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Abstract This study presents a novel approach to unsupervised learning for clustering with missing data.

We first extend a finite mixture model to the infinite case by considering Dirichlet process mixtures, which

can automatically determine the number of mixture components or clusters. Furthermore, we view the missing

features as latent variables and compute the posterior distributions using the variational Bayesian expectation

maximization algorithm, which optimizes the evidence lower bound on the complete-data log marginal likeli-

hood. We demonstrate the performance on several artificial data sets with missing values. The experimental

results indicate that the proposed method outperforms some classic imputation methods. We finally present an

application to seabed hydrothermal sulfide color images analysis problem.
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1 Introduction

The aim of unsupervised learning is to find hidden structure in unlabeled data [1,2]. Finite mixture mod-

els (FMMs) are a flexible and powerful probabilistic modeling tool for clustering data in various domains,

such as image analysis, computer vision, and signal processing [3]. An important issue in FMMs is to

determine the appropriate number of components. In general, methods for selecting the optimal number

can be classified into deterministic and Bayesian types [4]. However, an excess of components creates

an over-fitting problem, while a mixture with very few components might not be flexible enough to ap-

proximate the true underlying model [5]. Dirichlet process mixture models (DPMMs) provide a powerful

nonparametric Bayesian model. They sidestep setting the correct number of mixture components, and

allow the number to increase as new data arrive [6]. Recent development of approximation schemes, such

as Markov chain Monte Carlo (MCMC) and variational inference (VI), has enabled the widespread use

of DPMMs for clustering, model selection and density estimation [7–9].

However, in real-world scenarios, there are many cases in which the data being collected are incomplete,

because some values in special dimensions are unavailable. For example, data values are not recorded
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or observed at different stages in medical studies. In surveys and social network recommendation sys-

tems, some participants refuse to respond to particular questions [10]. In DNA analysis, gene-expression

microarrays might be incomplete because of insufficient resolution, image corruption, or simply dust or

scratches on the slide [11]. In sensing applications, a subset of sensors might be absent or fail to operate

at certain regions [12]. MCMC sampling or variational methods cannot work directly on DPMMs, if the

data collected are incomplete with values missing.

Previous studies on solving machine learning algorithms with incomplete data can be categorized into

three groups. The first is listwise deletion, which simply discards samples with missing values. It is the

simplest approach but only useful when the amount of missing data is small [13]. The second method is

imputation, which substitutes missing values with statistically plausible values. Some classic imputation

methods include mean imputation (MI), K nearest neighbor (KNN), expectation maximization (EM) and

multiple imputation [14]. However, in clustering problem, these methods take little consideration of the

relation and uncertainty between samples. A poor imputation strategy can render clustering algorithms

ineffective. The last method addresses missing values during the model-learning procedures without a

previous estimation. For example, Chechik and Heitz represent an improved support vector machine

(SVM) by re-scaling the margin according to the observed features for each instance [15], and Sanja

and Danijel propose an approach that combines reconstructive and discriminative subspace methods for

robust classification and regression by subsampling [16]. Both these examples illustrate that handling

missing data within the algorithm are more effective than simple imputation methods. The performance

of different methods has a bearing on different missing mechanisms [14]. Types of missing data can be

classified into three categories: missing completely at random (MCAR), missing at random (MAR), and

not missing at random (NMAR). Most researchers assume the data missing mechanism satisfies MAR or

MCAR, which is a more realistic and practical model.

In this study, first FMMs are extended to the infinite model using a stick-breaking construction. Next,

we use the deterministic VI algorithm to solve DPMMs with missing data. This can yield a robust and

stable estimate with fast convergence. We partition each data point into its observed and missing parts,

and view the missing parts as latent variables. The posterior parameters are estimated using the varia-

tional Bayesian EM (VBEM) algorithm, which optimizes the evidence lower bound (ELBO) iteratively

through a fully-factorized variational distribution. Therefore, the new proposed unsupervised learning

method can automatically determine the number of mixture components or clusters. Furthermore, the

VI framework can effectively solve the missing data problem without advance imputation. It can also

avoid over-fitting by compromising between generalization ability and model complexity [17].

The remainder of this paper is organized as follows. In Section 2, we introduce DPMMs and the VI

algorithm. In Section 3, we present the VBEM algorithm for solving DPMMs with missing data. Section

4 presents the results of experimental comparisons. Futhermore, we apply the proposed approach to

classify seabed hydrothermal sulfide color images. Conclusions are drawn in Section 5.

