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Abstract In the pattern recognition field, error-correcting output codes (ECOC) are a powerful tool to fuse

any number of binary classifiers to model multiclass problems, and the research of encoding based on data

is attracting more and more attention. In this paper, we are going to propose a new encoding method for

constructing subclass Error-Correcting Output Codes, which was first introduced by Escalera et al. To achieve

this goal, we first obtain the correlation between each pair of classes with the help of confusion matrix. Then,

we select the most easily separated subclasses for classification by following Fisher’s principle. At last, we were

able to obtain binary partitions based on subclasses. After finishing this work, a new data-driven coding matrix-

Subclass ECOC will be achieved. Experimental results on University of CaliforniaIrvine data sets and three

kinds of high resolution range profile data sets with logistic linear classifier and support vector machine as the

binary classifiers show that our approach can provide a better performance and the robustness of classification

with a little longer but acceptable code length.
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1 Introduction

The binary classification problem in pattern recognition has achieved many research results so far, and

there are lots of state-of-the-art dichotomizers, such as support vector machine (SVM), Back Propagation

(BP), and Adaboost, which have been in use for a long time. However, it is still an open issue about

how to keep or get closer to the classification performance when we extend dichotomizer into multiclass

classifier. For this problem, a popular approach is to reduce a multiclass problem into a set of binary

problems and fuse these dichotomizers’ results by voting rules. As a kind of multiclass classification

framework, error-correcting output codes (ECOC) can decompose a multiclass problem into a set of

binary problems effectively, then construct dichotomizer for each binary partition. In so doing, the state-

of-the-art binary classifiers can be used for multiclass classification [1]. The ECOC has been successfully

applied to a wide range of fields as reported in human face recognition [2,3], text recognition [4], and

traffic sign recognition [5,6].
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In the domain of multiclass classification based on ECOC, the construction of the data-driven error-

correcting output code is a special hotspot. The basic idea of these methods is to use the training data

to guide the training process and, thus, to construct the coding matrix. Focusing on the binary problems

that better fit the decision boundaries of a given data set, there are lots of researches that have been done

by many famous scholars in this area. For example, Alpaydin et al. [7] proposed the back propagation

algorithm by analyzing the data’s feature in 1999. Utschick et al. [8] constructed the data-driven coding

matrix by optimizing a maximal likelihood function with the rule of expectation maximization algorithm

in 2001. Pujol et al. [6] put forward a discriminant ECOC (DECOC) which is based on the embedding

of discriminant tree structures derived from the problem domain in 2006. The binary trees are built by

looking for the partition that maximizes the mutual information between the data and their respective

class labels. Escalera and Tax present a novel strategy to model multiclass classification problems using

subclass information in the ECOC framework (subclass ECOC) in 2008. In this framework, complex

problems are solved by splitting the original set of classes into subclasses and embedding the binary

problems in a data-dependent ECOC design [9]. Recently, a general extension of the ECOC framework

for the online learning scenario is shown by Escalera et al. [10], and this is the first time we are discussing

about the learning ability of online ECOC. Simeone et al. [11] presented a way of introducing a reject rule

to ECOC for constructing a classification system with rejection area. Nicolás et al. [12] made an empirical

study of the general assumptions in the field that have not been fully assessed for ECOC, and it is also

the first time we discuss some items that are more specific and some ones that are easily overlooked

such as the influence of the base learner on the performance, the independence of binary classifiers,

the relationship between binary classifier error and coding performance, and so on. Furthermore, there

are some more new improvements in data-dependent ECOC demonstrating the suitability of the ECOC

methodology to deal with multiclass classification problems [13]. As you can see in these references, all

of these improvements promote the development of ECOC greatly.

In this paper, we present a novel strategy to construct a data-driven ECOC based on confusion matrix,

which is entitled confusion matrix superclass ECOC (CMSECOC in short), and different from its original

version shown by Escalera et al. in [9]. A primal difference is that the subclasses in the latter are obtained

by splitting the original classes. However, in this paper, the subclasses are obtained by integrating the

original classes. To distinguish from the former, we call these subclasses as superclasses and rename the

subclass ECOC as superclass ECOC. In this way, the superclass which contains abundant information

about similarity and difference among classes can be obtained. Thus, the new method proposed in this

paper will be more effective and simpler. To achieve this goal, we use the confusion matrix as the basis of

the measurement for classes’ separability. Then, by abiding Fisher’s principle, the classes with maximal

margin will be separated into different superclass, and the ones with high similarity can be integrated

into one superclass. In the end, the superclass ECOC can be obtained by combining these superclasses

under some rules.

