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Abstract This paper considers a unicast multiuser multiple-input single-output (MISO) downlink system

overheard by multiple single-antenna eavesdroppers. The objective is to jointly design the beamforming vectors

and the artificial noise (AN) covariance matrix with imperfect channel state information (CSI) at the transmitter,

such that the total transmit power is minimized while satisfying probabilistic quality of service (QoS) constraints

at legitimate users and the eavesdroppers. Using Bernstein-type inequalities and the S-procedure, we recast

the non-convex power minimization problem as two different convex semidefinite programs (SDPs) which can

be solved using interior-point methods. Simulation results show that the proposed methods outperform a non-

robust method and the ones using the isotropic AN.
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1 Introduction

With the rapid advances of wireless communications, the conventional cryptographic encryption [1, 2]

used in the upper layers of communication networks has encountered more challenges in areas such as

key distribution and management. For this reason, physical layer security that exploits the characteristics

of wireless channels to guarantee secure transmission has recently become an active research area. The

groundwork for physical layer security was laid by Wyner [3].

As a promising technology for high data rate communications, multiple antenna systems have attracted

considerable attention [4]. It has been shown that the spatial degrees of freedom provided by multiple

antennas can be used to enhance the physical layer security [5, 6]. Much existing work [7, 8] on physical

layer security is based on the assumption of perfect channel state information (CSI). However, CSI error

may be inevitable due to many reasons such as estimation error, quantization error, feedback delay, and

time delays between reciprocal channels [9]. As such, robust transmit design has recently become an

active topic to mitigate the impacts of imperfect CSI. Under the deterministic model, the worst-case
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approach aims to satisfy the constraints for all the channel realizations [5, 10, 11]. Under the stochastic

model, the transmit design is usually developed based on the ergodic (average) performance or the outage

performance in various wiretap scenarios, for example, relay channels [12,13], single-input multiple-output

(SIMO) channels [14], multiple-input multiple-output (MIMO) channels [15, 16], multiple-input single-

output (MISO) channels [17–19], and interference channels [20].

In [16,18,19], robust wiretap transmission problem was investigated from the quality of service (QoS)

perspective. The average minimum mean square error (MMSE) and the average signal-to-interference-

and-noise ratio (SINR) are used as the security performance metrics in [16] and [18], respectively. How-

ever, in practice the wireless channels are usually not ergodic, and the instant QoS requirement may be

violated with a high probability. Hence, an outage-based performance metric is more realistic. In [19],

the authors proposed an SINR outage-based approach to secure the message delivery, where only one

legitimate user was considered. Also, the perfect CSI of legitimate user is assumed to be available. For

analyzing the statistical QoS constraints, an effective capacity region was derived and a method to obtain

it was proposed for the two-user opportunistic spectrum access (OSA) system in [21], while the security

issue was not considered. To the best of our knowledge, there are few studies on physical layer security

considering the unicast multiuser scenario with probabilistic QoS constraints at both the legitimate users

and the eavesdroppers. Besides, in many existing studies [3, 16, 19, 22, 23], the artificial noise (AN) is

imposed on the null space of the legitimate channel, called isotropic AN, to confuse the eavesdroppers.

Actually, this method may not be optimal when the CSI of eavesdroppers can be obtained partially or

fully. This is because the CSI of both the legitimate users and the eavesdroppers can be simultaneously

exploited to improve the security performance.

In this paper, we address the physical layer security for the unicast multiuser MISO downlink systems.

Only the imperfect CSI of both the legitimate users and the eavesdroppers is available at the transmitter.

The channel error vectors are zero-mean circularly symmetric complex Gaussian with known covariance

matrix. To enhance the security, a robust AN-aided beamforming scheme is proposed, where the structure

of AN is non-isotropic. Specifically, we aim to minimize the total transmit power under probabilistic QoS

constraints by the joint optimization of beamforming vectors and the AN covariance matrix. Each

legitimate receiver’s probability of experiencing SINR outage should be below a preset level. On the

other hand, the probability that each eavesdropper’s SINR exceeds the given threshold should fall below

a predefined value. The challenge in robust transmit design lies in the lack of close-form expressions of

the probabilistic QoS constraints. Also, the considered problem formulations are non-convex in general

and hard to solve optimally. To overcome these difficulties, we adopt the semidefinite relaxation (SDR)

technique [24] and the approximation techniques, that is, the Bernstein-type inequalities [25] and the S-
procedure [26], to recast the original optimization problem as two different semidefinite programs (SDPs)

which can be efficiently solved using interior-point methods [26]. Finally, the performance of the proposed

scheme is evaluated through simulation studies.

Notations: Bold uppercase letters and bold lowercase letters denote matrices and vectors, respectively.