2 Learning DPMMs

Let X = (x1, ...,xn) be independent D-dimensional observations arising from a mixture of distributions

F (θk), where θk is the model parameter independently drawn from some distribution G. In the FMMs,

there are a total of K clusters, and π = (π1, ..., πK) is the mixing proportion. Figure 1(a) gives the

directed graphical representation of FMMs. However, before using this model, we have to set the cluster

number K in advance.

2.1 DPMMs

Recent development of the Dirichlet process (DP) as a nonparametric prior distribution on the components

of a mixture model enables automatic identification of the cluster numbers. DPMMs can be derived as

the limit of a sequence of FMMs, where the number of mixture components is taken to infinity [18]. In

DPMMs, the mixture proportion can be represented by a stick-breaking construction [19]. The graphical
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Figure 1 Directed graphical representations of (a) finite mixture models and (b) Dirichlet process mixture models.

representation for construction of this model is shown in Figure 1(b). The conditional distributions of

the DPMMs are listed as follows:

vk|α ∼ Beta(1, α),

zi|π(v) ∼ Mult (π(v)) ,

θk|λ ∼ G0(λ),

xi|zi, {θk}∞k=1 ∼ F (θzi).

We use zi as an indicator variable to specify the cluster associated with xi and the mixture weight as

Dirichlet prior distribution π, which is given by successively breaking a unit length stick into an infinite

number of pieces. The size of each successive piece vi is given by an independent draw from a Beta(1, α)

distribution. The mixing proportion πk then satisfies the following expression:

πk(v) = vk

k−1
∏

i=1

(1− vi) ∈ [0, 1],

∞
∑

k=1

πk(v) = 1. (1)

2.2 VI for DPMMs

VI provides an alternative, and deterministic method for approximating the intractable posteriors in

DPMMs [20]. It provides a lower bound on the log marginal likelihood using a fully factorized variational

distribution q. Given a model with observed variable x, latent variable z, model parameters v, θ and

hyperparameters φ = {α, λ}, the optimal q maximizes the ELBO L as follows

log p(x|φ) > L(q) = Eq [log p(x,v, z, θ|φ)− log q(v, z, θ)] . (2)

To handle the infinite set of components available under the DP prior tractably, Blei proposed a

truncated stick-breaking representations [7] by fixing a value K and letting q(vK = 1) = 1, which implies

q(zn = k) = 0 for k > K. Therefore, inference for the variational parameters can focus on a finite set of

K components. When a fully-factorized distribution with individual factors is considered, the variational

distributions q(v, θ, z) can be written as follows:

q(v, θ, z) =
K−1
∏

k=1

qγk
(vk)

K
∏

k=1

qτk(θk)
N
∏

n=1

qωn
(zn). (3)

The free variational parameters are ν = {γ1, ..., γK−1, τ1, ..., τK , ω1, ..., ωN}. For DPMMs of exponential

family distributions, Blei gives an explicit coordinate ascent algorithm [7], which can optimize the bound

in Eq. (2) with respect to the variational parameters. The algorithms can be described in terms of

two updates, a variational Bayesian expectation (VBE) step for local parameters (assignments of data

to components zn) and a variational Bayesian maximization (VBM) step for global parameters (stick-

breaking proportions vk and data-generating parameters θk) [21]. However, when the data used for

clustering are not complete, the VI cannot work on DPMMs directly. In our study, we propose an

effective method for solving the missing data problem.

3 Learning DPMMs with missing data

In standard DPMMs, it is assumed that all components of the feature vectors are available without

missing data. However, in real-world scenarios, there are many cases in which the data being collected
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are incomplete, where some values in special dimensions are unavailable. In general, we can delete

incomplete samples or impute the missing values before using the model for clustering. In contrast to

supervised learning, the listwise deletion method cannot be used directly on the clustering problem,

because samples with missing values do not participate in the clustering process, and no label will be

assigned to them. Imputation methods take little consideration of the relation and uncertainty between

samples. For example, MI method might classify all the missing samples to the same cluster.

To resolve these issues, we propose a novel learning procedure that can handle missing data within

the algorithm. In this study, we restrict the observable data drawn form Gaussian distributions with a

possibly infinite number of components. We partition each feature vector xi into its observed and missing

parts. Efficient inference is implemented using the VBEM to solve missing data clustering problem, where

we assume the data are missing under the MAR or MCAR assumption.

3.1 Notation and category of missing data

Referring to the standard representation for missing data given by Little and Rubin [14], we introduce

a response indicator variable ri for each sample xi. If xij is observed rij = 1; otherwise rij = 0 means

xij is missing. Let xi be partitioned into two components xi = [xoi
i ;xmi

i ], where xoi
i (Doi × 1) and

xmi

i (Dmi × 1) are the observed and missing components of xi, respectively. We use zi = k to indicate xi

is generated by the kth component in a Gaussian mixture model, we can write the equation as follows:

p(xoi
i ,x

mi

i ) = (2π)−D/2|Σk|
−1/2 exp







−
1

2

[

xoi
i − µoi

k

xmi

i − µmi

k

]T [

Σoioi
k Σoimi

k

Σmioi
k Σmimi

k

]−1 [

xoi
i − µoi

k

xmi

i − µmi

k

]







.