2 ECOC

2.1 Concepts

The motive for using ECOC to solve multiclass problem is that it can solve the problem by decomposing

a complex multiclass classification into a set of binary classification. Binary ECOC is an original decom-

posing framework, and there are two symbols in this coding matrix which stand for a positive class and

a negative class in each binary problem. By taking account of a special case, there are some classes that

may be unhelpful to train some binary classifiers. In such a case, these classes should be ignored, and the

corresponding codebits in matrix will be replaced by a zero symbol. Because of introducing zero symbols

into binary ECOC, the binary ECOC is renamed to ternary ECOC. In Figure 1, the four state-of-the-art

ECOCs are shown as (a) one-versus-all, (b) dense random [14], (c) one-versus-one, and (d) sparse ran-

dom [14]. Each row of the binary ECOC matrix acts as a code word or label for class Ci (i = 1, 2, 3, 4),

and each column presents one kind of binary partition of the sample. The code word ‘1’, ‘−1’, and ‘0’
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Figure 1 Four state-of-the-art ECOCs. Binary ECOC: (a) one-versus-all, and (b) dense random. Ternary ECOC: (c) one-

versus-one, and (d) spare random.

are shown in white, black, and gray. In the training phase, each column of the matrix partitions the

training data into two superclasses according to the value of the corresponding binary element, and a

binary classifier fi (i = 1, 2, . . . , 4, (5, 6)) is obtained as a result [14]. For example, in Figure 1(d), when

the base classifier f3 is trained, classes C2 and C4 are used as positive classes, C1 is used as negative

class, and the rest of the classes C3 in gray will be refused to take part in the training progress. Then,

we can get five resulting binary classifiers {f1, f2, f3, f4, f5} in turns. In testing phase, a given testing

sample will be classified by the four base classifiers mentioned before. The output is a code-word vector

(x1, x2, x3, x4, x5), where xj ∈ {−1, 1}. Finally, we use some decoding rules (fusion strategy) to make a

fusion of all binary classification results, and then get the final classification result.

2.2 CMSECOC analysis

As pointed in [9], the key point of SECOC is how to generate the subgroups of problems that are split

into simpler ones until the base classifier is able to learn the original problem. In this way, multiclass

problems that cannot be modeled using the original set of classes are modeled without the need of using

more complex classifiers. There are two guidelines that we need to take into consideration about the

construction of CMSECOC: first, each one in the set of superclass can be separated easily from the rest

of the ones (i.e., find the best superclass as shown in dashed box of Figure 2), then the result based on

classifiers trained according to the relationship of superclasses can be obtained from a better performance.

Second, the capability of error-correcting system among each of the classes in superclass as shown in each

solid box of Figure 2 should be better, which means the redundancy information for classes in every

superclass is the most reasonable.

Following the above-mentioned consideration, to construct CMSECOC, the class separability based on

the training samples should be calculated quantificationally for the first order. To finish it, the measure

of class separability is the key point. In the way of [9], mutual information is regarded as the concrete

measure, and the sequential forward floating search based on maximizing the mutual information was

used to generate the subclasses. Furthermore, the state-of-the-art measure methods of class separability

include: (1) the measure based on geometric distance in feature space, for example, deviation matrix

SW , SB, ST , and their modified form Tr⌈S−1
W SB⌉, |SB|/|SW | [15]; (2) the measure based on probability

distribution, for example, Bhattcharyya criterion JB, Chernoff criterion JC , and divergence criterion

JD [16]; and (3) the measure based on posterior probability, for example, the Shannon entropy JH and

the simpler one-general entropy [17]. It is clear that the method based on geometric distance is easily
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{class1,class2,class3,class4,class5,class6}

Samples

subclass1={class1,class3,class5} subclass3={class4}

subclass2={class2,class6}

subclass2 subclass3

subclass1

class1       class3      class5       class2       class6       class4

Figure 2 A superclass partition framework of six-class samples, and the elements in dashed boxes are the most easily

separated. On the contrary, the elements in solid box are separated with most difficulty because they belong to the same

superclass.

understood and less time-consuming, and it does not require abundant samples or the information of

prior probability distribution to measure the class separability. However, it cannot clarify the overlaps of

classes in each superclass. Although the method based on probability distribution or posterior probability

can easily clarify the overlaps, it still highly depends on samples and probability information, so we have

to select a measure method and the corresponding calculation strategy which is suitable for a given

problem.

Furthermore, it is obvious that the classification error of the base classifier as shown in solid box of

Figure 2 will be large, so it is necessary to enhance the error-correcting capability of these base classifiers.

It is worth noting that the error-correcting capability depends on the degree of redundancy; the better

the error-correcting ability, the larger the degree of redundancy, which requires longer coding length.

Then, how to set the degree of redundancy should be carefully considered. An effective way is to take

the separability among classes as a key to address the above-mentioned problem. Next, what we should

do is to find the way of measure for class separability, which is the one among superclasses and the one

among classes in each superclass. In the following sections, we will particularly discuss the issue, and

then apply the approach to constructing CMSECOC.

3 Construction of CMSECOC based on confusion matrix

From Subsection 2.2 we know that, it is a crucial step for the metric of class separability. As to this point,

confusion matrix was introduced to act as the measure. The correlation between each pair of classes is

gained with the help of confusion matrix. Then, abiding by Fisher’s principle, the superclasses containing

better separability can be obtained. At last, we were able to obtain binary partitions based on the set of

superclass. After finishing this works, a data-driven coding matrix will be ready.

