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Abstract Feature coding is one of the most important procedures in the bag-of-features model for image

classification. In this paper, we propose a novel feature coding method called nonnegative correlation coding.

In order to obtain a discriminative image representation, our method employs two correlations: the correlation

between features and visual words, and the correlation between the obtained codes. The first correlation reflects

the locality of codes, i.e., the visual words close to the local feature are activated more easily than the ones

distant. The second correlation characterizes the similarity of codes, and it means that similar local features

are likely to have similar codes. Both correlations are modeled under the nonnegative constraint. Based on the

Nesterov’s gradient projection algorithm, we develop an effective numerical solver to optimize the nonnegative

correlation coding problem with guaranteed quadratic convergence. Comprehensive experimental results on

publicly available datasets demonstrate the effectiveness of our method.
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1 Introduction

Image classification is one of the fundamental problems in computer vision and pattern recognition, and

has a multitude of applications, such as image retrieval, human-computer interaction, and web content

analysis. The bag-of-features model [1] has been commonly used to generate feature representations for

image classification due to its invariance to scale, translation, and rotation. Figure 1 shows the general

pipeline of the bag-of-features model consisting of four steps: local features extraction, visual words

generation, feature coding, and feature pooling. Among these steps, feature coding is the most important

one which greatly influences the image classification system in both accuracy and speed [2]. In this paper,

we propose a novel feature coding method called nonnegative correlation coding for image classification.

In order to enhance the discriminative power of the codes, we take full advantage of two correlations under

the nonnegative constraint. One correlation reflects the locality of codes, and the other characterizes the

similarity.

Numerous feature coding methods [1, 3–9] have been proposed, and most of them are developed from

vector quantization [1]. The vector quantization only selects the visual word closest to the feature to
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Figure 1 The general pipeline of the bag-of-features image representation framework.
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Figure 2 Schematic comparison of visual words selection methods to code local features. (a) The traditional coding

scheme without any constraints; (b) only considering locality constraint; (c) our nonnegative correlation coding which

considers the properties including nonnegativity, locality, and similarity of codes.

construct the hard assignment. Yang et al. [3] used sparse coding instead of the vector quantization in

spatial pyramid matching [10] to obtain nonlinear codes for image classification. Zhang et al. [4] employed

the nonnegative constraint to sparse coding to avoid information loss. Yu et al. [5] proposed the local

coordinate coding (LCC) method which encourages a feature to be encoded by locally selected visual

words, as shown in Figure 2(b). The LCC only uses the geometrical relationship between the feature

and visual words, but does not take into account the geometrical relationship between features. Effective

utilization of the geometrical relationship between features is beneficial for nearby local features to have

similar codes. Gao et al. [6] and Zheng et al. [7] imposed a graph Laplacian constraint on the standard

sparse coding to quantize local features more robustly, while both locality and nonnegativity of codes are

not considered in their methods.

Our method takes into account the three properties of codes including nonnegativity, locality, and

similarity to enhance the discriminative power of the final image representation. We formulate the

nonnegative correlation coding as an optimization problem in which the nonnegativity is modeled as a

convex constraint. The locality is obtained by minimizing the Euclidean distance between a feature and

selected visual words. In order to preserve the similarity of codes, we model the geometrical relationship

between features by using the k-nearest neighbor graph based graph Laplacian. We develop an effective

numerical solver using the Nesterov’s gradient projection algorithm [11] to solve the optimization problem

with guaranteed quadratic convergence. As shown in Figure 2(c), our method makes similar features share

their neighboring visual words as many as possible and thus generates more discriminative representation

for image classification.
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Table 1 Different constraints in different coding schemes

Coding scheme φ(S) ψ(·)