Tr(·), (·)H, CN , HN , CN×M , | · |, ‖·‖, Pr{·}, E{·}, and Re(·) denote the trace of a matrix, Hermitian

transpose, the space of N × 1 complex vector, the space of N × N Hermitian matrix, the space of

N×M complex matrix, the absolute value, the Euclidean norm, the probability operator, the expectation

operator, and the real part, respectively. R denotes the set of all real numbers. IN is the identity matrix

of size N × N . Q � 0 means that Q is a positive semidefinite (PSD) matrix, and vec(Q) denotes a

column vector by stacking all the elements of Q. x ∼ CN (c,Q) means that x is a complex circular

Gaussian random vector with mean c and covariance Q.

2 System model and problem formulation

We consider a multiuser secure communication system with an N -antenna transmitter (Alice), M single-

antenna legitimate receivers (Bobs), and K single-antenna eavesdroppers (Eves). The Eves are non-

concluding. This model corresponds to the following scenario: all the legitimate users and the eavesdrop-
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pers belong to the same system, but each one subscribes to different services. When subscribing to no

services, the user will be regarded as an eavesdropper and kept from receiving any useful information. Let

hm ∈ C
N , ∀m ∈ M , {1, . . . ,M }, denote the channel vector from Alice to the mth Bob, and gk ∈ C

N ,

∀k ∈ K , {1, . . . ,K}, denote the channel vector from Alice to the kth Eve. It is assumed that all the

channels are independent of each other and undergo slow frequency-flat fading. Let x ∈ CN denote the

AN-assisted transmit signal vector. The received signals at the mth Bob and kth Eve are, respectively,

given by

yb,m = hH
mx+ nb,m, ∀m ∈ M, (1a)

ye,k = gH
k x+ ne,k, ∀k ∈ K, (1b)

where nb,m ∼ CN (0, σ2
b,m) and ne,k ∼ CN (0, σ2

e,k) are additive white complex Gaussian noises at the mth

Bob and the kth Eve, respectively. The transmitted signal vector x has the following structure here

x =

M∑

m=1

wmsm + z, (2)

where sm ∈ C is the confidential and independent symbol transmitted from Alice to the mth Bob, with

E{|sm |2} = 1; wm ∈ CN is the transmit beamforming vector corresponding to sm ; and z ∈ CN is the

AN vector generated by Alice to interfere Eves. We assume that z ∼ CN (0,Σ) with Σ � 0 being the

AN covariance matrix.

In practical scenarios, Alice may not have perfect CSI in general. Following the complex Gaussian

stochastic error model [27], the true channels can be expressed as

hm = ĥm +∆b,m, ∀m ∈ M, (3a)

gk = ĝk +∆e,k, ∀k ∈ K, (3b)

where ĥm ∈ CN and ĝk ∈ CN are the estimated CSI vectors at Alice; ∆b,m ∈ CN and ∆e,k ∈ CN are the

independent CSI error vectors. We assume that∆b,m ∼ CN (0,Qb,m), Qb,m ≻ 0 and∆e,k ∼ CN (0,Qe,k),

Qe,k ≻ 0.

According to (1) and (2), the SINRs of the mth Bob and the kth Eve which eavesdrops the mth data

stream can be, respectively, expressed as

SINRb,m =
|hH

mwm|2
∑M

i=1,i6=m|hH
mwi|2 + hH

mΣhm + σ2
b,m

, (4a)

SINR
(m)
e,k =

|gH
k wm|2

∑M

i=1,i6=m|gH
k wi|2 + gH

k Σgk + σ2
e,k

. (4b)

In this paper, the problem of interest is to design the beamforming vectors and the AN covariance

matrix, such that the total transmit power at Alice is minimized while satisfying the probabilistic QoS

constraints at Bobs and Eves. Mathematically, the optimization problem can be formulated as

min
{wm}M

m=1,Σ

M∑

m=1

‖wm‖2 +Tr(Σ) (5a)

s.t. Pr
{
SINRb,m 6 γb,m

}
6 ρb,m, ∀m ∈ M, (5b)

Pr
{
SINR

(m)
e,k > γ

(m)
e,k

}
6 ρ

(m)
e,k , ∀m ∈ M, ∀k ∈ K, (5c)

Σ � 0, (5d)

where γb,m and γ
(m)
e,k are the predefined SINR thresholds of the mth Bob and the kth Eve eavesdropping

the mth data stream, respectively; ρb,m ∈ (0, 1] and ρ
(m)
e,k ∈ (0, 1] are the maximum tolerable probability
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values at the mth Bob and the kth Eve eavesdropping the mth data stream, respectively. The system’s

reliability is assured when the constraints in (5b) are satisfied, while the system’s security is guaranteed

if the constraints in (5c) are satisfied.

The optimization problem (5) is challenging to solve due to the fact that probabilistic functions have

no closed-form solutions generally. Also, such problem is non-convex and hard to solve. In Section 3, we

will propose two different methods to handle this optimization problem.