3.1 Class separability measure based on confusion matrix

It is well known that a special recognition system has its own characteristics of errors, which are based

on its underlying understanding of how some classes could often be mistaken for others. This kind of

recognition characteristics are represented by a confusion matrix. From the viewpoint of knowledge, a

confusion matrix could be regarded as the prior knowledge of a recognizer (classifier). In this section, we

consider the class separability as the prior knowledge as mentioned before. Let us assume that there are

N classes with Ti samples for each one (i = 1, . . . , N) in pattern space D. Then, the confusion matrix of
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classifier C can be written as follows:
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, (1)

where cmij denotes the percent of samples of class i which are assigned to class j. The row index i stands

for the real class label of the sample, and the column index j stands for the predicted class label. The

diagonal elements signify the classification accuracy of each class for classifier C, while the non-diagonal

elements are the error rates of classification.

The classification accuracy of each class can be written as follows:

Ri = cmii, i = 1, . . . , N. (2)

The classification error rate of each class can be written as follows:

Wi =

n
∑

i=1

cmij = 1− cmii = 1−Ri. (3)

If one class is similar to another, it will be easily misjudged from the opposite side. According to the

research of [18], each row of confusion matrix Ci (i = 1, . . . , N) reflects the probability that the samples

of class i are classified into each class. So, we can define a similarity measurement matrix TM2, the

elements of which are the upper triangular ones of the L2 metric matrix of CM, and the others are

zeros [19]. Then, the definition can be written as follows:

tmij =

{

0, i > j,

(Ci − Cj)
2 =

∑N

k=1(cmik − cmjk)
2, i 6 j.

(4)

The matrix of TM2 reflects the similarity between each pair of classes. The smaller the value of tmij is,

the more similar each pair of classes is, and the more easily they will be misclassified.

3.2 Superclass partition based on Fisher criterion

From the analysis in Subsection 2.2, we know that there are two advantages of CMSECOC. One is the

better separability among superclasses, and the other is the higher capability of error correction in each

superclass.

To achieve the above-mentioned goal, we should find out the partitions. The classes with high correla-

tion should be assigned into the same superclass, and those with low correlation should be assigned into

different superclasses. According to Fisher criterion, the classification could achieve the best performance

when the samples have both the minimal inner-class distance and the maximal inter-class distance, so

the superclass partition generated by Fisher criterion meets the demand of the first metric of CMSECOC

naturally. What about the capability of error correction? For this problem, we consider the partition

for inner class of each superclass that will get the higher ability of correcting in Subsection 3.3. In this

section, we take the measure of class separability as key point and discuss the strategy of superclass par-

tition based on Fisher criterion. Then, the resulting set of superclass which constitutes the final coding

matrix can be obtained.

The steps of superclass partition are as follows:

Input: training sample R, pre-classifier C, the combining threshold α, the parting threshold β

Step 1. Classify the R by C and obtain the confusion matrix CM(C,R).
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Step 2. Calculate the dissimilarity matrix based on (4), and normalize it with the following equation:

´tmij = tmij/tmax, and tmax = max
i,j

(tmij). (5)

Step 3. Then, deal with the element in TM2 as follows:

Step 3.1. If ´tmij 6 α, it means that class i is very similar to pattern j. Then, combine the two classes

to a set. After doing that, a superclass, i.e., subclassk = {Ci, Cj}, comes into being.

Step 3.2. If ´tmij > β, it means that class i and class j have low correlations. Then, the two classes

should be separated to get two superclasses, that is, subclassk = {Ci} and subclassk+1 = {Cj}.
Step 3.3. If α 6 ´tmij 6 β, it means that the two classes’ correlation is not clear. Then, we should

reconsider the partition based on existent superclasses as follows:

Step 3.3.1. If there exist two superclasses, for example, subclassp and subclassq, and Ci ∈ subclassp,

Cj ∈ subclassq, then do not generate any new superclass.

Step 3.3.2. If only for class Ci or Cj , there exists a superclass which meets the conditions that Ci ∈
subclassp (or Cj ∈ subclassq), then generate a new superclass subclassk = {Cj} (or subclassk = {Ci}).

Step 3.3.3. If there does not exist any superclass to which class Ci and Cj belong to, then generate

new superclasses subclassk = {Ci} and subclassk+1 = {Cj}.
Step 3.4. For two arbitrary superclasses subclassp and subclassq, if subclassp ∩ subclassq 6= ∅, then

integrate the two superclasses into one.

Output: The set of superclasses J = {subclass1, subclass2, . . . , subclassk, . . . , subclasst}.
The superclass partition algorithm is shown as Algorithm 1.

Algorithm 1 Superclass partition algorithm

INPUT: combining threshold α, parting threshold β;

OUTPUT: superclass;

Require: superclass = ∅, count = 1, length = 0, Issuperclass = true;

for i = 1 to N do

for j = 1 to N do

if tmij < α then

superclass[count++] = {Ci, Cj};

else if tmij > β then

superclass[count++] = {Ci};

superclass[count++] = {Cj};

else

length = count − 1;

For Ci and Cj do as following respectively, take Ci for example;

for k = 1 to length do

if Ci = superclassk then

Issuperclass=false;

break;

end if

end for

if Issuperclass = true then

superclass[count++] = {Ci};

end if

end if

end for

end for

Note: Both i and j denote the class identifier.