VQ [1] – ‖si‖0 = 1, 1T
si = 1

Sparse Coding [3]
∑n

i=1 ‖si‖1 ‖bl‖2 6 1, 1T
si = 1

LCC [5]
∑n

i=1

∑k
l=1 |s

l
i|‖xi − sl‖

2
2 1T

si = 1

LLC [9]
∑n

i=1

∑k
l=1

(

sli exp(‖xi − bl‖2/σ)
)2

1Tsi = 1

LScSPM [6], GraphSC [7]
∑n

i=1 ‖si‖1 + tr(SLST) ‖bl‖2 6 1

Our method
∑n

i=1

∑k
l=1 Ψ(xi, bl)s

l
i + tr(SLST) si � 0,1Tsi = 1

2 Related work

Feature coding has been successfully used for image classification in the past decades. In this section,

we only discuss the most relevant literature with our method. Interested readers may refer to [2] for a

comprehensive review. Let X = [x1,x2, . . . ,xn] ∈ R
d×n be a data matrix with n d-dimensional features

extracted from an image, B = [b1, b2, . . . , bk] ∈ R
d×k be a dictionary where each column represents a

visual word, and S = [s1, s2, . . . , sn] ∈ R
k×n be the coding matrix. The goal of feature coding is to learn

a representation such that each input local feature xi can be well approximated by the dictionary B. The

general formulation of feature coding is expressed as

argmin
B,S

n
∑

i=1

‖xi − Bsi‖
2
2 + φ(S),

s.t. ψ(·),

(1)

where ‖xi − Bsi‖
2
2 measures the approximation error. The φ(S) and ψ(·) pursue discriminative descrip-

tions, that is, similar/different local features should tend to activate similar/different visual words. The

main difference among existing coding models lies in imposing different prior constraints on the generated

codes S via specific φ(S) and ψ(·). Several constraints are listed in Table 1.

Vector quantization [1] is the simplest coding method. It only selects a single visual word closest to

the local feature to construct the hard assignment. For each feature xi, there is only one nonzero coding

coefficient. The vector quantization coding is thus given by

argmin
S

n
∑

i=1

‖xi − Bsi‖
2
2,

s.t. ‖si‖0 = 1,1T
si = 1,

(2)

where the ‖si‖0 counts the number of nonzero entries in si. The voting scheme in the vector quantization

is highly sensitive to the reconstruction error, which results in the unrecoverable loss of discriminative

information. To reduce the quantization loss, soft coding [8, 12] assigns a local feature to all the visual

words according to their distances for good classification performances.

The constraint ‖si‖0 = 1 in Eq. (2) is too restrictive to accurately reconstruct xi. To alleviate this

issue, a sparsity regularization term, ℓ1-norm, is integrated into the objective function of sparse coding:

argmin
B,S

n
∑

i=1

‖xi − Bsi‖
2
2 + ‖si‖1,

s.t. ‖bl‖2 6 1,1T
si = 1,

(3)

where ‖si‖1 enforces si to have a small number of nonzero elements. The goal of the sparse coding is to

improve the quality of a sparse representation while maximally preserving the signal fidelity. To attain

this goal, many works have been proposed to modify the sparsity constraint. Liu et al. [13] imposed a

nonnegative constraint to the sparse coding to represent images for classification. Yu et al. [5] proposed
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the LCC method where the sparsity constraint of the sparse coding is replaced by a locality constraint.

The LCC explicitly encourages features to be locally encoded. The objective function of the LCC is

argmin
B,S

n
∑

i=1

(

‖xi − Bsi‖
2
2 +

k
∑

j=1

|sji |‖xi − bj‖
2
2

)

,

s.t. 1T
si = 1,

(4)

where sji is the jth coefficient of si. The absolute operator of s
j
i in Eq. (4) makes the objective function not

differentiable. In order to have an analytical solution, Wang et al. [9] proposed the Locality-constrained

Linear Coding (LLC) method which adopts a new constraint function
∑k

l=1 ‖s
l
i exp(‖xi − bl‖2/σ)‖

2
2

instead of the
∑k

l=1 |s
l
i|‖xi − bl‖

2
2 in Eq. (4). They also provide an approximated implementation of the

LLC for fast encoding, in which each local feature is coded on locally selected visual words.

Aforementioned coding schemes are applied on local features independently. Gao et al. [6, 14] and

Zheng et al. [7] imposed a graph Laplacian constraint on the sparse coding:

argmin
B,S

‖X − BS‖22 +

n
∑

i=1

‖si‖1 + tr(SLST),

s.t. ‖bl‖2 = 1,

(5)

where L is the Laplacian matrix [15]. In this way, local features are quantized more robustly from the

viewpoint of global similarity between codes, i.e., similar features tend to have similar codes. Recently,

Shabou and LeBorgne [16] presented a locality-constrained and spatially regularized coding method which

preserves locality constraints both in the feature space and the spatial domain of the image. Wang et

al. [17] proposed a linear distance coding method uniting the distance vector and the original feature

vector to capture discriminative information for image classification. Zhang et al. [18] encoded local

features by the proposed low-rank sparse learning for image classification. Zhang and Ma [19] reported a

new image classification method by leveraging the low-rank matrix decomposition and Laplacian group

sparse coding.

