of the point t1 is (0, vm/2). l2 is parallel to L1, so the coordinate of the point t2 is (0, (Rm − vm)/2). l1
and l2’s formulations are

l1 : y = −x+ vm, l2 : y = x− vm. (2)

It can be observed that the subscriptions whose coordinates locate into Subarea 1 all belong to the

conditions described in Theorem 1. Similarly, the subscriptions whose coordinates locate into Subarea

2 all belong to the conditions described in Theorem 2. Hence, the above subscriptions all unmatch E

according to Theorem 3. Therefore, all subscriptions in Subarea 3 partially match E on am since they

are the rest ones after subscriptions in Subarea 1 and Subarea 2 being excluded.

The process of single-attribute matching via triangle-based matching method is to traverse all sub-

scriptions in Subarea 1 and Subarea 2, and exclude them from S̃ based on Theorem 1 and Theorem 2.

The subscriptions whose coordinates locate at l1 and l2 should be handled particularly. A subscription

Sn which lies at l1 means that its c
(n)
m .high value = vm, thus the high value type of c

(n)
m needs to be

further checked to judge if it satisfies the condition (1) in Theorem 1. A subscription Sn which lies at l2
means that its c

(n)
m .low value = vm, thus the low value type of c

(n)
m needs to be further checked to judge

if it satisfies the condition (1) in Theorem 2.

The index structure for am is organized by a two-dimensional array, which is a triangle-like non

isometric array. The array divides the triangle area into multiple rectangle grids. Figure 3 illustrates an

instance of an array with 72 grids. From top to bottom of the array, the number of grids on a previous

level is less than that on the next level by 2. A subscription is inserted to or deleted from its corresponding

grid based on its coordinate. As shown in Figure 4, we arrange a sequence index for each grid in the

array. A sequence number consists of a row index and a column index. We use a hash algorithm to decide

which grid that a subscription should be allocated to. We define the max number of grids on a column

or a row for am as τm and 2τm, respectively, then the row index ir and column index ic of Sn on am are

formulated by

ir =

{
c(n)m .y/(Rm/τ), c(n)m .y 6= Rm,

τ − 1, c(n)m .y = Rm,
ic =

{
c(n)m .x/(Rm/(2τ)), c(n)m .x 6= Rm,

2τ − 1, c(n)m .x = Rm.
(3)

The index iv of vm can be also computed from Formula 3, and c
(n)
m .x or c

(n)
m .y is replaced by vm in this

case.
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Figure 1 The isosceles right angled triangle area of am,

and its short sides L1 and L2.

Figure 2 The 3 subareas partitioned from the triangle

area of am.

Figure 3 An 2D array with 36 grids for the triangle area

of am.

Figure 4 The sequence number of an 2D array with 72

grids.

Now we can explain the process of single-attribute matching via the triangle-based matching method,

which can be briefly described as 1) compute the index iv of vm, then locate the grids that intersect

with l1 and l2, so Subarea 1 and Subarea 2 can be partitioned from the triangle area; 2) traverse the

subscriptions in Subarea 1. When the grid intersects with both of l1 and l2, in the process of traversing

and exclusion, the low value, low value type, high value and high value type of constraints all need to be

further checked to decide if it should be excluded from S̃. When a grid only intersects with l1, the high

value and its type of constraints need to be checked to decide if it should be excluded. Exclude other

subscriptions from S̃; 3) traverse the subscriptions in Subarea 2. When the grid intersects with both of l1
and l2, do nothing since the same work has been done in 2). When a grid only intersects with l2, the low

value and its type of constraints need to be checked to decide if it should be excluded from S̃. Exclude

other subscriptions from S̃.

The details of the process of the triangle-based matching method are shown in Algorithm 1.

Because a two-dimensional array is taken as the index structure of the triangle-based matching method,

using the hash algorithm described in Formula 3, the subscription insertion and deletion can be completed

efficiently. The operations run fast with O(1) time complexity, and cost small storage with O(1) space

complexity. This is another superiority of HEM, whereas, in its counterparts (such as TAMA [9], H-

TREE [10] and REIN [11]), a subscription may be stored in multiple locations, thus, insertion and

deletion operations are related to the writing operations at these locations, which consume more time

and occupy more storage.