Notation of the form Σoimi

k denotes a sub-matrix of Σ obtained by selecting the rows corresponding to

the observed dimensions and the columns corresponding to the missing dimensions of xi, respectively. For

convenience of calculations, we introduce two types of binary indicator matrices, [Oi]Do

i
×D and [Mi]Dm

i
×D,

satisfying xoi
i = Oixi and xmi

i = Mixi. The matrices Oi and Mi are D
oi
i × D and Dmi

i × D matrices

extracted from a D-dimensional identity matrix ID. We provide two propositions for convenience of

calculation during the VBEM procedure.

Lemma 1. Assume that xi is partitioned into two components xi = [xoi
i ;xmi

i ], given indicator matrices

Oi and Mi, we have

xi =

{

xoi
i , Doi

i = D,

OT
i x

oi
i +MT

i xmi

i , 1 6 Doi
i < D,

and OT
i Oi +MT

i Mi = ID.

Proof. The proof is straightforward and hence is omitted.

Lemma 2. Assume that xi ∼
∑K

k=1 πkN (xi|µk,Σk), where the observed and missing components are

xoi
i and xmi

i . The marginal distribution of observed variable xoi
i ∼

∑K
k=1 wkN (xoi

i |µoi
k ,Σ

oioi
k ), where

N (xoi
i |µoi

k ,Σ
oioi
k ) = (2π)−D

oi

i
/2|Σoioi

k |−1/2 exp

(

−
1

2
∆oi

k

)

,

µoi
k = Oiµk, Σ

oioi
k = OiΣkO

T
i , ∆

oi
k = (xi − µk)

TW oioi
k (xi − µk), W

oioi
k = OT

i (OiΣkO
T
i )

−1Oi.

Given xoi
i , the conditional distribution for xmi

i |xoi
i ∼

∑K
k=1 w̃kN (xmi

i |µ
mi|oi
k ,Σ

mi|oi
k ), where

N (xmi

i |µ
mi|oi
k ,Σ

mi|oi
k ) = (2π)−D

mi

i
/2|Σ

mi|oi
k |−1/2 exp

(

−
1

2
∆

mi|oi
k

)

,

w̃k = wkN (xoi
i |µoi

k ,Σ
oioi
k )

/ K
∑

l=1

wlN (xoi
i |µoi

l ,Σ
oioi
l ),

µ
mi|oi
k =Mi(µk +ΣkW

oioi
k (xi − µk)), Eik =Mi(ID −ΣkW

oioi
k ), Σ

mi|oi
k = ΣkM

T
i ,



Zhang X N, et al. Sci China Inf Sci January 2016 Vol. 59 012201:5

∆
mi|oi
k = (xi − µk)

TW
mi|oi
k (xi − µk), W

mi|oi
k = ET

ik(EikΣkM
T
i )−1Eik.

Proof. The derivation is similar to those of the conditional and marginal Gaussian distributions. The

details are provided in [22, 23].

We use ξ to denote parameters characterizing the distribution of the missing indicator matrix R. There

are three different missing mechanisms. If missingness does not depend on the values of the data X , i.e.,

if f(R|X, ξ) = f(R|ξ), then the data are MCAR. MAR is a less restrictive assumption than MCAR to

the effect that missingness depends only on the observed part of X , satisfying f(R|X, ξ) = f(R|Xo, ξ). If

the distribution of R is non-random and depends on the missing values in the matrix X , the missing-data

mechanism is NMAR, in which case one must explicitly specify a model for the missingness variable R.

However, this is difficult to achieve in most cases, and we would rather assume MCAR or MAR. It has

been demonstrated that although these two assumptions might be invalid, they do not lead to substantial

bias in the inference result [24]. The joint distribution of observed features and the missingness variable

can be obtained by integrating out the missing features xm,

p(xo, r|θ, ξ) =

∫

p(x|θ)p(r|x, ξ)dxm. (4)

Under the MCAR or MAR assumption p(r|x, ξ) = p(r|xo, ξ), and the joint distribution reduces to

p(xo, r|θ, ξ) = p(r|xo, ξ)

∫

p(x|θ)dxm = p(r|xo, ξ)p(xo|θ)). (5)