3 Nonnegative correlation coding

In order to enhance the discriminative power of the final representation, we take full advantages of three

properties of codes as prior constraints including nonnegativity, locality, and similarity.

Nonnegative constraint. The nonnegative constraint is motivated by the fact that the responses

of the complex cells in visual receptive fields are nonnegative values [20]. Besides, in the standard

sparse coding scheme, sparse coefficients often have some negative elements. The succeeding max pooling

strategy often prevents these negative elements appearing in the final representation, because most of the

coefficients in sparse coding are zero. This issue means that some useful information is lost, hindering

the final classification performance. Therefore, we impose the nonnegative normalization constraints

1T
si = 1 and si � 0 to maintain the unified range of values for all si.

In the fast approximation of the LLC, Wang et al. [9] only utilizes a few visual words close to each

feature to reconstruct the feature. These visual words may happen to lie at the same side of the feature,

as shown in Figure 3(a). In this case, the reconstruction is impossible just using nonnegative coefficients.

Therefore, they reported that the nonnegative constraint could decrease the LLC performance. Different

from their work, each visual word has the probability to be activated in our method, implying that the

nonnegative constraint can be available, as shown in Figure 3(b).

Locality constraint. Yu et al. [5] proved that each feature on the low-dimensional manifold can be

approximated by a linear combination of its nearby visual words. Therefore, the visual words close to

the feature should be activated easily to preserve locality. If a visual word bj is much closer to xi than

other words, sji (the response of si on the visual word bj) will be much stronger than other entries in si.
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Figure 3 Comparison between the fast approximation of the LLC and the nonnegative correlation coding. (a) In the fast

approximation of the LLC, only a few visual words close to the local feature are selected to reconstruct the feature, the

reconstruction is impossible via nonnegative coefficients in this case; (b) the nonnegative correlation coding method encodes

a local feature over the whole dictionary.

The locality is modeled by

argmin
si

k
∑

l=1

Ψ(xi, bl)s
l
i,

s.t. 1T
si = 1, si � 0,

(6)

where Ψ(xi, bl) = exp(‖xi − bl‖2/σ) gives the distance measure between the feature and each visual

word. The parameter σ determines the weight decay speed for the locality adaptor.

Similarity constraint. The manifold assumption implies that close-by features tend to have similar

codes and distant ones are less likely to take similar codes. The geometrical structure of the manifold is

significant for discrimination [15]. This structure can be approximated by a graph with n vertices where

each vertex corresponds to a feature xi. The edge weight matrix W of the graph is defined in two ways,

and the first one is by using the cosine of the angle between two features:

Wij =











x
T
i xj

‖xi‖‖xj‖
, if xi ∈ Nε(xj) or xj ∈ Nε(xi),

0, otherwise.

(7)

The Euclidean distance between the features xi and xj can also be used to construct the edge weight

matrix, and W is thus defined as

Wij =







1

‖xi − xj‖2
, if xi ∈ Nε(xj) or xj ∈ Nε(xi),

0, otherwise.
(8)

In both Eqs. (8) and (9), Nε(xi) represents the set of ε nearest neighbors of xi. The performances of the

two definitions of the edge weight matrix are compared in Section 5. As defined above, if two features xi

and xj are close to each other, the weight Wij will be large. The similarity constraint is implemented by

argmin
S

1

2

n
∑

i,j=1

‖si − sj‖
2
Wij ,

s.t. 1T
si = 1, si � 0.

(9)

By introducing the Laplacian matrix L = D −W , where D is a diagonal matrix whose elements are

column (or row) sums of W , Eq. (9) can be rewritten in a matrix form:

argmin
S

tr(SLST),

s.t. 1T
si = 1, si � 0.

(10)
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Eq. (9) implies that if xi and xj are close (i.e., Wij is large), si and sj are also close to each other.