3 Robust optimization

In this section, the optimization problem (5) is solved by taking the following two steps: SDR and

conservative reformulation. The first step will be discussed in Subsection 3.1. For the second step, two

different conservative formulations will be obtained in Subsection 3.2. The key idea of the conservative

reformulation is to develop a convex and tractable expressions of the upper bounds of the probabilistic

QoS constraints in (5b) and (5c).

3.1 Semidefinite relaxation

We first define Wm , wmwH
m, and rank(Wm) = 1, ∀m ∈ M. Then, according to (3) and (4), we can

reformulate the probabilistic constraints in (5b) and (5c), respectively, as

Pr
{
∆H

b,mBb,m∆b,m + 2Re
{
∆H

b,mBb,mĥm

}
+ ĥH

mBb,mĥm 6 σ2
b,m

}
6 ρb,m, ∀m ∈ M, (6a)

Pr
{
∆H

e,kB
(m)
e,k ∆e,k + 2Re

{
∆H

e,kB
(m)
e,k ĝk

}
+ ĝH

k B
(m)
e,k ĝk > σ2

e,k

}
6 ρ

(m)
e,k , ∀m ∈ M, ∀k ∈ K, (6b)

where 


Bb,m = 1

γb,m
Wm −∑M

i=1,i6=m Wi −Σ,

B
(m)
e,k = 1

γ
(m)
e,k

Wm −∑M
i=1,i6=m Wi −Σ.

(7)

Due to the fact that ∆b,m ∼ CN (0,Qb,m) and ∆e,k ∼ CN (0,Qe,k), we can rewrite the CSI error

vectors as

∆b,m = Q
1/2
b,mrb,m, ∀m ∈ M, (8a)

∆e,k = Q
1/2
e,k re,k, ∀k ∈ K, (8b)

where rb,m ∼ CN (0, IN ); re,k ∼ CN (0, IN); Q
1/2
b,m and Q

1/2
e,k are the PSD square roots of Qb,m and Qe,k,

respectively, that is, Qb,m = Q
1/2
b,mQ

1/2
b,m and Qe,k = Q

1/2
e,k Q

1/2
e,k . After substituting (8a) and (8b) into (6a)

and (6b), respectively, we can equivalently rewrite the probabilistic constraints in (6) as follows:

Pr
{
rH
b,mDb,mrb,m + 2Re

{
rH
b,mdb,m

}
6 cb,m

}
6 ρb,m, ∀m ∈ M, (9a)

Pr
{
rH
e,kD

(m)
e,k re,k + 2Re

{
rH
e,kd

(m)
e,k

}
> c

(m)
e,k

}
6 ρ

(m)
e,k , ∀m ∈ M, ∀k ∈ K, (9b)

where
{
Db,m = Q

1/2
b,mBb,mQ

1/2
b,m, db,m = Q

1/2
b,mBb,mĥm, cb,m = σ2

b,m − ĥH
mBb,mĥm,

D
(m)
e,k = Q

1/2
e,k B

(m)
e,k Q

1/2
e,k , d

(m)
e,k = Q

1/2
e,k B

(m)
e,k ĝk, c

(m)
e,k = σ2

e,k − ĝH
k B

(m)
e,k ĝk.

(10)

Considering Wm , wmwH
m, ∀m ∈ M, and substituting (9a) and (9b) into the problem (5), we can obtain

min
{Wm}M

m=1,Σ

M∑

m=1

Tr(Wm) + Tr(Σ) (11a)

s.t. Pr
{
rH
b,mDb,mrb,m + 2Re

{
rH
b,mdb,m

}
6 cb,m

}
6 ρb,m, ∀m ∈ M, (11b)
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Pr
{
rH
e,kD

(m)
e,k re,k + 2Re

{
rH
e,kd

(m)
e,k

}
> c

(m)
e,k

}
6 ρ

(m)
e,k , ∀m ∈ M, ∀k ∈ K, (11c)

Wm � 0, rank(Wm) = 1, ∀m ∈ M, (11d)

Σ � 0, (11e)

where the constraints in (11d) are equivalent to the definition Wm , wmwH
m. Following the idea of SDR

[24], we drop the non-convex constraint rank(Wm) = 1, ∀m ∈ M. Then, the rank-relaxed counterpart

of the problem (11) can be expressed as

min
{Wm}M

m=1,Σ

M∑

m=1

Tr(Wm) + Tr(Σ) (12a)

s.t. Pr
{
rH
b,mDb,mrb,m + 2Re

{
rH
b,mdb,m

}
6 cb,m

}
6 ρb,m, ∀m ∈ M, (12b)

Pr
{
rH
e,kD

(m)
e,k re,k + 2Re

{
rH
e,kd

(m)
e,k

}
> c

(m)
e,k

}
6 ρ

(m)
e,k , ∀m ∈ M, ∀k ∈ K, (12c)

Σ � 0, Wm � 0, ∀m ∈ M. (12d)

Generally speaking, the problem (12) is a relaxed approximation to (11) due to the fact that the optimal

solution W ⋆
m, ∀m ∈ M, to the problem (12) may not satisfy the rank-one constraints in (11d). The

procedure of getting the suboptimal beamforming vector fromW ⋆
m whose rank is not one will be developed

in the next subsection.