The posterior distribution of parameters is as follows:

p(θ, ξ|xo, r) ∝ p(r|xo, ξ)p(ξ)p(xo|θ)p(θ). (6)

3.2 VBEM for DPMMs with missing data

When the dataset is incomplete with missing values for some features, the missingness variable Xm =

{xmi

i }Ni=1 is added as a new parameter in the variational distribution [12]. We use the same truncated

stick-breaking representations by fixing a value K and letting q(vK = 1) = 1, which implies q(zn = k) = 0

for k > K. Therefore, based on the factorized approximation, the variational family can factorize to be

independent variables as follows:

q(v, θ, z, Xm) =

K−1
∏

k=1

qγk
(vk)

K
∏

k=1

qτk(θk)

N
∏

i=1

qφi
(zi,x

mi

i ), (7)

where θk = {µk,Σk}. We let variable Ψ = {v , θ} and Φ = {Z ,Xm}, and use Jensens inequality on the

log probability of the observed data based on the factorized approximation,

log p(xoi
i ) = log

∫

p(xoi
i ,Φ,Ψ)dΦdΨ = log

∫

q(φ, θ)
p(x oi

i ,Φ,Ψ)

q(Φ,Ψ)
dΦdΨ

>

∫

q(Φ,Θ) log
p(x oi

i ,Φ,Ψ)

q(Φ,Ψ)
dΦdΨ ≈

∫

q(Φ)q(Ψ) log
p(x oi

i ,Φ,Ψ)

q(Φ,Ψ)
dΦdΨ . (8)

The optimal q maximizes the evidence lower bound objective L on the observed data,

log p(Xo|φ) > L(q) = Eq [log p(Φ,Ψ ,X
o)− log q(Φ,Ψ)] . (9)

Next, we provide the VBEM algorithm to maximize the ELBO with respect to the variational distri-

butions q(Φ) and q(Ψ) with missing data. The resulting VBE and VBM steps are:

VBE : q(Φ) ∝ exp

{
∫

log p(x oi

i ,Φ|Ψ)q(Ψ)dΨ

}

, (10)

VBM : q(Ψ) ∝ p(Ψ) exp

{
∫

log p(x oi

i ,Φ|Ψ)q(Φ)dΦ

}

. (11)

As for vk, it is sampled from Beta(γk1, γk2). We choose an independent Gaussian-Wishart prior distri-

bution to govern the mean and precision of each Gaussian component, given by the following equation:



Zhang X N, et al. Sci China Inf Sci January 2016 Vol. 59 012201:6

p(µk,Λ) =
∏K

k=1 N
(

µk|m0, (β0Λk)
−1
)

W(Λk|Sk, κ0).

Proposition 1. In each iteration of the VBE step, we update the quantity for q(xmi

i , zi = k) as follows:

q(xmi

i , zi = k) = δ̃ikN (xmi

i |m
mi|oi
k ,S

mi|oi
k ), (12)

where we defined

δ̃ik =
AkN (xoi

i |moi
k , κ

−1
k (S−1

k )oioi)N (xmi

i |m
mi|oi
k ,S

mi|oi
k )

∑K
l=1AlN (xoi

i |moi
l , κ

−1
l (S−1

l )oioi)
, (13)

Ak = exp

{

Eq[logwk] +
D

2
log 2−

1

2
log κk +

1

2

D
∑

d=1

ψ

(

κk + 1− d

2

)

− tr(βkID)

}

, (14)

Eq[logwk(v)] = ψ(γk,1)− ψ(γk,1 + γk,2) +

k−1
∑

j=1

(ψ(γj,2)− ψ(γj,1 + γj,2)) , (15)

m
mi|oi
k = mmi

k + (S−1
k )mioi((S−1

k )oioi)−1(xoi
i −moi

k ), (16)

S
mi|oi
k = −κ−1

k

(

(S−1
k )mioi((S−1

k )oioi)−1((S−1
k )mioi)T

)

+ κ−1
k (S−1

k )mimi . (17)

Proof. With the truncation q(zi > K) = 0, the inference can be made tractable for infinite components.