Taking above constraints into account, the nonnegative correlation coding is formulated as

argmin
S

n
∑

i=1

(

‖xi − Bsi‖
2
2 + λ1

k
∑

l=1

Ψ(xi, bl)s
l
i

)

+ λ2tr(SLST),

s.t. 1T
si = 1, si � 0,

(11)

where λ1 and λ2 are positive regularization parameters to control the weights of the locality and simi-

larity of S, respectively. By taking full advantage of these three constraints, similar features share their

neighboring visual words as many as possible. The nonnegative correlation coding is thus able to generate

more discriminative representation.

4 Optimization

Given a dictionary B, we update each vector si individually while holding all the other vectors {sj}j 6=i

fixed. The model for optimizing si is

argmin
si

g(si) = ‖xi − Bsi‖
2
2 + λ1Ψ(xi,B)

T
si + λ2Liis

T
i si + s

T
i hi,

s.t. 1T
si = 1, si � 0,

(12)

where Ψ(xi,B) = [Ψ(xi, b1), . . . ,Ψ(xi, bk)]
T and hi = 2λ2(

∑

j 6=i Lijsj). The convex constraint set of

Eq. (12) constitutes a multinomial simplex C = {si ∈ R
k : 1T

si = 1, si > 0}. We employ Nesterov’s

gradient projection method [11], a first-order optimization procedure, to solve Eq. (12). A key step of

the Nesterov’s gradient projection is to efficiently project a vector si onto the simplex C.

4.1 Euclidean projection onto the simplex

The Euclidean projection of a vector v ∈ R
k onto C is given by

ΠC(v) = argmin
v
′

1

2
‖v − v

′‖22,

s.t. 1T
v
′ = 1, v′

> 0.
(13)

The Lagrangian of the problem in Eq. (13) is

L(v′, µ,ω) =
1

2
‖v − v

′‖22 + µ

( k
∑

i=1

v
′
i − 1

)

− ω
T
v
′, (14)

where µ is a Lagrange multiplier and ω is a vector of nonnegative Lagrange multipliers. By setting the

derivative of (14) respect to v
′
i to zero, we have ∂L/∂v′i = v′i − vi + µ − ωi = 0 where v′i, vi, and ωi

are the i-th element of v′, v, and ω, respectively. The complementary slackness KKT condition implies

that whenever v′i > 0 we have ωi = 0. Thus, we get v′i = max{vi − µ, 0} where µ =
(
∑ρ

i=1 zi − 1
)

/ρ

and ρ = max
{

i ∈ N+| zi −
1
i

(
∑i

r=1 zr − 1
)

> 0, i 6 k
}

. z denotes the vector obtained by sorting v in

a descending order. The Euclidean projection algorithm is summarized in Algorithm 1. The projection

operator ΠC(·) is implemented efficiently in O(k log k) [21].

Algorithm 1 Euclidean projection onto the simplex

Require: A vector v ∈ R
k;

Ensure: A vector v
′ = [v′

1, v
′

2, . . . , v
′

k]
T such that v

′

i = max{vi − µ, 0};

1. Sort v into z such that z1 > z2 > · · · > zk ;

2. Compute ρ = max
{

i ∈ [1 : k] : zi −
1
i

(
∑i

r=1 zr − 1
)

> 0
}

;

3. Compute µ = 1
ρ

(
∑ρ

i=1 zi − 1
)

;
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4.2 Nesterov’s gradient projection

We use the Nesterov’s gradient projection method to solve (12). The first-order Taylor expansion of g(si)

at v is

Qβ,v(si) = g(v) +∇g(v)T(si − v) +
β

2
‖si − v‖22, (15)

where ∇g(v) = 2BTBv− 2BT
xi+λ1Ψ(xi,B)+ 2λ2Liiv+hi is the gradient of g(si) at v. By setting the

deviation of (15) to 0, we obtain

arg min
si∈C

Qβ,v(si) = ΠC

(

v −
1

β
∇g(v)

)

, (16)

where ΠC(v) is the Euclidean projection of v onto C.