3.2 Conservative reformulations

Because no closed-form expressions for the left-hand sides of the inequalities in (12b) and (12c) exist

in general, it is still difficult to handle the relaxed optimization problem (12). In this subsection, the

probabilistic constraints in (12b) and (12c) will be converted into two different deterministic ones that

are conservative and tractable. If the deterministic constraints are satisfied, then the corresponding

probabilistic constraints must be satisfied, which is the key idea of the conservative reformulation.

3.2.1 Conservative reformulation using Bernstein-type inequalities

To convert the probabilistic constraints in (12b) and (12c) into deterministic ones, the following Lemma

will be useful.

Lemma 1 ([25]). For any D ∈ HN , d ∈ CN , r ∼ CN (0, IN ), and α > 0, we have

Pr
{
rHDr + 2Re{rHd} 6 Tr(D)−

√
2α(‖vec(D)‖2 + 2‖d‖2)− αs−(D)

}
6 exp(−α), (13a)

Pr
{
rHDr + 2Re{rHd} > Tr(D) +

√
2α(‖vec(D)‖2 + 2‖d‖2) + αs+(D)

}
6 exp(−α), (13b)

where s−(D) = max{λmax(−D), 0}, and s+(D) = max{λmax(D), 0} with λmax(D) representing the

maximum eigenvalue of the matrix D. The inequalities in (13) are called Bernstein-type inequalities.

Introducing auxiliary variable αb,m = − ln ρb,m, and applying the Bernstein-type inequality in (13a),

we have

Pr
{
rH
b,mDb,mrb,m + 2Re

{
rH
b,mdb,m

}
6

Tr(Db,m)−
√
2αb,m(‖vec(Db,m)‖2 + 2‖db,m‖2)− αb,ms−(Db,m)

}
6 ρb,m, ∀m ∈ M. (14)

Comparing (12b) with (14), we know that if the following constraints

cb,m 6 Tr(Db,m)−
√
2αb,m(‖vec(Db,m)‖2 + 2‖db,m‖2)− αb,ms−(Db,m), ∀m ∈ M (15)

hold true, then the constraints in (12b) are satisfied.
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Similarly, applying the Bernstein-type inequality in (13b), we can obtain the conservative reformula-

tions of the probabilistic constraints in (12c) as follows:

c
(m)
e,k > Tr(D

(m)
e,k ) +

√
2α

(m)
e,k (‖vec(D(m)

e,k )‖2 + 2‖d(m)
e,k ‖2) + α

(m)
e,k s+(D

(m)
e,k ), ∀m ∈ M, ∀k ∈ K, (16)

where α
(m)
e,k = − ln ρ

(m)
e,k is the auxiliary variable. Also, the constraints in (15) and (16) can be equivalently

reformulated as [25]




Tr(Db,m)−
√
2αb,mµb,m − αb,mνb,m > cb,m,∥∥∥∥∥

vec(Db,m)√
2db,m

∥∥∥∥∥ 6 µb,m,

νb,mIN +Db,m � 0,

νb,m > 0.

∀m ∈ M, (17a)

and 



Tr(D
(m)
e,k ) +

√
2α

(m)
e,k µ

(m)
e,k + α

(m)
e,k ν

(m)
e,k 6 c

(m)
e,k ,∥∥∥∥∥

vec(D
(m)
e,k )√

2d
(m)
e,k

∥∥∥∥∥ 6 µ
(m)
e,k ,

ν
(m)
e,k IN −D

(m)
e,k � 0,

ν
(m)
e,k > 0,

∀m ∈ M, ∀k ∈ K, (17b)

respectively, where µb,m, νb,m, µ
(m)
e,k , and ν

(m)
e,k are auxiliary variables. Note that the combination of

the third and the fourth inequalities in (17a) is equivalent to the constraint νb,m > s−(Db,m) =

max{λmax(−Db,m), 0}, while the combination of the third and the fourth inequalities in (17b) is e-

quivalent to the constraint ν
(m)
e,k > s+(D

(m)
e,k ) = max{λmax(D

(m)
e,k ), 0}. Replacing (12b) and (12c) with

(17a) and (17b), respectively, the optimization problem (12) can be rewritten as

min
{Wm}M

m=1,Σ

M∑

m=1

Tr(Wm) + Tr(Σ) (18a)

s.t. (17a) and (17b) satisfied, (18b)

Σ � 0, Wm � 0, ∀m ∈ M. (18c)

Now, one can easily show that problem (18) is a SDP, and thus can be efficiently solved through

efficient solvers, such as CVX [28]. If the solution gives rank-oneW ∗
m, ∀m ∈ M, the principal eigenvector

corresponding to the only non-zero eigenvalue of W ∗
m can be selected as the optimal beamforming vector

w∗
m. Otherwise, it is necessary to apply the rank-one approximation procedure [24] to get the approximate

solution ŵ∗
m to the problem (18). Here, we design one Gaussian randomization procedure provided in

Table 1. This algorithm is custom-designed for (18), and follows the idea of [18].

min
{β(f)

m }M
m=1,β

(f)
z

∑M

m=1 Tr(Wm) + Tr(Σ) (19)

s.t. (17a) and (17b) satisfied.