4.2.2 The direct matching method

The idea of the direct matching method is quite straight forward. For am, the method directly traverses

the subscriptions in S̃, which is the output of the previous single-attribute matching. In process of

single-attribute matching via the direct matching method, a subscription, whose constraint on am does

not satisfy vm, is excluded from S̃. When the process is done, the rest subscriptions remained in S̃ all
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Algorithm 1 The triangle-based matching method

INPUT: vm of E on am, S̃ of the previous single-attribute matching.

OUTPUT: S̃ on attribute am.

01. Compute the index iv of vm, the row index ir,t1 of t1 and the row index ir,t2 of t2 via Formula 3;

02. Compute the formulation of l1 and l2 via Formula 2, then locate the grids that intersect with l1 and l2;

03. Handle Subarea 1:

04. for(i← 0; i 6 ir,t1 ; i← i+ 1)

05. for(j ← i; j 6 iv − i; j ← j + 1)

06. if grid(i, j) intersects with l1 and l2 then

07. Check each subscription in grid(i, j) via Theorem 1 and Theorem 2, if the constraint of the subscription does not

satisfy vm, then exclude the subscription from S̃;

08. else if grid(i, j) intersects with l1 then

09. Check each subscription in grid(i, j) via Theorem 1, if the constraint of the subscription does not satisfy vm, then

exclude the subscription from S̃;

10. else

11. Exclude all subscriptions from S̃;

12. end if

13. end for

14. end for

15. Handle Subarea 2:

16. for(i← 0; i 6 ir,t2 ; i← i+ 1)

17. for(j ← i + iv ; j 6 2τ − i; j ← j + 1)

18. if grid(i, j) intersects with l1 and l2 then

19. continue; // the same work has been done at line 07

20. else if grid(i, j) intersects with l2 then

21. Check each subscription in grid(i, j) via Theorem 2, if the constraint of the subscription does not satisfy vm, then

exclude the subscription from S̃;

22. else

23. Exclude all subscriptions from S̃;

24. end if

25. end for

26. end for

partially match E on am.

The direct matching method is carried out by utilizing the data structure of S̃, thus, it requires no

index structures.

We have the following theorems to describe all situations that a subscription partially matches an event

on an attribute.

Theorem 4. Given am, vm of E and c
(n)
m of Sn, we say c

(n)
m satisfies vm when (1) c

(n)
m .low value <

vm and c
(n)
m .high value > vm; (2) c

(n)
m .low value = vm and c

(n)
m .low value type = INCLUSIVE; (3)

c
(n)
m .high value = vm and c

(n)
m .high value type = INCLUSIVE.

Proof . As is formally mentioned, the single-attribute matching is transformed into interval searching.

So a constraint satisfies an event when the corresponding attribute value of the event is contained in the

interval of the constraint. In Theorem 4, the condition (1) describes that vm locates in c
(n)
m , and the

conditions (2) and (3) describe that vm lies at the low and high inclusive boundary of c
(n)
m , respectively.

Theorem 5. If all of the 3 conditions in Theorem 4 do not hold, then Sn unmatches E.

Proof . Sn matches E only if every constraint in Sn satisfies its corresponding attribute value in E,

otherwise Sn unmatches E. If all of the conditions in Theorem 5 do not hold, it means c
(m)
m does not

satisfy vm on am, so Sn unmatches E.

The direct matching method is designed based on Theorem 5. The process of the method can be

described in brief: traverse each subscription in S̃, and check if it satisfies any of conditions in Theorem

5 on am. If all conditions are not satisfied, then exclude the subscription from S̃. When the traversing

and checking are completed, the rest subscriptions in S̃ all partially match E on am.

The details of the process of the direct matching method are shown in Algorithm 2.

4.3 Event matching of HEM

In this section, the event matching mechanism of HEM is introduced. We first show the process of

event matching of HEM, then describe HEM’s cost model, where an optimization problem is built up

to minimize event matching cost of HEM. At last, the design of the fast near-optimal algorithm, which

solves the optimization problem efficiently, is explained in detail.
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Algorithm 2 The direct matching method

INPUT: vm of E on am, S̃ of the previous single-attribute matching.

OUTPUT: S̃ on attribute am.

01. for each subscription Si in S̃ do

02. if not ((c(i)m .low value < vm and c(i)m .high value > vm) or

(c(i)m .low value = vm and c(i)m .low value type = INCLUSIVE) or

(c(i)m .high value = vm and c(i)m .high value type = INCLUSIVE)) then

03. Exclude Si from S̃;

04. end if

05. end for

Algorithm 3 Event matching algorithm of HEM

INPUT: E, S.