To solve Eq. (12), a sequence {s
(t)
i } is generated by performing the Euclidean projection in (16):

s
(t+1)
i = ΠC(v

(t)−∇g(v(t))/βt) where v
(t) = s

(t)
i +αt

(

s
(t)
i −s

(t−1)
i

)

. In the Nesterov’s gradient projection,

choosing proper parameters αt and βt is significant for the convergence property. Similar to [22], we set

αt = (δt−1−1)/δt with δt =
(

1+
√

1 + 4δ2t−1

)

/2, δ0 = 0 and δ1 = 1. βt is selected by finding the smallest

nonnegative integer j such that g(s
(t+1)
i ) 6 Qβt,v(t)(s

(t+1)
i ) with βt = 2jβt−1. The Nesterov’s gradient

projection algorithm for optimizing Eq. (12) is detailed in Algorithm 2.

Algorithm 2 Nesterov’s gradient projection algorithm for optimizing (12)

Require: Samples set X ∈ Rd×n, dictionary B ∈ Rd×k, Laplacian Matrix L ∈ Rn×n, parameters λ1, λ2 ∈ R;

Ensure: {s∗i }
n
i=1;

for i = 1, 2, . . . , n do

initialize s
(0)
i = s

(1)
i = 1/k, δ0 = 0, δ1 = 1, β0 = 1, d = hi = 0k×1;

for j = 1, 2, . . . , k do

d
j = exp(‖xi − bj‖/σ);

end for

d = d/‖d‖1;

for j = 1, 2, . . . , n do

hi = hi +Lijsj ;

end for

hi = 2λ2(hi − Liisi);

for t = 1, 2, . . . do

αt = (δt−1 − 1)/δt, v(t) = s
(t)
i + αt

(

s
(t)
i − s

(t−1)
i

)

;

for j = 1, 2, . . . do

β = 2jβt−1, v = v(t) − 1
β

(

2BTBv(t) − 2BTxi + λ1d+ 2λ2Liiv
(t) + hi

)

;

s
(t)
i = ΠC(v) using Algorithm 1;

if g(si) 6 Q
βt,v

(t) (si) then

update βt = β, s
(t+1)
i = s

(t)
i ;

break;

end if

end for

δt+1 =
1+

√

1+4δ2
t

2
;

end for

Output s∗i = s
(t)
i for each si.

end for

5 Experiments

We test the proposed method on four public datasets: UIUC-sport [23], Caltech-101 [24], Caltech-256 [25],

and Pascal VOC 2007 [26]. The benefits of some key components of our method are also shown in this

section.
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Figure 4 The example images of the UIUC-sport dataset.

5.1 Experimental set-up

We adopt the commonly used SIFT descriptor [27] as the low-level feature. To be consistent with previous

work, the 128-dimensional SIFT feature is densely extracted from images on a grid with a step of 8 pixels

under the scale of 16 × 16. We randomly select 500000 features to learn the dictionary whose size is

1024. After all features are encoded, the spatial pyramid matching [3,10] with levels of [1× 1, 2× 2, 4× 4]

is performed. In training and testing procedure, the one-vs-all linear SVM is used for its advantages in

speed and excellent performance in maximum feature pooling based image classification. For each dataset,

the training images are randomly selected and the results reported are the averages of 10 independent

experiments. In our coding method, the most important parameters are λ1 and λ2. For different datasets,

the value of the two parameters are different. As our observation, the proposed method achieves the best

performance when λ1 is 0.2–0.4 and λ2 is 0.3–0.5, respectively. Specifically, for the UIUC sport and

Caltech-256 datasets, we set λ1 = 0.3 and λ2 = 0.4, in the Caltech-101 dataset, λ1 and λ2 are set 0.2 and

0.5 respectively, and we set λ1 = 0.2 and λ2 = 0.3 in the Pascal VOC 2007 dataset.

5.2 UIUC-sport dataset

The UIUC-sport dataset [23] contains 1579 images of 8 categories including badminton, bocce, croquet,

polo, rock climbing, rowing, sailing, and snow boarding. The number of images ranges from 137 to 250 per

category. Figure 4 shows some example images of this dataset. For fair consideration, we randomly select

70 images from each class as training data and 60 images for test as the same with previous methods.

The comparison results are shown in Table 2, where the results of other methods are available from

published papers conveniently. The results indicate that our method outperforms other coding methods.