3.3 Construction of CMSECOC

In Subsection 3.2, we have discussed the strategy of superclass partition, based on which we can get the

wanted superclasses with the help of Fisher criterion. In this section, we will analyze the construction of

CMSECOC based on the superclasses learnt before.

To construct binary partitions which compose the columns of the ECOCmatrix, there are two situations

we have to consider: the recognition among superclasses and the recognition among inner classes of each
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superclass. We note that the degree of separability for inter-superclass (i.e., the degree of dissimilarity

among superclasses) is large enough to distinguish one superclass from others, so the “one-versus-all”

strategy will be adopted for construction. In so doing, we choose one superclass as the positive class, and

the rest as negative class. Then, the binary partitions for superclasses’ recognition can be obtained to

form the columns of CMSECOC.

The “one-versus-one” strategy is used when classifying the inner classes of each superclass. In so doing,

two classes selected from a superclass are used to act as the positive class and negative one, respectively,

with the rest being ignored. There are two reasons for doing so. The first is that the classes which belong

to the same superclass have higher similarity, and the resulting classification problems will be difficult to

model, so we pay attention to the only two classes in superclasses each time with the encoding strategy

of “one-versus-one”. For another, to reduce the error of base classifiers, as we analyzed in Subsection 2.2,

the reasonable increasing for class redundancy can enhance the capability of error correction for the

recognition of inner-superclass. Next, we will discuss its usage in practice.

Take the example in Subsection 3.2 for explanation. As we know, the three superclasses are subclass1 =

{C1, C3}, subclass2 = {C2, C4}, and subclass3 = {C5}. Using the “one-versus-all” strategy to make the

partitions for inter-superclass, we can get the coding matrix as follows:

M1 =



















1 −1 −1

−1 1 −1

1 −1 −1

−1 1 −1

−1 −1 1



















. (6)

Next, we can get the coding matrix using “one-versus-one” strategy for inner-superclass follows:

M2 =



















1 0

0 1

−1 0

0 −1
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

















. (7)

At last, the CMSECOC can be achieved by combining the two matrixes as follows:

M =



















1 −1 −1 1 0

−1 1 −1 0 1

1 −1 −1 −1 0

−1 1 −1 0 −1

−1 −1 1 0 0



















. (8)

So far, an approach to constructing CMSECOC based on confusion matrix has come into being. Next,

we will validate the classification performance through experiments.

4 Experiments

4.1 Experimental data set

In this section, we will validate our proposed approaches using two kinds of data sets: UCI data set [20]

and high resolution range profile (HRRP) data set [21]. The characteristics of the UCI data sets are shown

in Table 1. Meanwhile, the principal component analysis (PCA) is used to reduce the dimensionality to

promote classification speed. On the other hand, the data set of HRRP used consists of three airplanes:

B-52, Farmer, and Fishbed. It was acquired with zoom models in a microwave anechoic chamber, and
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Table 1 Similarity measurement matrix of five-class samples

Problem Train Attributes Classes

(a) Yeast 1484 8 10

(b) Segmentation 2310 19 7

(c) Satimage 6435 36 6

(d) Glass 214 9 7

(e) Vehicle 846 18 4

(f) Zoo 101 18 7

(g) Wine 178 13 3

(h) Vowel 990 10 11

(i) Ecoli 336 8 8

(j) Iris 150 4 3
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Figure 3 (Color online) 1D radar HRRP data sets of three different kinds of planes under different angles. (a) B-52;

(b) Farmer; (c) Fishbed.

it was composed of data in the range of 0◦–155◦. There are 322 location data for B-52, 311 for Farmer

and 451 for Fishbed. Each data sample is described by 64 attributes, namely range cells. The 1D range

profiles with the imaging angles are given in Figure 3.

4.2 Experimental design

To evaluate the classification performance of CMSECOC based on confusion matrix, we compared the

results with the state-of-the-art ECOC in UCI data sets, and those coding matrices are: one-versus-all,

one-versus-one, dense random, sparse random, DECOC, and SECOC as mentioned before. The random

matrices were selected from a set of 20000 randomly generated matrices with p(−1) = p(+1) = 0.5 for the

dense random matrix and p(−1) = p(+1) = p(0) = 1/3 for the sparse random matrix. Meanwhile, four

state-of-the-art decoding strategies will be applied to each coding strategy for a convincing validation.

These state-of-the-art decoding strategies are Hamming decoding [1], Euclidean decoding [22], linear loss-
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weight decoding, and exponential loss-weight decoding [5]. The parameters of the decoding strategies

are the predefined or default values given by the authors. When we are comparing the effects of different

coding strategies, we consider two kinds of base classifiers, one is logistic linear classifier (LOGLC) and

the other is SVM with polynomial kernel k(x, xi) = [x, xi +1]q. The regularization parameter C and the

kernel parameter q are selected by K-fold cross-validation (K = 5) [23]. The range of values allowed for

q parameter is 1–6, but there is no limit to parameter C.

Furthermore, the CMSECOC was applied for target recognition based on three different planes’ HRRP.