OUTPUT: Ŝ.

01. Based on the fast near-optimal algorithm, determine Q and T .

02. S̃ ← S;

03. for k← 1 : M do

04. if tk = 0 then // use the triangle-based method

05. Carry out single-attribute matching on aqk
via Algorithm 1 with inputs vqk and S̃;

06. else // tk = 1, use the direct method

07. Carry out single-attribute matching on aqk
via Algorithm 2 with inputs vqk and S̃;

08. end if

09. end for

10. Ŝ ← S̃.

4.3.1 Event matching process of HEM

In HEM, the integration of partial results is conducted via an order queue, which is composed of the

single-attribute matchings on all attributes. In the queue, the single-attribute matchings are connected

end-to-end. The subscription set is taken as the input of the first single-attribute matching in the queue,

and for other single-attribute matchings, the partial result output by a previous single-attribute matching

is passed to the next single-attribute matching, and is taken as its input. Finally, the partial result, which

is completed by the last single-attribute matching in the queue, is the matching result.

In each single-attribute matching, there are two candidate methods — the triangle-based matching

method and the direct matching method, that can be employed to carry out single-attribute matching.

The dynamics in HEM lie in the sequence of each single-attribute matching in the queue, and the

method employed by each single-attribute matching. HEM optimizes these dynamics to promote event

matching performance. The optimization is done by a fast near-optimal algorithm, which efficiently sub-

optimally solves the optimization problem derived from HEM’s cost model with a small time cost. The

fast near-optimal algorithm is explained in detail later.

Two vectorsQ and T are adopted to express the sequences and the methods, respectively. The sequence

set is denoted by Q = {q1, q2, ..., qM}, where the value of qk ∈ Q is the index of the kth attribute in the

queue; the method set is denoted by T = {t1, t2, ..., tM}, where tk ∈ T represents the single-attribute

matching method employed on the kth attribute in the queue. If tk = 0, then the triangle-based matching

method is employed, whereas, the direct matching method is employed if tk = 1.

In the process of event matching of HEM, Q and T are determined firstly via the fast near-optimal

algorithm. Then the single-attribute matchings in the ordered queue are executed sequentially based on

Q, the proper one from the two methods according to T . The subscription set of the system is taken as

the input of the first single-attribute matching, and the event matching result Ŝ is the output S̃ of the

last single-attribute matching.

The details of event matching process of HEM are shown in Algorithm 3.

Ŝ and S̃ use the same data structure to store subscriptions, which is composed of a linked list and a

hash set. The linked list is used to traverse subscriptions by the direct matching method, whereas, the

hash set is used to exclude unmatched subscriptions by the triangle-based matching method. The time

complexities of single operations of the two structures are all O(1).
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4.3.2 Cost model of HEM

In the single-attribute matching via the triangle-based matching method, the main costs are brought by

traversing all subscriptions in the Subarea 1 and Subarea 2. In the single-attribute matching via the

direct matching method, the main costs are brought by traversing all subscriptions in S̃. Therefore,

we use the number of traversed subscriptions to estimate the cost of a method for the single-attribute

matching on an attribute.

For vm of E on am, the number of subscriptions in the Subarea 1 and Subarea 2, namely, the number of

all unmatched subscriptions for E on am, is denoted by Um. Um is recorded in the process of subscription

insertion and deletion. The number of subscriptions in S̃ is denoted by |S̃|.

We normalize Um and |S̃| by the total number |S| of subscriptions in the system, then the matching

cost of the triangle-based matching method can be formulated as µ
(tr)
m = Um/|S|, and the matching cost

of the direct matching method can be formulated as µ
(dr)
m = |S̃|/|S|.