3.2.2 Conservative reformulation by S-procedure
In this part, we alternatively convert the probabilistic constraints in (12b) and (12c) into the worst-

case deterministic constraints following the method proposed in [29]. Then, using the S-Procedure, we
transform the optimization problem (12) into a tractable SDP.

Lemma 2 ([29]). Let r ∼ CN be a continuous random vector following certain statistical distribution

and G(r) : CN → R be a function of r. Then, the following implication holds

G(r) > 0, ∀‖r‖2 6 R2, Pr
{
‖r‖2 6 R2

}
> 1− ρ =⇒ Pr

{
G(r) 6 0

}
6 ρ, (20)
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Table 1 Gaussian randomization procedure for the optimization problem (18)

Initialization: The number of randomizations F and an optimal solution
{
W

∗

1 , . . . ,W
∗

M , Σ
∗
}
to

the SDR problem (18) .

for f = 1, . . . , F

1: generate the set of beamforming vectors {w(f)
1 , . . . ,w

(f)
M }, w

(f)
m ∼ CN (0,W ∗

m), ∀m ∈ M;

2: Let β
(f)
m > 0, ∀m ∈ M and β

(f)
z > 0 denote the power scaling factors, substitute Wm =

β
(f)
m w

(f)
m (w

(f)
m )H, ∀m ∈ M and Σ = β

(f)
z Σ

∗ into the optimization problem (19), solve it with re-

spect to
{
β
(f)
1 , . . . , β

(f)
M , β

(f)
z

}
;

3: If the problem is feasible, then set the total power P (f) to be the optimal objective value, or set

P (f) = +∞;

end

Let f∗ = arg min
f=1,...,F

P (f);

Output: ŵ
⋆
m =

√
β
(f∗)
m w

(f∗)
m , ∀m ∈ M, Σ̂

⋆ = β
(f∗)
z Σ

∗ as an approximate solution to the

optimization problem (18).

for some R > 0, where ρ ∈ (0, 1].

According to Lemma 2, we know that the constraints in (12b) are satisfied if

rH
b,mDb,mrb,m + 2Re

{
rH
b,mdb,m

}
− cb,m > 0, ∀‖rb,m‖2 6 (Rb,m)2, ∀m ∈ M (21)

holds true, where Rb,m > 0 such that

Pr
{
‖rb,m‖2 6 R2

b,m

}
> 1− ρb,m, ∀m ∈ M. (22)

We here need to determine the value of Rb,m. Note that 2‖rb,m‖2 are Chi-square random variables with

2N degrees of freedom due to the fact that rb,m ∼ CN (0, IN ) [30]. Let ICDF(·) denote the inverse cumu-

lative distribution function of the Chi-square random variable. Then, setting Rb,m =
√
ICDF(1− ρb,m)/2

is sufficient to guarantee the constraints in (22).

Similarly, we can set R
(m)
e,k =

√
ICDF(1− ρ

(m)
e,k )/2, which ensures that

Pr
{
‖re,k‖2 6 (R

(m)
e,k )2

}
> 1− ρ

(m)
e,k , ∀m ∈ M, ∀k ∈ K. (23)

Then, according to Lemma 2, the following worst-case deterministic formulations

− rH
e,kD

(m)
e,k re,k − 2Re

{
rH
e,kd

(m)
e,k

}
+ c

(m)
e,k > 0, ∀‖re,k‖2 6 (R

(m)
e,k )2, ∀m ∈ M, ∀k ∈ K (24)

mean that the constraints in (12c) are satisfied.

Replacing (12b) and (12c) with (21) and (24), respectively, the probabilistically constrained optimiza-

tion problem (12) can be recast as the one with worst-case deterministic constraints as follows:

min
{Wm}M

m=1,Σ

M∑

m=1

Tr(Wm) + Tr(Σ) (25a)

s.t. rH
b,mDb,mrb,m + 2Re

{
rH
b,mdb,m

}
− cb,m > 0, ∀‖rb,m‖2 6 R2

b,m, ∀m ∈ M, (25b)

rH
e,kD

(m)
e,k re,k + 2Re

{
rH
e,kd

(m)
e,k

}
− c

(m)
e,k 6 0, ∀‖re,k‖2 6 (R

(m)
e,k )2, ∀m ∈ M, ∀k ∈ K, (25c)

Σ � 0, Wm � 0, ∀m ∈ M. (25d)

Although the problem (25) is convex, there are semi-infinite constraints as seen in (25b) and (25c). To

make the problem more tractable, we use the S-procedure [26] to convert the constraints in (25b) and

(25c) to finitely many linear matrix inequalities (LMIs).
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Lemma 3 (S-Procedure [26]). Let Gk(x) = xHDkx+2Re{dH
k x}+ck, where Dk ∈ HN , dk ∈ CN , ck ∈

R, k = 1, 2. The implication G1(v) 6 0 ⇒ G2(v) 6 0 holds if and only if there exists λ such that

λ > 0, λ

[
D1 d1

dH
1 c1

]
−
[
D2 d2

dH
2 c2

]
� 0,

provided that there exists a point x̄ such that G1(x̄) < 0.