In this experiment, we pick up three different angle ranges to evaluate the performance in practice (0◦–

100◦, 80◦–155◦, and 0◦–155◦). To simplify the experimental operation, the SVM was used for the base

classifier with the parameters the same as aforementioned ones, and the Hamming decoding was used

for decoding strategy. At last, as discussed in Subsection 3.2, the composition of the superclasses also

depends on the values of two thresholds (α and β). To see the sensitivity of the results with small

changes in the threshold values, we will make an extensional experiment with different values of two

aforementioned thresholds in classification progress. After finishing it, we can summarize the attentions

paid in choosing the thresholds.

According to the analysis for the choice of pre-classifier in Subsection 3.2, the k-nearest neighbor

classifier (the parameter of k is 3) will be used to get the confusion matrix. To evaluate the performance

of the different experiments, we apply stratified 10-fold cross-validation and test for the confidence interval

at 95% with a two-tailed t-test, and the calculating formula is given as follows:

|x− µ|
σ/

√
n

> t0.025(n−1), (9)

where µ and σ indicate mean and variance, respectively, and, t0.025(9) = 2.2622. Besides, we use the

statistical Nemenyi test to look for significant differences between the method performances.

4.3 Experimental results and analysis

In the following sections, two results with different data sets are shown. Meanwhile, we deeply analyze

the cause of them to get valuable results.

4.3.1 UCI data set

Four decoding strategies and two kinds of base classifiers were used to make comparisons between CM-

SECOC and six state-of-the-art coding methods mentioned before in this part of experiment. After

finishing this experiment, we performed a total of 800 10-fold tests. Tables 2–5 list the classification

error rate for different decoding strategies based on SVM classifier. The best performance per data set is

highlighted in boldface. Meanwhile, each coding matrix’s length is below the error rate. From the results

in tables, we can see that the classification error rates got by CMSECOC are smaller than other state-of-

the-art data-dependent codes and data-independent codes most of the time. However, it is worth noting

that the SECOC can also achieve good classification results sometimes. The most likely reason is that

the original classes have distinctive features, and they can be directly split into different superclasses. For

this reason, SECOC can easily get effective dichotomizers and reach an ideal classification effect at last.

Besides, we note that the coding length of CMSECOC is longer than the other types, so the reason is the

usage of “one-versus-one” coding strategy to design redundancy code for the classes with high similarity.

On the other hand, compared with the other coding strategies, the coding length of CMSECOC does not

change more, but it can reduce the error rate obviously, so the redundancy code design is feasible.

To get the statistical experimental conclusions, we use rank-sum test to analyze the results. The mean

rank is calculated as follows:

Rj =
1

J

∑

i
rji , (10)

where rji is the coding rank for i problem based on j decoding strategy, and J is the experiment time of

each approach, which is four decoding strategies multiplied by 10 kinds of UCI data. Table 6 shows the
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Table 2 Classification error rates for the confidence interval at 95% based on Hamming distance and SVM

One vs. all One vs. one Dense Sparse DECOC SECOC CMSECOC

(a) 78.33± 14.73 56.55± 5.91 58.53± 5.73 52.94± 7.02 55.05± 7.01 45.96± 11.46 43.90± 13.80

10×10 10×45 10×10 10×10 10×9 18×26 10×11

(b) 8.61± 4.21 9.26± 3.54 7.23± 2.85 8.59± 2.87 9.57± 3.58 6.64± 3.48 5.44± 4.94

7×7 7×21 7×7 7×7 7×6 12×16 7×12

(c) 22.82± 5.72 18.18± 4.74 17.70± 3.90 19.64± 3.72 19.29± 4.88 20.04± 3.54 17.31± 4.03

6×6 6×15 6×6 6×6 6×5 10×13 6×12

(d) 13.78± 10.30 12.19± 9.69 12.58± 9.79 12.36± 8.75 12.30± 8.55 11.39± 7.06 13.46± 9.10

7×7 7×21 7×7 7×7 7×6 11×13 7×11

(e) 22.87± 4.61 23.53± 6.07 22.71± 6.35 24.72± 7.18 23.05± 7.34 21.91± 6.06 22.69± 5.37

4×4 4×6 4×4 4×4 4×3 6×8 4×6

(f) 31.92± 11.52 31.05± 9.40 28.51± 10.10 30.05± 9.20 27.35± 8.77 28.61± 9.84 28.30± 11.16

7×7 7×21 7×7 7×7 7×6 10×10 7×10

(g) 15.62± 10.35 19.17± 13.75 15.25± 9.10 18.48± 12.07 16.30± 13.68 16.07± 13.06 14.42± 12.84

3×3 3×3 3×3 3×3 3×2 3×2 3×4

(h) 2.13± 1.40 1.80± 2.41 2.16± 2.03 2.25± 2.01 2.97± 1.13 1.77± 1.93 2.22± 1.78

11×11 11×55 11×11 11×11 11×10 16×22 11×12

(i) 40.05± 6.94 34.31± 10.53 33.04± 8.20 50.31± 13.64 50.51± 18.19 33.80± 7.34 35.80± 7.48

8×8 8×28 8×8 8×8 8×7 12×11 8×7

(j) 4.91± 6.26 5.18± 4.92 2.79± 6.05 3.60± 4.04 3.93± 3.83 3.92± 6.87 2.27± 5.81

3×3 3×3 3×3 3×3 3×2 3×2 3×4

Table 3 Classification error rates for the confidence interval at 95% based on Euclidean distance and SVM