The matching rate ρm of E on am can be defined as the proportion of the partially matched subscrip-

tions in S, whose constraints on am satisfy vm. Conversely, the unmatching rate θm of E on am is the

proportion of all unmatched subscriptions. It can be observed that θm is actually equal to the normalized

number of unmatched subscriptions on am, that is

θm = 1− ρm = µ
(tr)
m . (4)

Based on the correspondence of matching cost and matching rate, we further investigate the event

matching cost of HEM. In the single-attribute matchings in the ordered queue, if the kth single-attribute

matching employs the triangle-based matching method, then its matching cost is µ
(tr)
qk = θ

(tr)
qk . It can

be found that µ
(tr)
qk is irrelevant with |S̃|, so the matching cost of a certain single-attribute matching

via the triangle-based method is independent with its sequence in the ordered queue. On the contrary,

if the 1st single-attribute matching adopts the direct matching method, then its matching cost µ
(dr)
q1 =

|S̃|/|S| = |S|/|S| = 1 since |S̃| = |S| for the 1st single-attribute matching; if the 2nd single-attribute

matching adopts the direct matching method, then its matching cost µ
(dr)
q2 = |S̃|/|S| = |S(q1)|/|S| = ρq1 ,

because its |S̃| is the output from the 1st single-attribute matching, and can be approximated by ρq1 |S|.

Likewise, if the kth single-attribute matching adopts the direct matching method, then its matching

cost µ
(dr)
qk = ρqk−1

|S(qk−2)|/|S| = ρq1 ...ρqk−1
. Thus, we have the conclusion that µ

(dr)
qk = 1 when k = 1,

and µ
(dr)
qk =

∏qk−1

l=q1
ρl when k > 1. It can be found that the matching cost of a certain single-attribute

matching via the direct method is dependent with its sequence in the ordered queue, because µ
(dr)
qk is

computed by the |S̃| of each single-attribute matching previous to qk.

The event matching cost of HEM is the sum of matching costs of all single-attribute matchings in

the order queue. We use T to distinguish the method that a single-attribute matching chooses from

the triangle-based matching method and the direct method, then partition the cost into the cost by the

triangle-based matching method and the cost by direct matching method. Based on above, we have the

event matching cost of HEM,

µ =

M∑

k=1

µqk =

M∑

k=1

(
(1− tk)µ

(tr)
qk

+ tkµ
(dr)
qk

)
. (5)

In order to improve the event matching performance of HEM, the optimization problem is designed to

determine Q and T to minimize the event matching cost of HEM, which is formulated from Formula 5

min
Q,T

µ = min
Q,T

(
M∑

k=1

(
(1− tk)µ

(tr)
qk

+ tkµ
(dr)
qk

))
. (6)

4.3.3 The fast near-optimal algorithm

The optimization problem expressed by Formula 6 is indeed a combinatorial optimization problem. The

optimal solution Q(∗) and T (∗) of the problem is very complicated to be obtained directly, since it is a

time-consuming work to search, traverse and validate a large amount of feasible solutions. Thus, trying
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Algorithm 4 The fast near-optimal algorithm

INPUT: E, A and S.

OUTPUT: Q and T .

01. According to Formula (4), compute ρm of each am in A, then sort A in ascending order of matching rate via an arbitrary

sorting algorithm with O(M logM) time complexity;

02. Choose the first attribute am in A, then let q1 = am and t1 = 0;

03. k← 2;

04. ǫ← 1;

05. while k 6 |A| do

06. Choose the kth attribute am in A;

07. ǫ← ǫ · ρqk−1
; // accumulating matching rate

08. if ǫ > θm then

09. Let qk ← am and tk ← 0;

10. else

11. jump to line 15;

12. end if

13. k← k + 1;

14. end while

15. while k 6 |A| do

16. Choose the kth attribute am in A;

17. Let qk ← am and tk ← 1;

18. k← k + 1;

19. end while

to find the optimal solution is not practical for HEM, because the extra computation cost brought by the

optimal algorithm can not be neglected, and it may worsen the event matching performance of HEM to

a considerable extent.

In order to balance optimality of the solution and computation cost, we propose a fast near-optimal

algorithm, which can obtain near-optimal solution and only has O(M logM +M) time complexity. The

algorithm is based on several observations as listed below.

Observation 1. In the optimal solution, the method employed by the first single-attribute matching

in the ordered queue is always the triangle-based matching method.

Observation 2. If both the triangle-based and direct matching methods are employed in the optimal

solution, the sequence of attributes in the ordered queue can be partitioned into a pre-part and a post-

part. The triangle-based matching method is employed on all attributes in the pre-part, whereas the

direct matching method is employed on all attributes in the post-part.

Observation 3. If both of the triangle-based and direct matching methods are applied in the optimal

solution, in the ordered queue, the attributes on which the direct matching method is employed are

located in ascending order of matching rate.

Here, we do not provide the proofs of above observations due to the page limitation of this paper.