The posterior p(zi|xi, θ,v) over assignments for each item i is approximated by a discrete multinomial

distribution over K components. First, we provide an independent variational qγk
(vk) to each fraction

vk with the updating equation as follows:

qγk
(vk) = Beta(γk,1, γk,2), γk,1 = 1 +Nk, γk,2 = α+

K
∑

l=k+1

Nl. (18)

Given γk,1, γk,2 for all components, the expected log mixture weights are

Eq[log vk] = ψ(γk,1)− ψ(γk,1 + γk,2), Eq[log(1− vk)] = ψ(γk,2)− ψ(γk,1 + γk,2), (19)

Eq[logwk(v)] = Eq[log vk] +

k−1
∑

l=1

Eq[log(1 − vl)], (20)

where ψ(·) is the digamma function defined as ψ(z) = d
dz log Γ(z). The VBE step is then written as

follows:

q(xmi

i , zi = k) ∝ exp {Eq [log p(x
oi
i ,x

mi

i , zi = k|Ψ)]}

= exp

{

Eq[log vk] +

k−1
∑

j=1

Eq[log(1− vj)] +
1

2
Eq[log |Λk|]−

D

2
log 2π

−
1

2
tr
(

Eq[ΛkEq[(xi − µk)
T(xi − µk)]]

)

}

, (21)

where

Eq[logΛk] =

D
∑

d=1

ψ

(

κk + 1− d

2

)

+D log 2 + log |Sk|, (22)

Eq[(xi − µk)
TΛk(xi − µk)] = tr(βkID) + (xi −mk)

TκkSk(xi −mk). (23)

We define Ak as equation (14), and upon normalizing, the updated quantity is

q(xmi

i , zi = k) =
AkN (xi|mk, κ

−1
k S−1

k )
∑K

l=1AlN (xoi
i |moi

l , κ
−1
l (S−1

l )oioi)

=
AkN (xoi

i |moi
k , κ

−1
k (S−1

k )oioi)N (xmi

i |m
mi|oi
k ,S

mi|oi
k )

∑K
l=1 AlN (xoi

i |moi
l , κ

−1
l (S−1

l )oi,oi)

= δ̃ikN (xmi

i |m
mi|oi
k ,S

mi|oi
k ). (24)
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Referring to Lemma 2, we can give the expressions for m
mi|oi
k and S

mi|oi
k as shown in Eqs. (16) and

(17). We can enhance computational efficiency by introducing binary indicator matrices Oi and Mi for

each sample xi. The computations for (S−1
k )oioi , (S−1

k )mioi and (S−1
k )mimi are given as follows:

(S−1
k )oioi = OiS

−1
k OT

i , (S
−1
k )mioi =MiS

−1
k OT

i and (S−1
k )mimi =MiS

−1
k MT

i . (25)

For each incomplete sample, we can let m
mi|oi
k replace the missing values. Therefore, the estimated

parameters x̃k
i , x̄

k and S̃i
k are:

x̃k
i = mk + S−1

k (W−1
k )oioi(xi −mk), (26)

x̄k =
(β0

k)
−1m0 +

∑N
i=1 δ̃

i
kx̃

k
i

(β0
k)

−1 +
∑N

i=1 δ̃
i
k

, (27)

S̃i
k = κ−1

k

(

(xk
i −mk)(x

k
i −mk)

T + (ID − S−1
k (W−1

k )oioi)S−1
k

)

, (28)

(W−1
k )oioi = OT

i (OiS
−1
k OT

i )
−1Oi. (29)

With auxiliary matric Oi previously defined, it is not necessary to consider the missing values of xk
i in

these equations.

Proposition 2. At each iteration of the VBM step, the posterior parameters are updated as follows,

based on the parameters estimated in the VBE step.

γ̂k,1 = 1 +

N
∑

i=1

δ̃ik, γ̂k,2 = α+

N
∑

i=1

K
∑

j=k+1

δ̃ij , (30)

m̂k =
(β0

k)
−1m0 +

∑N
i=1 δ̃

i
kx̃

k
i

(β0
k)

−1 +
∑N

i=1 δ̃
i
k

, (31)

β̂−1
k = (β0

k)
−1 +

N
∑

i=1

δ̃ik, (32)

Ŝ−1
k = (S0

k)
−1 +

N
∑

i=1

δ̃ikS̃
i
k + (β0

k)
−1m0(m0)

T +

N
∑

i=1

δ̃ikx̃
k
i (x̃

k
i )

T −

(

(β0
k)

−1 +

N
∑

i=1

δ̃ik

)

x̄k
i (x̄

k
i )

T, (33)

κ̂k = κ0k +
N
∑

i=1

δ̃ik. (34)

Proof. With the estimated parameters x̃k
i , x̄

k, and S̃i
k in the VBE step, for each sample xi, the expres-

sion for equation Eq. (11) is given as follows:

q(Ψ) ∝ p(Ψ) exp (EΦ [log p(x
oi

i , x
mi

i , zi = k |Ψ)])

= p(Ψ)

K
∏

k=1



vk

k−1
∏

j=1

(1− vj)





δ̃i
k

|Λk|
δ̃i
k
/2 exp

{

−
1

2
tr(Λk δ̃

i
kS̃

i
k)

}

× exp

{

−
1

2
δ̃ik(x̃

k
i − µk)

TΣ−1
k (x̃k

i − µk)

}

. (35)

When considering the entire data set, the variational distribution is as

q(Ψ) ∝ p(Ψ)

N
∏

i=1

exp (EΦ [log p(x
oi

i , x
mi

i , zi = k |Ψ)]) . (36)
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The constants can be neglected when calculating the updated posterior parameters. After calculating the

derivative of the variational function for each parameter, we can obtain the updated parameters shown

as Eqs. (30)–(34).