One vs. all One vs. one Dense Sparse DECOC SECOC CMSECOC

(a)
65.90± 5.19

10×10

56.17± 5.68

10×45

57.40± 7.26

10×10

57.59± 4.53

10×10

56.15± 6.33

10×9

56.58± 7.87

18×26

48.99± 5.67

10×11

(b)
31.36± 3.71

7×7

8.96± 2.28

7×21

24.92± 3.44

7×7

14.77± 4.68

7×7

23.66± 1.14

7×6

20.03± 4.31

12×16

11.42± 3.72

7×12

(c)
53.23± 5.21

6×6

38.58± 2.74

6×15

36.50± 2.95

6×6

22.25± 2.84

6×6

37.95± 1.62

6×5

20.39± 3.28

10×13

20.83± 4.72

6×12

(d)
33.73± 15.02

7×7

25.41± 13.42

7×21

20.00± 9.57

7×7

18.64± 9.07

7×7

17.81± 10.54

7×6

16.94± 11.31

11×13

19.51± 10.82

7×11

(e)
33.87± 8.96

4×4

30.48± 5.91

4×6

28.78± 7.04

4×4

42.07± 6.71

4×4

31.10± 5.83

4×3

36.97± 7.64

6×8

31.27± 8.67

4×6

(f)
48.80± 11.23

7×7

35.17± 9.51

7×21

32.88± 8.58

7×7

37.12± 10.25

7×7

32.77± 9.86

7×6

41.84± 13.13

10×15

30.38± 9.22

7×10

(g)
20.54± 5.45

3×3

15.22± 7.66

3×3

12.65± 5.62

3×3

18.31± 7.17

3×3

14.84± 4.69

3×2

10.75± 6.99

3×2

15.67± 4.54

3×4

(h)
21.85± 3.55

11×11

33.58± 3.05

11×55

19.20± 3.30

11×11

32.84± 3.88

11×11

18.82± 4.32

11×10

18.75± 3.01

16×22

25.75± 4.19

11×12

(i)
41.15± 10.90

8×8

68.09± 10.72

8×28

37.57± 6.16

8×8

37.57± 6.28

8×8

35.52± 6.34

8×7

51.67± 8.38

12×15

36.71± 7.39

8×7

(j)
9.14± 6.27

3×3

7.01± 10.26

3×3

8.37± 7.92

3×3

9.77± 8.61

3×3

7.50± 8.12

3×2

5.99± 5.95

3×2

4.50± 6.39

3×4

results of rank positions for each decoding strategy, where the bold values represent the minimum ones,

which present the coding approach with the least rank value.

From Table 6, we can see that the rank position of CMSECOC is the smallest and the rank position of

SECOC is little larger, while the rank position of one-versus-all is the largest. Overall, the coding type

of SECOC is more effective than others. To check for the statistically significant methods, we use the

Nemenyi test (two techniques are significantly different if the corresponding average rankings differ by at
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Table 4 Classification error rates for the confidence interval at 95% based on linear loss-weight function and SVM

One vs. all One vs. one Dense Sparse DECOC SECOC CMSECOC

(a)
71.80± 2.63

10×10

57.46± 4.63

10×45

56.13± 4.64

10×10

55.73± 4.03

10×10

55.52± 3.34

10×9

55.39± 2.76

18×26

56.67± 3.12

10×11

(b)
54.85± 0.88

7×7

14.17± 2.45

7×21

13.30± 2.34

7×7

22.60± 3.94

7×7

36.49± 2.96

7×6

13.14± 3.89

12×16

12.69± 2.17

7×12

(c)
24.54± 3.46

6×6

22.24± 5.38

6×15

25.17± 2.67

6×6

22.15± 4.06

6×6

24.86± 4.47

6×5

21.35± 3.18

10×13

23.30± 3.63

6×12

(d)
28.57± 7.65

7×7

27.70± 10.52

7×21

26.67± 9.21

7×7

27.65± 7.37

7×7

27.39± 6.99

7×6

26.38± 9.42

11×13

26.79± 9.33

7×11

(e)
20.69± 5.07

4×4

22.59± 4.20

4×6

21.27± 4.90

4×4

21.46± 6.74

4×4

21.49± 4.46

4×3

18.73± 5.82

6×8

19.85± 7.07

4×6

(f)
32.13± 11.25

7×7

32.11± 13.36

7×21

27.53± 14.51

7×7

25.73± 11.18

7×7

28.36± 13.55

7×6

28.10± 15.18

10×15

27.19± 13.01

7×10

(g)
12.78± 10.82

3×3

12.33± 8.91

3×3

13.99± 10.14

3×3

12.92± 7.82

3×3

11.87± 8.89

3×2

11.52± 8.92

3×2

11.01± 7.19

3×4

(h)
20.85± 6.54

11×11

19.04± 4.39

11×55

19.44± 4.03

11×11

20.98± 4.16

11×11

18.80± 3.57

11×10

16.14± 3.64

16×22

18.01± 6.27

11×12

(i)
41.72± 10.73

8×8

34.95± 10.88

8×28

35.21± 12.43

8×8

36.10± 8.41

8×8

36.65± 10.61

8×7

36.14± 10.76

12×15

37.76± 9.06

8×7

(j)
5.60± 10.94

3×3

7.18± 5.50

3×3

7.18± 7.99

3×3

7.98± 6.64

3×3

9.21± 6.10

3×2

7.99± 7.64

3×2

5.23± 8.71

3×4

Table 5 Classification error rates for the confidence interval at 95% based on linear loss-weight function and SVM