According to above observations, the fast near-optimal algorithm is designed, which is categorised as a

greedy algorithm. Firstly, A is sorted in ascending order of matching rate based on Observation 3. Then,

the first attribute is selected to be put into the first location in the ordered queue, and the triangle-based

matching method is employed based on Observation 1. The next attribute is chosen from the sorted

A, and put to the next location in the ordered queue. We use a factor ǫ to record the product of the

matching rates of previously handled attributes, namely, the matching cost on current attribute via the

direct matching method. If ǫ is greater than the matching rate of current attribute, then the triangle-

based matching method is selected to apply on the attribute, so forth. If not, then the rest attributes all

employ the direct matching method based on Observation 2. Their sequences are in ascending order of

matching rate, which have been already sorted in A.

The details of the fast near-optimal algorithm are shown in Algorithm 4.

5 Experiment results and performance evaluations of HEM

In this section, we evaluate the performance of HEM extensively. Experiments are conducted in several

scenarios with multiple settings of parameters, where HEM is compared with its counterparts TAMA [9],

H-TREE [10] and REIN [11]. In experiments, main criteria of event matching are evaluated, which
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Table 1 The parameters used in experiments

Name Meaning Value

N The number of subscriptions [1× 105, 1.7× 106]

M The number of attributes [3, 17]

δ The width of range-based constraints [0.05, 0.8]

τ The max number of grids on a row or a column in the arrays of the 80

triangle-based matching method in HEM

η The number of cells in H-TREE 4

λ The number of indexed attributes in H-TREE 6

ξ The number of discretization levels in TAMA 12

ω The number of buckets in REIN 3000

include event matching time, subscription insertion time and subscription deletion time. Additionally,

the performance of the fast near-optimal algorithm in HEM is analysed and compared with its optimal

algorithm.

The programs of all experiments are executed on a Dell PowerEdge R720 server with a 2.8 GHz Intel

Xeon E5-2680 CPU and 96 GB 1866 MHz RAM, which runs Ubuntu 12.04 with Linux kernel 3.8.0. The 4

algorithms are all implemented in Java language, and the programs are executed under the Java Virtual

Machine Version J2SE 1.8. Parallelism is not used in experiments. Parameters used in experiments are

based on Table 1 unless stated clearly. In each experiment, subscriptions with specified parameters are

initialized firstly, and they are inserted to the index structures of the 4 algorithms. For each algorithm,

the time interval from the insertion of the first subscription to the insertion of the last subscription is

recorded, and it is called total subscription insertion time. When evaluating the event matching time,

500 events are randomly generated firstly, and then they are taken as the inputs for the 4 algorithms. For

each algorithm, the time when an event is received and the time when the matching result is generated

are recorded, and the time interval is the event matching time for the event. The average event matching

time is computed by averaging the event matching time for the 500 events. The subscription deletion

begins when the event matching for all 500 events is done. The subscriptions are deleted for the index

structures of the 4 algorithm one by one. For each algorithm, the time interval from the deletion of the

first subscription to the deletion of the last subscription is recorded, and it is called total subscription

deletion time.

In TAMA [9], H-TREE [10], REIN [11] and our HEM, TAMA belongs to approximate event matching

algorithm, whereas, other algorithms are exact event matching algorithms. The matching result via

the former may contain positive fault [9], which leads to a slightly larger result than the exact result;

the algorithms in the latter can obtain exact matching result. There are several parameters of these

algorithms and of the scenarios, which are listed in Table 1.

In experiments, the range of all attribute values is normalized to [0, 1]; attribute values of events,

low value and high values of constraints are generated randomly from their corresponding ranges with

precision of 10−6. The proportion of 4 boundary types of range-based constraints is 1 : 1 : 1 : 1. For the

width δ of constraint, the low value of a constraint is randomly generated from [0, 1 − δ], and its high

value is from [δ, 1].

5.1 Event matching time

As the vital metric in the performance of event matching algorithm, event matching time is evaluated

extensively by experiments in different scenarios with 3 variable parameters: number of subscriptions,

number of attributes, and width of range-based constraints.