Thus, the optimization of the variational posterior distributions involves repeated iterations of two

stages, the VBE and VBM steps. In the variational equivalent of the expectation step, we use the current

distributions over the model parameters to evaluate the expectation E(zik), and then in the subsequent

variational equivalent of the maximization step, we use the responsibilities estimated in the VBE step

to re-compute the posterior parameters. Next, we show the complexity analysis of the VBEM inference

method. It has a complexity of O(l(DK +KND3+K2N)), where l denotes the number of iterations, N

is the number of samples, and D is the dimensionality. For each VBE step, the complexity is O(l(K2 +

DK +KND3)), where K2 is obtained from the computation of Eq[logwk], DK is from the parameter

Ak and KND3 accounts for the aided parameters (S−1
k )oioi , (S−1

k )mioi and (S−1
k )mimi . For each VBM

step, the complexity is O(l(K2N + KND2)), where K2N is for the update parameter γ̂k,2 and K2N

for the posterior estimation of Ŝ−1
k . Typically, the algorithm is very efficient when the dimensionality D

and the sample numbers N are not excessively large. Practical applications of variational methods must

address initialization of the variational distribution, because poor choices will cause it to fall into local

maxima. We use the method shown in Blei and Jordan [7] by incrementally updating the parameters

according to a random permutation of the data points. Furthermore, missing data can be imputed by

using expectation conditional maximization (ECM) algorithm [25] before parameters initialization.

4 Experiments

Artificial datasets were used in experiments to illustrate the performance of the proposed method in

solving unsurprised learning of DPMMs with missing data. All these data are complete without missing

values. We generate the missing values randomly under the MCAR mechanism. The missing rate is

defined asMr = Nm/N × 100%, where Nm is the number of missing samples. For purpose of comparison,

we use listwise deletion-nearest neighbour (LDNN) and some imputation methods such as MI, KNN,

and model-based EM methods. All these methods fill in the missing values before using DPMMs for

clustering. First, we give a brief description of these imputation methods.

(a) LDNN: Feature vectors with missing values are simply discarded. However, this can not work

directly on the clustering case. The purpose of clustering is to classify each unlabeled sample into a

category. If we delete the samples with missing values, then only the complete data Xo are used to

construct the model and no category will be assigned to the samples with missing data. To avoid this

situation, we first provide the clustering results on complete data set Xo, and for each incomplete sample,

we find its nearest neighbor in Xo using the observed dimensions and assign its label to this incomplete

sample.

(b) MI: For each dimension d ∈ {1, ..., D}, we use the observed data in d to calculate the mean value

Md. All the missing data in the d-dimension are replaced by Md.

(c) KNN: For each sample xi, we calculate the Euclidean distance between sample xi and the remaining

samples on the same observed dimensions. We then find the K nearest neighbors whose values exist for

feature d ∈ Dmi and use the mean value to fill in the missing value for xid.

(d) EM: We assume the data follow a multi-Gaussian distribution. EM capitalizes on the interdepen-

dence of missing data Xm and parameters Θ. They contain mutually relevant information to each other.

The algorithm converges by iterating the expectation and maximization steps.

We propose two types of evaluation indices, clustering accuracy Ia and mean absolute error (MAE)

Im, to evaluate the performance of these methods. Given a data set X = {xi}Ni=1, we assume the true

cluster number is KT, and the mean value for each cluster is mi. The definitions of Ia and Im are as

follows:

Ia =

∑KT

i=1Ni

N
and Im =

1

KT

KT
∑

i=1

√

||m̃i −mi||, (37)
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Table 1 Clustering accuracy (%) and average time (s) for Gaussian dataset with different missing rates