Applying S-procedure to the constraints in (25b) and (25c), we can get the following equivalent LMIs
[
λb,mIN +Db,m db,m

dH
b,m −λb,mR2

b,m − cb,m

]
� 0, ∀m ∈ M, (26a)

[
λ
(m)
e,k IN −D

(m)
e,k −d

(m)
e,k

−(d
(m)
e,k )H −λ

(m)
e,k (R

(m)
e,k )2 + c

(m)
e,k

]
� 0, ∀m ∈ M, ∀k ∈ K, (26b)

respectively, for some λb,m > 0 and λ
(m)
e,k > 0. Substituting (26a) and (26b) back into (25), the alternative

conservative reformulation of the relaxation problem (12) can be written as

min
{Wm}M

m=1,Σ

M∑

m=1

Tr(Wm) + Tr(Σ) (27a)

s.t. (26a) and (26b) satisfied, (27b)

λb,m > 0, λ
(m)
e,k > 0, ∀m ∈ M, ∀k ∈ K, (27c)

Σ � 0, Wm � 0, ∀m ∈ M. (27d)

The problem (27) is a SDP which can be efficiently solved. The Gaussian randomization procedure of

gaining the feasible beamforming vectors from the non-rank-one solution W ∗
m, ∀m ∈ M, to the problem

(27) is similar to that listed in Table 1, except that the optimization problem (28) should be solved

instead of problem (19) .

min
{β(f)

m }M
m=1,β

(f)
z

M∑

m=1

Tr(Wm) + Tr(Σ) (28a)

s.t. (26a) and (26b) satisfied, (28b)

λb,m > 0, λ
(m)
e,k > 0, ∀m ∈ M, ∀k ∈ K. (28c)

3.3 Complexity analysis

In this subsection, the complexity of various methods will be discussed. The complexity is mainly

dominated by the part of handling the problems (18) and (27). According to [31], the interior-point

methods will take O(
√
θ log(1/ǫ)) iterations to find an optimal solution, where θ represents the barrier

parameter and ǫ is the accuracy of the solution. Let O(L) denote the arithmetic cost of each iteration.

Then, the worst-case complexity of solving a given optimization problem is O(
√
θL log(1/ǫ)). We first

determine the value of θ. From [31], for the mixed second-order cone programming (SOCP) and SDP

problem, the arithmetic barrier parameter is

θ =

msdp∑

i=1

ki,sdp + 2msocp, (29)

where msdp is the number of the PSD constraints, ki,sdp is the dimension of the ith semidefinite cone, and

msocp is the number of the second-order cone (SOC) constraints. The arithmetic cost of each iteration,

including the operations of assembling and factorizing the system matrix, is on the order of

L = n

msdp∑

i=1

k3i,sdp + n2

msdp∑

i=1

k2i,sdp + n

msocp∑

i=1

k2i,socp

︸ ︷︷ ︸
assembling cost

+ n3
︸︷︷︸

factorizing cost

, (30)
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Table 2 Complexity comparison of various methods

Method Variables PSD constraints SOC constraints Barrier parameter θ
(size,number) (size,number) (size,number)

Bernstein (N,M + 1) (N,MK + 2M + 1) (N2 +N + 1,M(K + 1)) M(KN + 2N + 4K + 4) +N

(1, 2M(K + 1)) (1, 2M(K + 1))

Worst-case (N,M + 1) (N + 1,M(K + 1)) 0 M(KN + 2N + 2K + 2) +N

(1,M(K + 1)) (N,M + 1)

(1,M(K + 1))

Bernstein (N,M) (N,MK + 2M) (N2 +N + 1,M(K + 1)) M(KN + 2N + 4K + 4) + 1

isotropic AN (1, 2M(K + 1) + 1) (1, 2M(K + 1) + 1)

Worst-case (N,M) (N + 1,M(K + 1)) 0 M(KN + 2N + 2K + 2) + 1

isotropic AN (1,M(K + 1) + 1) (N,M)

(1,M(K + 1) + 1)

where n is the number of the decision variables and ki,socp is the dimension of the ith SOC.