The underlying reason is that more constrains are considered in our method. It should be noted that

LLC and GraphSC optimize the codebook and codes simultaneously, while our method only utilizes the

dictionary generated by K-means. The confusion matrix is shown in Figure 5 where “RC”, “BM”, “BO”,

“CQ”, “PO”, “RO”, “SA”, and “SB” represent “RockClimbing”, “Badminton”, “Bocce”, “Croquet”,

“Polo”, “Rowing”, “Sailing”, and “Snowboarding”, respectively. From the confusion matrix, we find that

most of the misclassifications are between “bocce” and “croquet”, the probable reason is that they have

much visually similarity, e.g. they all have images with a man squatting and touching a ball.

We also evaluate the effects of the three constraints in our method on this dataset. First, the non-

negative constraint is removed from Eq. (11), and a simplified coding method called Correlation Coding

(C-Coding) is obtained. The C-Coding has an analytical solution. The classification result of this method

on UIUC-sport dataset is reported in Table 3. The effectiveness of the nonnegative constraint can be

clearly seen from the performance difference between the nonnegative correlation coding (NC-coding) and

the C-Coding. As analyzed above, the nonnegative constraint is quite important in avoiding information

loss while encoding a local feature on the whole dictionary for image classification. The locality and

similarity constraints are then removed from the NC-Coding model respectively, and two simplified cod-
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Table 2 Comparison results on UIUC-sport dataset

Method Classification accuracy (%)

Liu [8] 82.29

ScSPM [3] 82.74

HIK+one class SVM [28] 83.54

LLC [9] 83.09

LScSPM [6] 85.18

LR-Sc+SPM [4] 86.69

LR-LGSC [19] 87.14

Our Method 87.36

Figure 5 The confusion matrix of nonnegative correlation coding on UIUC-sport dataset.

Table 3 Classification accuracies of NC-Coding and three simplified methods on UIUC-sport dataset

Method Classification accuracy (%)

C-Coding 81.38± 0.46

NSC-Coding 83.22± 0.42

NLC-Coding 85.89± 0.67

NC-Coding 87.36± 0.39

ing methods are obtained: Nonnegative Similarity Correlation Coding (NSC-Coding) and Nonnegative

Locality Correlation Coding (NLC-Coding). Here, we just need to set λ1 and λ2 to 0 in Eq. (11), respec-

tively. The performances of these two methods are also shown in Table 3. As expected, the NC-Coding

method outperforms the NSC-Coding and NLC-Coding methods, which demonstrates the effectiveness

of locality and similarity constraints in obtaining discriminative representation for image classification.

The computational cost of the proposed method is also evaluated in this part. We compare the

accelerated proximal gradient (APG) approach [29] and the Nesterov’s gradient projection (NPG) method

for solving (12) to convergence. 50 images are randomly selected and the average coding times are reported

in Table 4. Both the experiments are conducted on the computer with a 3.40 GHz CPU and 16.0 GB

memory. From Table 4, we can clearly observe that NPG is quite fast than APG.
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Table 4 Running time comparison of different optimization methods

Optimization method Average time (s)

APG 718.02

NPG 477.71

Table 5 Comparison results on Caltech-101 dataset

Method
Classification accuracy by using different size of training sample (%)

5 10 15 20 25 30

SRC [30] 48.80 60.10 64.90 67.70 69.20 70.70

D-KSVD [31] 49.60 59.50 65.10 68.60 71.10 73.00

LR-Sc+SPM [4] – – 69.58 – – 75.68

CCLR-Sc+SPM [19] – – 70.86 – – 76.62

ScSPM [3] – – 67.00 – – 73.20

LCSRC [16] – – – – – 73.23

LLC [9] 51.15 59.77 65.43 67.74 70.16 73.44

Liu [8] – – – – – 74.21

LR-LGSC [32] 55.73 64.09 68.15 72.11 74.2 76.52

Our Method 52.47 63.33 67.91 72.32 74.12 76.61

Cellphone 100% Garfield 100% Scissors 100%

Minaret 100%Trilobite 100% Accordion 100%

Lotus 33.33%Scorpion 37.04% Cougar_body 29.41%

Figure 6 Example images from classes with highest and lowest classification accuracies from the Caltech-101 dataset.