Methods 10% 20% 30% 40% 50% 60% 70% time

LDNN-VI 96.31 94.27 92.13 90.56 87.49 85.38 81.46 12.52

MI-VI 94.25 84.64 77.48 71.33 65.67 58.78 33.27 1.82

KNN-VI 95.32 92.18 89.72 82.52 78.56 76.67 71.36 14.38

EM-VI 95.24 85.21 82.44 74.35 69.37 61.45 57.68 2.78

VBEM-VI 96.28 94.17 92.62 92.39 88.87 86.72 84.56 200.42

Table 2 The MAE for Gaussian dataset with different missing rates

Methods 10% 20% 30% 40% 50% 60% 70%

LDNN-VI 0.2038 0.2045 0.2178 0.2364 0.2912 0.3578 0.4872

MI-VI 0.1940 0.2672 0.3048 0.3312 0.3693 0.6881 0.9135

KNN-VI 0.2412 0.2746 0.2945 0.3122 0.3687 0.5236 0.6423

EM-VI 0.2056 0.2523 0.2956 0.3317 0.4238 0.5645 0.6928

VB-EM 0.2012 0.2245 0.2393 0.2782 0.3705 0.3948 0.4013

where Ni is the accurate clustering number and m̃i is the estimated mean in cluster i.

4.1 Artificial datasets

We first demonstrate the proposed approach on three synthetic datasets. In the first example, we use

900 samples from a three-component bivariate mixture with proportions w1 = w2 = w3 = 1/3, mean

vectors at [0,−2]T, [0, 0]T, [0, 2]T, and equal covariance matrices diag{2, 0.2} [26]. We generate missing

values randomly on the original data set with different rates from 10% to 70%. For each missing rate,

we repeat the experiment for 100 times. The average Ia and run time for these different methods are

shown in Table 1, and Im is shown in Table 2. For KNN imputation, we set the number of neighbors as

five. Figure 2(a), in which a black “∗” added to the original signs “·” represents the missing samples,

shows an example with missing rate reaches 30%, and Figure 2(b)–(f) shows the clustering results with

different methods based on VI.

From the experimental results, we see that when the missing rate is less than 30%, all the methods

perform well. This is because sufficient information is retained for each cluster using the observed data.

When the missing rate increases to more than 30%, the MI, KNN, and EM imputation methods do not

perform well. The clustering accuracy of MI-VI drops sharply from 77.48% to 33.27%. With a decrease

in the complete samples, the difference between missing samples is insignificant, with most samples

clustering in the same category. From Table 2, we see that the MAE increased when the proportion

of missing samples increased. Furthermore, the predicted cluster components could not reach the true

component numbers using the MI or EM method; hence, the absolute mean error could become large.

Although the proposed method consumes more run time, it can achieve the highest clustering accuracy.

The second dataset includes 1000 samples from a six-component Gaussian-Wishart distribution. The

precision Σ−1 and mean µ is sampled from

W(Σ−1|w0, κ0) and N (µ|m0, (β0Σ)−1)

for each class, respectively, where w0, κ0, m0 and β0 are the true values of the generating parameters

set first. The plot of the synthetic data is shown in Figure 3(a), and Figure 3(b) shows the clustering

result and the changing curve of the component numbers with the number of iteration using VI methods.

We generated missing values on the first or second dimension of the original data set with different rates

from 10% to 70%. For KNN imputation, we set the number of neighbors as one, reducing it to the

nearest neighbor method. Figure 4(a) shows a 50% missing rate example, in which a black “∗” adding

to the original signs “·”. Figure 4(b)–(f) shows the clustering results with different methods based on

VI method. We repeated the experiment 100 times and recorded the average clustering accuracy and

run time for each method in Table 3, which illustrates the effectiveness of the methods proposed here, in

particular, when the missing rate is high.
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Figure 2 Different methods for clustering synthetic two-dimensional data set with missing rate Mr = 30%. (a) Incomplete

data set where black “∗” represents missing data and “·” represents the complete samples; (b) LDNN-VI method; (c) MI-VI

method; (d) KNN-VI method; (e) EM-VI method; and (f) VBEM method.
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Figure 3 Fitting a six-component Gaussian-Wishart mixture (a) VI clustering result with K = 6, and (b) changing curve

of the component numbers with the iteration times.

Table 3 Clustering accuracy (%) and average time (s) for Gaussian-Wishart dataset with different missing rates

Methods 10% 20% 30% 40% 50% 60% 70% time

LDNN-VI 98.61 95.87 93.12 92.37 89.52 87.25 84.91 13.25

MI-VI 87.89 82.34 75.25 62.06 57.67 51.75 44.35 2.98

KNN-VI 98.32 96.17 93.45 91.23 89.68 84.62 80.05 15.31

EM-VI 91.43 86.82 82.54 74.63 54.22 50.61 41.70 2.41

VB-VI 98.25 96.93 95.23 93.85 93.11 92.67 91.32 315.26

The third dataset includes 1000 three-dimensional shrinking spiral datasets [5]. The data are generated

according to








xi1
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xi3









=









(13− 0.5ti)costi

(10.5ti − 13)sinti
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+









ni
1

ni
2

ni
3









,

where ti is uniformly distributed in [0, 4π], and ni
1, n

i
2, and n

i
3 are independent and identically distributed

with N (0, 1). When the data are complete, Figure 5(a) shows the clustering results using VI method.
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Figure 4 Different methods for (a) synthetic two-dimensional six components data set with missing rate Mr = 50% in

which black “∗” represents missing data and “·” represents the complete samples; (b) LDNN-VI method; (c) MI-VI method;

(d) KNN-VI method; (e) EM-VI method; and (f) VBEM method.