The method discussed in Subsection 3.2.1 and the one in Subsection 3.2.2 are, respectively, referred

to as the “Bernstein” method and the “Worst-case” method. We compare the proposed methods with

the following ones: (1) the “Bernstein isotropic AN” method, which is the same as the “Bernstein”

method, except that the AN is imposed in the null space of estimated main channels, called the isotropic

AN [16,23]; (2) the “Worst-case isotropic AN” method, which is the same as the “Worst-case” method,

except that the AN is isotropic. Table 2 shows the size and number of both variables and constraints

for various methods. Note that (1) the scalar linear constraints can be regarded as the PSD constraints

of size 1; (2) the structure of the AN is fixed and only the AN power needs to be optimized while using

the methods with isotropic AN. Also, as can be seen from the second column in Table 2, the number of

decision variables n of each method is on the order of MN2. For large N , M , and K, all the methods

have the same dominating terms in (30). Hence, we just compare the barrier parameters listed in the fifth

column in Table 2. From Table 2, it can be seen that “Bernstein” method has the highest complexity,

followed by “Bernstein isotropic AN” method, “Worst-case” method, and “Worst-case isotropic AN”

method in sequence. Interestingly, in Section 4, we will find that this ranking is the same as that of the

performances of various methods.

4 Simulation results

In this section, we carry out some simulations to evaluate the performances of the proposed methods.

In each simulation, we assume the number of transmit antennas at Alice is N = 5, the number of Bobs

is M = 3, and the number of Eves is K = 2. It is noteworthy that the relation N > M should hold

true for assuring the existence of the null space of the legitimate channels for the methods with isotropic

AN [16, 23]. All the channel estimates are independent identically distributed Rayleigh flat fading, that

is, ĥm ∼ CN (0, I5), ĝk ∼ CN (0, I5), ∀m, k. For simplicity, the CSI error vectors of Bobs have identical

covariances, that is, Qb,m = εbIN = 0.002I5, ∀m. Similarly, Qe,k = εeIN = 0.005I5, ∀k, unless specified
otherwise. Without loss of generality, we have the following parameter settings. The noise variances

of both Bobs and Eves are assumed to be the same, that is, σ2
b,m = σ2

e,k = σ2 = 0.1, ∀m, k. The

predefined SINR thresholds of Bobs are set to be the same, that is, γb,m = γb, ∀m. We assume that

γ
(m)
e,k = γe = −5 dB, ∀m, k. The probability values at both Bobs and Eves are set as ρb,m = ρb, ∀m and

ρ
(m)
e,k = ρe, ∀m, k.

In the simulations, the SDPs are solved using the optimization solver CVX [28]. We compare the per-

formances of the following methods: the “Bernstein” method, the “Worst-case” method, the “Bernstein

isotropic AN” method, the “Worst-case isotropic AN” method, and the “Non-robust” method which

takes the estimated CSI as the true CSI.
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Figure 1 Average power versus (a) the CSI errors variance of Eves with γb = 12 dB, γe = −5 dB, εb = 0.002, ρb = ρe =

0.05 and (b) the SINR threshold of Bobs with γe = −5 dB, εb = 0.002, εe = 0.005, ρb = ρe = 0.05.
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Figure 2 Feasibility rate versus (a) the CSI errors variance of Eves with γb = 12 dB, γe = −5 dB, εb = 0.002, ρb = ρe =

0.05 and (b) the SINR threshold of Bobs with γe = −5 dB, εb = 0.002, εe = 0.005, ρb = ρe = 0.05.

The impact of the CSI errors variance εe on the power consumptions of various methods is presented

in Figure 1(a) with γb = 12 dB. The result was obtained based on 500 channel realizations for which

all methods yield feasible solutions at εe= 0.032 and γb = 12 dB. It can be seen that as εe increases

from 0.002 to 0.032, the average powers consumed by various methods increase correspondingly. This

phenomenon can be understood easily. As the channel errors variance εe increases, more power should be

allocated to the AN for keeping the probability that the SINR of Eves exceeds the predefined threshold

below the maximum allowable probability value. We can see that the performances of “Bernstein” and

“Bernstein isotropic AN” methods outperform the ones of the “Worst-case” and “Worst-case isotropic

AN” methods in terms of the power consumption. This is due to the fact that the reformulations using

the Bernstein-type inequalities are less conservative than using the S-procedure. Also, we find that the

power consumption of the “Bernstein” method is less than that of the “Bernstein isotropic AN” method

under the same parameter settings. This verifies that the pattern of AN that we used is more efficient

in jamming the eavesdroppers than the isotropic AN. Besides, we find that the power consumption of

“Non-robust” method is constant. This is because this method does not take the channel error into

consideration. Hence, the reliability (i.e., the constraints in (5b)) and security (i.e., the constraints in

(5c)) are not assured, which will be seen in Figure 4.