One vs. all One vs. one Dense Sparse DECOC SECOC CMSECOC

(a)
86.10± 2.66

10×10

74.84± 3.49

10×45

81.38± 6.53

10×10

84.87± 2.96

10×10

48.95± 8.60

10×9

43.24± 6.50

18×26

44.75± 7.45

10×11

(b)
8.12± 3.66

7×7

9.03± 2.82

7×21

8.45± 4.07

7×7

11.67± 3.79

7×7

14.05± 3.71

7×6

7.51± 3.55

12×16

7.78± 3.89

7×12

(c)
24.00± 3.46

6×6

25.27± 3.82

6×15

24.24± 3.04

6×6

23.82± 3.71

6×6

23.96± 5.15

6×5

21.76± 4.25

10×13

22.61± 5.59

6×12

(d)
10.91± 8.81

7×7

13.47± 8.73

7×21

8.80± 8.82

7×7

12.27± 11.82

7×7

8.90± 9.52

7×6

12.65± 11.48

11×13

8.58± 11.92

7×11

(e)
25.25± 7.62

4×4

25.07± 6.88

4×6

26.17± 6.53

4×4

25.72± 4.33

4×4

23.77± 3.91

4×3

20.34± 5.15

6×8

20.77± 6.12

4×6

(f)
34.52± 12.03

7×7

35.28± 12.67

7×21

33.90± 13.03

7×7

32.13± 11.16

7×7

34.13± 12.60

7×6

30.87± 13.91

10×15

33.44± 9.89

7×10

(g)
12.35± 9.36

3×3

12.21± 7.34

3×3

12.92± 6.86

3×3

11.73± 7.49

3×3

12.50± 6.20

3×2

11.07± 9.29

3×2

10.23± 7.56

3×4

(h)
7.79± 2.58

11×11

5.54± 2.14

11×55

7.45± 1.54

11×11

6.26± 2.66

11×11

5.69± 4.16

11×10

4.28± 2.84

16×22

5.00± 2.58

11×12

(i)
35.31± 8.05

8×8

36.17± 9.41

8×28

35.24± 9.19

8×8

32.65± 10.43

8×8

30.32± 10.20

8×7

30.34± 9.24

12×15

29.04± 11.25

8×7

(j)
5.51± 8.33

3×3

2.65± 5.48

3×3

4.19± 6.43

3×3

3.90± 6.19

3×3

4.19± 5.79

3×2

2.46± 6.92

3×2

3.07± 6.74

3×4

Table 6 Each method’s corresponding rank-sum mean

Coding One vs. all One vs. one Dense Sparse DECOC SECOC CMSECOC

HD 5.40 4.70 3.10 4.90 4.80 2.70 2.40

AED 6.20 4.30 3.70 4.90 2.90 3.20 2.70

LLB 5.60 4.40 4.00 4.20 4.70 2.30 2.70

ELB 5.50 5.00 5.10 4.40 4.20 1.80 1.90

Global rank 3.24 2.63 2.27 2.63 2.37 1.43 1.39
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Table 7 Classification error rates of HRRP between 0◦ and 80◦

One vs. all One vs. one Dense Sparse DECOC SECOC CMSECOC

B-52 59.08± 1.97 51.60± 3.55 27.88± 5.65 92.15± 2.58 35.18± 3.25 77.90± 3.14 30.49± 1.75

Farmer 28.72± 1.79 38.77± 2.12 22.04± 2.55 58.81± 1.81 16.65± 1.93 15.51± 1.55 17.86± 2.23

Fishbed 28.19± 1.35 30.25± 2.86 32.61± 1.87 26.67± 1.94 22.19± 1.94 19.99± 1.55 18.25± 2.34

Table 8 Classification error rates of HRRP between 80◦ and 155◦

One vs. all One vs. one Dense Sparse DECOC SECOC CMSECOC

B-52 28.55± 2.42 21.90± 3.61 33.09± 6.00 75.32± 3.15 25.94± 4.74 23.96± 3.32 21.65± 2.53

Farmer 43.55± 1.58 31.82± 3.45 56.79± 2.84 40.25± 3.05 27.21± 1.94 28.59± 3.31 27.29± 1.99

Fishbed 21.83± 2.01 20.67± 2.85 36.11± 2.90 20.50± 2.42 16.99± 3.20 18.90± 2.67 15.87± 3.44