5.1.1 Event matching with different numbers of subscriptions

We measure the average event matching time of the 4 algorithms with different N , and the parameters

used in experiments are set as M = 10, δ = 0.5 fixedly. The experiment results are shown in Figure 5.
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As N increases from 1× 105 to 1.7× 106, the average event matching time of the 4 algorithms increases,

but the growth rate of HEM is the lowest among them. On average, the event matching time of HEM

is 16.53%, 35.07% and 50.78% of that of TAMA, H-TREE and REIN, respectively. The above results

prove the efficiency of HEM on event matching performance. Moreover, the gaps between HEM and other

3 algorithms widen as N increases. It can be seen that the deterioration of event matching time of HEM

caused by the increase of N is minimum when compared with its 3 counterparts, so HEM is superior to

them for large-scale systems.

The advantage of HEM on event matching time with different N is mainly brought by the hybridized

methods and queue-like integration mechanism. The searching space shrinks at stages of single-attribute

matchings in the process of event matching, thus, in such fine-grained way, the event matching time

shortens efficiently.

5.1.2 Event matching with different numbers of attributes

The amount of attributes in events and the constraints of subscriptions are another two important pa-

rameters that impact event matching performance. The average event matching time by the 4 algorithms

is measured in experiments with different M , where the fixed parameters are N = 9 × 105 and δ = 0.5.

As shown in Figure 6, generally, the average event matching time increases with the increase of M .

This is mainly because the searching space expands as attributes grow, and the searching costs increase

correspondingly. We found that the event matching time of H-TREE first decreases before M = 5, then

increases after M = 5, since the dropping of matching rate is the leading role in the pre-part, whereas,

the expansion of searching space dominates in the post-part. Among the 4 algorithms, HEM is the best

one with the lowest average event matching time, and even more, its curve is nearly flat as N grows.

This fact demonstrates that HEM is not only highly efficient in large-scale systems, but also has superior

adaptability with different N .

The advantage of HEM on event matching time with different N is still due to the single-attribute

matching with hybrid methods and queue-like integration mechanism. Unmatched subscriptions are

excluded in time at each single-attribute matching, and as the number of attributes increases, the matched

subscriptions decrease actually. In this case, single-attribute matchings with low matching rates are

handled in priority, so there is very small amount of work for the last single-attribute matchings in the

order-queue. This boosts the event matching speed to a large extent.

5.1.3 Event matching with different widths of range-based constraints

The matching rate on an attribute is directly impacted by δ on the attribute. When δ is narrow, the

possibility that subscriptions match an event is low, whereas, it is high if the width is wide. In order

to evaluate the impact of δ on event matching time, experiments are done with different δ, where other

parameters are configured as M = 10 and N = 9× 105 fixedly. As shown in Figure 7, when δ grows from

0.05 to 0.8, it can be observed that the 4 algorithms behave differently. The average event matching time

of TAMA increases linearly, because subscriptions with wide constraints are stored in multiple cells in the

layered index structure of TAMA, which increases searching cost. The average matching time of H-TREE

grows exponentially due to the duplicates of subscriptions with wide constraints increase exponentially

in the tree-like structure of H-TREE, thus, the number of search paths grows correspondingly, which

worsens the event matching performance. The average event matching time of REIN decreases with the

increase of δ due to the exclusive mechanism that REIN is based on, and the number of subscriptions in

the traversing of the two bucket lists shrinks as δ grows, so the searching cost decreases. The average event

matching time of HEM is almost unchanged as δ grows, and the main reason lies in that: when δ is low,

the matching rates on all attributes decrease, single-attribute matching with low matching rate is carried

out in priority, and the direct matching method is frequently adopted to speed up the event matching;

when δ is high, the matching costs via the triangle-based matching method on all attributes decrease

since the method excludes unmatched subscriptions, so the event matching performance is also boosted.

In this hybrid way, the event matching performance of HEM with different δ is promoted holistically.
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Figure 5 (Color online) The average event matching time

with different numbers of subscriptions.

Figure 6 (Color online) The average event matching time

with different numbers of attributes.
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Figure 7 (Color online) The average event matching time with different widths of range-based constraints.