Figure 1(b) depicts the average power transmitted at Alice versus the SINR threshold of Bobs with

fixed CSI error variances, that is, εb = 0.002 and εe = 0.005, for various methods. The result was obtained

based on the same channel realizations used in the last result in Figure 1(a). From Figure 1(b), we can
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Figure 3 (a) Average power versus maximum tolerable probability ρe and (b) AN power fraction versus maximum

tolerable probability ρe with γb = 10 dB, γe = −5 dB, εb = 0.002, εe = 0.005, ρb = 0.05.

observe that the average power is an increasing function of the SINR threshold of Bobs. This is because

more information-bearing power is necessary for keeping the SINR outage probability below the preset

maximum allowable probability value as the SINR threshold of Bobs increases. Also, the comparison

analysis of power performances between different methods is similar to that in Figure 1(a). The reason

has been explored above. Note that the average power is set as infinity when the method is infeasible for

at least one channel realization. The results of the “Non-robust” method are plotted as a benchmark to

show how much additional power is necessary to assure the robustness.

Figure 2 (a) and (b) show the feasibility rates of various methods versus the channel errors variance εe
of Eves and the predefined SINR threshold γb of Bobs, respectively. The parameter settings in Figure 2

(a) and (b) are the same as those in Figure 1 (a) and (b), respectively. It can be observed that the

feasibility rates of robust methods decrease with the increasing channel errors variance εe of Eves and

the increasing SINR threshold of Bobs , while that of the “Non-robust” method is always one. Of all

the robust methods, the “Bernstein” method shows the best feasibility rate performance. This confirms

that the reformulation using the Bernstein-type inequality is less conservative. Also, the advantage of

the non-isotropic AN over the isotropic AN is shown again when the same reformulation is adopted.

In Figure 3(a), we demonstrate how the Eves’ maximum tolerable probability ρe affects the average

transmit power consumed by various methods with γb = 10 dB, γe = −5 dB, εb = 0.002, εe = 0.005, ρb =

0.05. As can be seen from Figure 3(a), the average transmit power decreases with the increasing maximum

tolerable probability ρe, and the performance ranking is consistent with the analyses in Figures 1 and 2.

To get more insights, in Figure 3(b) we plot the AN power fraction versus the maximum tolerable

probability ρe. The parameter settings are the same as those in Figure 3(a). It can be found that the

power fraction allocated to AN decreases with increasing maximum tolerable probability ρe. This is due

to the fact that less AN power is needed to confuse Eves when the security requirements degrade. Also, it

can be seen that more isotropic AN power is allocated than the non-isotropic AN power under the same

conditions. This is because the pattern of the non-isotropic AN is designed by considering the estimated

CSI of both Bobs and Eves, while that of the isotropic AN is fixed in the null space of the channels from

Alice to Bobs.

To gain more insights into the impact of imperfect CSI on the reliability and the security of the system,

the cumulative distribution functions (CDFs) of the SINR of the first Bob and the SINR of the first Eve

eavesdropping the first data stream are plotted in Figure 4 (a) and (b), respectively. The SINR thresholds

of Bobs and Eves are set as γb = 8 dB, γe = −5 dB, and the channel error variances are set as εb = 0.002,

εe = 0.005. From Figure 4(a), we can find that at the threshold SINR = 8 dB the CDF values of robust

methods are less than the predefined probability value ρb = 0.05, and close to 0. This means that nearly

all the channel realizations satisfy the QoS constraints at Bobs. The reason behind this phenomenon is

that all the robust methods are conservative. It can also be seen that the SINR of the “Non-robust”
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Figure 4 CDF of achieved SINR (a) of the first Bob and (b) of the first Eve eavesdropping the first data stream. Both

(a) and (b) have common parameters with γb = 8 dB, γe = −5 dB, εb = 0.002, εe = 0.005, ρb = ρe = 0.05.

method is below the SINR threshold for about 60% of the channel realizations. As can be seen from

Figure 4(b), the probability that the first Eve’s SINR exceeds the threshold value is kept below ρe = 0.05

when using the robust methods, while the QoS constraint is violated with the probability 40% for the

“Non-robust” method. It can be concluded that although the “Non-robust” method consumes less power

than the robust methods as shown in Figure 1, the former has the poorest performance in terms of the

reliability and the security. This is because the “Non-robust” method ignores the channel error during

the optimization. Both Figure 4 (a) and (b) show that the SINR of the “Bernstein” method is more

closer to the predefined threshold compared with other robust methods and thus consumes less power.

This is consistent with the results shown in Figure 1.

5 Conclusion

In this paper, we developed a robust AN-aided beamforming scheme for the unicast multiuser MISO

downlink systems in the presence of multiple single-antenna eavesdroppers. We focus on minimizing

the total transmit power subject to the probabilistic QoS constraints at the legitimate users and the

eavesdroppers by optimizing the beamforming vectors and the AN covariance matrix jointly. After

applying the SDR technique, the probabilistic QoS constraints are recast as two different deterministic

ones using the Bernstein-type inequality and the S-procedure. The resulting optimization problems are

solved using interior-point methods. Simulations were carried out to show that the proposed robust

AN-aided beamforming methods outperform a non-robust method and the ones using the isotropic AN.
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