Table 9 Classification error rates of HRRP between 0◦ and 155◦

One vs. all One vs. one Dense Sparse DECOC SECOC CMSECOC

B-52 52.45± 2.24 49.19± 3.99 70.32± 6.03 47.33± 3.12 27.73± 3.66 29.13± 3.87 25.35± 3.18

Farmer 54.57± 2.12 42.31± 3.33 54.47± 3.78 63.43± 4.43 45.67± 2.85 41.56± 2.65 37.25± 3.38

Fishbed 58.75± 3.06 39.83± 3.77 42.45± 3.09 36.97± 2.78 42.47± 3.21 38.40± 3.81 35.56± 4.65

least the critical difference (CD) value [24]) as follows:

CD = qα

√

k (k + 1)

6J
, (11)

where qα is based on the Studentized range statistic divided by
√
2, k is the number of methods to be

validated, and J is the total number of experiments performed. In our case, we compare seven methods

with a confidence value α = 0.10 and q0.10 = 1.372. Substituting this in (11), we obtain a CD value

of 0.663.

Now reviewing Table 6, we can observe that our proposed methods have a difference superior to the

critical values of other methods in most of the cases. Because of that, we can argue that the CMSECOC

based on confusion matrix of this paper is significantly better than other ones without SECOC at 90% of

the confidence interval in the present experiments. Note that the performance of SECOC coding strategy

is also better than other ones in most of the cases. The detailed description of reasons for this can be

found in [9].

4.3.2 HRRP data set

In this section, we have finished three experiments on the HRRP data set according to the imaging angles

like 0◦–80◦, 80◦–155◦, and 0◦–155◦, respectively, using the proposed coding strategies. The classification

error rates of different coding strategies for HRRP data set with three kinds of angle ranges are shown

in Tables 7–9. From the tables, we can see that the classification error rates of the targets in small angle

range (0◦–80◦and 80◦–155◦) are smaller than those in large angle range (0◦–155◦) using all the methods.

On the data set with angle range being 0◦–80◦, the level of performance achieved by CMSECOC is similar

to the other data-driven ECOC such as DECOC and SECOC, while its classification performance still

outperforms the ones independent of data set. On the data set with angle range being 80◦–155◦, the

method of CMSECOC performs much better than the other methods, no matter if that is data-driven

one or not. It is worth noting that CMSECOC has the best performance for each target when the data

set is in the angle range of 0◦–155◦, although the classification error rate is larger than in any other angle

range. For that, we can give a conclusion that the CMSECOC has higher generalization capability than

the other coding strategies when being used for classification in data sets containing noise.
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Figure 4 (Color online) Comparison of the CMSECOC performance using LOGLC on the UCI data set for different

parameters: combining threshold α and the parting threshold β. (a) Glass data set; (b) Iris data set.

4.3.3 An extensional experiment

To discuss the sensitivity of the construction of CMSECOC with small changes in the threshold values,

we performed an experiment using the UCI Glass and Ecoli data sets with different threshold values of

combining threshold α and the parting threshold β. In this experiment, the values for α are varied between

0 and 0.9, increasing 0.05 per step. For each value of α, the values for β are {0.55, 0.65, 0.75, 0.85, 0.95}.
The results of these experiments using LOGLC as the base classifier and linear loss-weight decoding as

the decoding strategy are shown graphically in Figure 4.

From Figure 4, we observe that there are always some pairs of values of α and β, with which the

CMSECOC can obtain better classification performance. When the value of α is increased, more classes

can be fused into superclasses by decreasing the degree of complexity for classification, thereby enhancing

the classification accuracy. However, as the value of α is increasing step by step, the difficulty in classifying

classes of each superclass will be enlarged. This is precisely why the classification accuracy first ascended

and then descended. Also, we can find that the effect of classification influenced by the parameter

β presents the same trend as the one of α. For example, in Glass data set, the largest classification

accuracy can be obtained by setting the parameters as follows: {α = 0.4, β = 0.75;α = 0.5, β = 0.75;α =

0.6, β = 0.75;α = 0.4, β = 0.8;α = 0.5, β = 0.8}; while in Iris data set, the optimum settings are

{α = 0.45, β = 0.75;α = 0.5, β = 0.75;α = 0.55, β = 0.75}. In a word, when we use CMSECOC as the

coding strategy, there always exists a better choice of combining threshold α and the parting threshold

β for a special data set, and the final decision for the choice should be made by taking account of both

dataset and experience.

5 Conclusion

The ECOC based on data is a research hotspot of using ECOC to model the multiclass problem. In

this paper, we first use confusion matrix as similarity measurement to find the superclasses based on the

Fisher criterion. Then, the classes with high similarity are assigned together, while those classes with low

similarity are assigned into different superclasses. Next, the “one-versus-all” decoding strategy was used

to classify the different superclasses to avoid the unnecessary redundancy. Note that classifying classes in

the superclasses is much difficult to do, so the “one-versus-one” strategy is used to design the partition,

thus making each classification focus on just two classes in a superclass to reduce the complexity of decision

boundary and increase redundancy. In the end, all binary partitions are combined to get the CMSECOC.

The UCI and HRRP data sets are applied to validate the efficiency of CMSECOC in decreasing the error

rate of classification. The results show that the classification performance of CMSECOC is better than

other state-of-the-art coding designs in most cases, which means the CMSECOC is more suitable for

multiclass problem.
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