5.2 Subscription insertion and deletion time

As shown in Figures 8 and 9, the subscription insertion time and subscription deletion time of the 4

algorithms are measured in order to evaluate their maintenance mechanism, respectively. The total sub-

scription insertion and deletion time are recorded in experiments with different numbers of subscriptions,

where other parameters are set as M = 10, δ = 0.5 fixedly, and y-axis is in log-scale. The results show

that HEM has the lowest insertion and deletion time among the 4 algorithms due to its O(1) time com-

plexity in theoretical analysis. The average subscription insertion time per subscription is 0.0358 ms,

0.0641 ms, 0.0039 ms and 0.00067 ms via TAMA, H-TREE, REIN and HEM, respectively. The average

subscription deletion time per subscription is 0.0232 ms, 0.0342 ms, 0.0054 ms and 0.0012 ms via the

4 algorithms, respectively. In the triangle-based matching method, HEM uses a two-dimensional array to

express the triangle area with grids, and subscriptions are stored in their corresponding grids. Thus HEM

can provide very fast subscription insertion and deletion time because searching for a specific grid can

be done immediately (O(1) time complexity) via the proposed hash algorithm. In contrast, subscriptions

may be inserted into or deleted from multiple cells in the index structures of TAMA and H-TREE. REIN,

as the best on subscription insertion and deletion among the 3 algorithms, still has to handle the low

value and high value of the constraint in a subscription from REIN’s two bucket lists, respectively.

5.3 Analysis of the fast near-optimal algorithm and comparisons

In HEM, the sequence of each single-attribute matching and the method employed by each single-attribute

matching are determined by the fast near-optimal algorithm. The result generated by the algorithm

directly impacts the event matching performance of HEM. To this end, the fast near-optimal algorithm

is analyzed and further compared with the optimal algorithm, which traverses and examines all feasible
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Figure 8 (Color online) The total subscription insertion

time with different numbers of attributes.

Figure 9 (Color online) The total subscription deletion

time with different numbers of attributes.
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Figure 10 (Color online) The average event matching time by the fast near-optimal algorithm and the optimal algorithm

with different numbers of attributes.

solutions that satisfy Observation 1–3, and then finds out the best solution from them. This is a very

costly operation since the searching space grows rapidly with the increase in the number of attributes.

Experiments are carried out in scenarios with different numbers of attributes from 3 to 17, andN = 9×105,

δ = 0.5. The average event matching time via the fast near-optimal algorithm, via the optimal algorithm

excluding its computation time, and via the optimal algorithm including its computation time is evaluated.

As shown in Figure 10, it can be found that the average event matching time via the fast near-optimal

algorithm is very close to that via the optimal algorithm excluding its computation time, as the two

curves almost coincide after M = 11. The gap between the average event matching time via the fast

near-optimal algorithm and the optimal algorithm including its computation time grows exponentially

since the searching space of the feasible solutions for the optimal algorithm expands exponentially.

The fast near-optimal algorithm provides the near-optimal solution which is near optimal, but only

needs a small time complexity (O(M logM+M)). Whereas, the optimal algorithm can obtain the optimal

solution, but it generates tremendous computation costs, which, conversely, worsens the holistic event

matching performance of HEM severely.

6 Conclusion

In this paper, we propose a high-efficiency content-based multi-attribute event matching algorithm, called

HEM (hybrid event matching), which is hybridized by two different methods — the triangle-based match-

ing method and the direct matching method. The former is designed based on analytic geometry theories,

where subscriptions are mapped to the points in a triangle area, and the matching is conducted through

filtering out unmatched subscriptions with a rectangle in the area, whereas, the latter picks up the
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matched subscriptions directly from a partial result set. The integration of partial results generated from

each single-attribute matching is conducted in an order queue, where the output of a previous single-

attribute matching is taken as the input of its next single-attribute matching, and the event matching

result is obtained at the end of the queue. The sequence of each single-attribute matching and the

method adopted by each-single attribute matching are determined by the fast near-optimal algorithm,

which can provide near-optimal solution only with a small computation cost. In this way, the searching

space shrinks at the stage of each single-attribute matching, hence, the holistic event matching perfor-

mance is boosted efficiently. Experiments are carried out extensively, and multiple main criteria in event

matching of HEM are evaluated and compared with several typical counterparts — TAMA, H-TREE and

REIN. The experiment results show that HEM outperforms its counterparts to a large extent on event

matching time, subscription insertion and subscription deletion, which proves that HEM is superior in

scenarios with high dynamic large-scale systems. However, there are still several problems that we plan

to investigate and solve. Firstly, optimization should be further done on the performance of subscription

insertion and deletion for high-dynamic publish/subscribe environments. Secondly, a distributed deploy-

ment strategy of our event matching mechanism needs to be designed for broker-based publish/subscribe

systems. Additionally, the issues for the implementation of HEM when it is applied to different practical

applications systems must be considered as well.
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