−15
−10−5 0 5 10 15

−15
−10

−5
05

10
15
0
2
4
6
8

10
12
14

x1x2

x
3

(a)

−15
−10−5 0 5 10 15

−20
−10

0
10

20
0

5

10

15

x1x2

x
3

(b)

−15
−10

−5 0 5 10 15

−20
−10

0
10

20
0

5

10

15

x1
x2

x
3

(c)

−15
−10

−5 0 5 10 15

−20
−10

0
10

20
0

5

10

15

x1
x2

x
3

(d)

−15
−10−5 0 5 10 15

−20
−10

0
10

20
0

5

10

15

x1
x2

x
3

(e)

−15
−10

−5 0 5 10 15

−20
−10

0
10

20
0

5

10

15

x1
x2

x
3

(f)

Figure 5 Different methods for fitting a complete three-dimensional shrinking spiral data set and incomplete data set

with missing data Mr = 30%. (a) VI method on the complete data set; (b) LDNN-VI method; (c) MI-VI method; (d)

KNN-VI method; (e) EM-VI method; and (f) VBEM method.

For missing rates as high as 50%, the clustering results are shown in Figure 5(b)–(f) by different methods.

From the experimental result we see that our proposed method for treating shrinking spirals with missing

data is more effective.

4.2 Image analysis

Gaussian mixture models are widely used to in computer vision to model natural images to accomplish

the tasks of automatic clustering, image retrieval, and classification [27]. The number of mixture com-

ponents must be set first, but the appropriate number is generally unknown. In this section, our aim

is to demonstrate the applicability and robustness of our method for clustering hydrothermal mineral
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Figure 6 Seafloor hydrothermal sulfide images with random noisy data.
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Figure 7 The expected number of images allocated to each component.

Figure 8 Three sample clusters from a DP mixture analysis of 3200 images from seafloor hydrothermal sulfide video

screenshots. These clusters capture patterns in the data, such as black smoker chimney, hydrothermal sulfide deposit and

bathyplankton, using the VBEM method.

images in the Trans-Atlantic geotraverse (TAG) area, which is situated in Mid-Atlantic Ridge at latitude

26.08◦ N. It is one of the largest sea-floor massive sulfide deposits in the sediment-free mid-ocean ridge [28].

We analyzed a collection of 6400 images obtained from video clips and set the sampling interval ts = 0.5

s. Because of the complex seafloor environment, combined with low contrast, uneven lighting, and blurred

texture details, some images are obscure with noisy data. To highlight the applicability and effectiveness

of our method for dealing with missing data, we add noisy (missing) data randomly for half the images

on different pixels with missing rate Mr = 30%. Figure 6 shows the case with noisy data added to the

original images. Each image was reduced to a real-valued vector using average red, green, and blue values.

During the process of parameter estimation, we use diagonal matrix σ2I instead of covariance matrix Σ

and the truncation level is set to K = 50 for the variational distribution. The algorithm requires nearly

20 min for each iteration.

Figure 7 shows the expected number of images allocated to each component under variational ap-

proximation to the posterior. We give an illustration in Figure 8, which shows seafloor images in the
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same cluster with homologous approximate posterior probabilities. There are three components, each

component including six pictures. These clusters appear to capture the characteristics of black smoker

chimney, hydrothermal sulfide deposit and bathyplankton, respectively.

5 Conclusion

In this study, we proposed a novel approach to unsupervised learning for clustering with missing data.

The infinite DPMMs are used to automatically determine the number of mixture components or clusters.

This sidesteps setting the correct number of mixture components in advance, and allows the number

to increase as new data arrive. As the cornerstone of nonparametric Bayesian method, DPMMs can

avoid over-fitting. Furthermore, we view the missing features as latent variables and apply the VBEM

algorithm to optimize the ELBO. The novelty in our approach is that the VI framework can solve the

missing data problem effectively without advance imputation. Instead, we update the missing values at

each iteration, considering the relation and uncertainty between samples. Experimental results indicated

that the performance of our proposed method is better than those of classic imputation methods. We also

applied it to classify seabed hydrothermal sulfide color images to capture different features in a hostile

deep sea environment.
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