5.3 Caltech-101 dataset

The Caltech-101 dataset [24] contains 101 object categories, such as cameras, chairs, flowers, vehicles, etc.

All the categories are with significant variances in shape and cluttered backgrounds. This dataset has

9144 images in all, and the image number varies from 31 to 800 per category. Moreover, it is individually

added to an extra “background” category, i.e., BACKGROUND Google.

For each category, we randomly select 5, 10, 15, ..., 30 images for training and test on the remaining as

the same with previous work. The results compared with previous methods are listed in Table 5, which

indicates that our method outperforms all the other methods. Figure 6 shows some example images from

classes with the highest and lowest classification accuracy of our method on the Caltech101 dataset. The

figure indicates that our method performs less successful on classes with large intra-class variations.
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Table 6 Comparison results on Caltech-256 dataset

Method
Classification accuracy by using different size of training sample (%)

15 30 45 60

SPM [10,25] – 34.10 – –

LR-Sc+SPM [4] 35.31 – – –

ScSPM [3] 27.73 34.02 37.46 40.14

LLC [9] 34.36 41.19 45.31 47.68

LScSPM [6,14] 29.99 35.74 38.47 40.32

Our Method 36.84 44.17 48.92 50.28

Table 7 Comparison results of two edge weight matrixes

W generation method
Classification accuracy by using different size of training sample (%)

15 30 45 60

Using Euclidean distance 33.31 42.76 47.35 48.47

Using cosine 36.84 44.17 48.92 50.28

5.4 Caltech-256 dataset

We also test our method on the Caltech-256 dataset [25] which is a challenging dataset for object recog-

nition. Different from the Caltech-101 dataset where the objects are often in the center of the image, the

Caltech-256 dataset presents much higher intra-class variability including the variability in object size,

pose, and location. The Caltech-256 dataset consists of 256 categories and a background class in which

none of the image belongs to the 256 categories. Each class contains at least 80 images, to provide a total

of 29780 images.

Following the common experimental setting, we tested our coding method on 15, 30, 45, and 60 training

images per class respectively. The comparison results are displayed in Table 6. As can be seen from the

table, the classification accuracies of our method are better than the LLC and the LScSPM under all

cases. It demonstrates that the proposed coding method is able to preserve the locality and similarity of

codes simultaneously and is more effective for image classification.

We also evaluate the performance difference between two ways of constructing edge weight matrix

described in Section 3 on the Caltech-256 dataset. The edge weight matrix W generated by using the

cosine and the Euclidean distance between two local features are used in the objective function respec-

tively, and the classification accuracies under different training samples are listed in Table 7. As shown

in the table, the cosine outperforms the Euclidean distance, which is probably due to the sensitiveness of

the Euclidean distance to the values of the local features. Therefore, the cosine is more appropriate for

measuring similarity.

5.5 Pascal VOC 2007 dataset

The Pascal VOC 2007 dataset [26] is a typical dataset for image classification with 9963 images from

20 categories of objects (i.e., aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining

table, dog, horse, motorbike, people, potted plant, sheep, soft, train, and tv/monitor). Figure 7 shows

some example images of this dataset. As shown in the figure, the images of the dataset which are all

daily photos obtained from Flickr vary significantly in size, viewpoint, illumination, scale, pose, and

deformation. Therefore, the Pascal VOC 2007 is a challenging dataset for image classification. The

training and testing samples have been well divided for convenient evaluation and fair comparison.

Classification performance is measured by the mean average precision (mAP) which is the standard

metric adopted by the Pascal challenge. The proposed coding method is compared with LLC [9], the

best result of VOC2007 competition (Best’07) [26], the re-implementation of Fisher coding (FC) [33]

and Super vector (SV) [34] by [35], and the CCLR-Sc+SPM [32]. The comparison results are shown in

Table 8. The proposed method outperforms LLC, which demonstrates the effectiveness of our coding

method. Our method is also comparable to the Fisher coding and CCLR-Sc+SPM. The Fisher coding
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Figure 7 Example images from the Pascal VOC 2007 dataset.

Table 8 Comparison results on Pascal VOC 2007 dataset

Object class
Classification accuracy (%)

LLC [9] Best’07 [26] FK [33, 35] SV [34, 35] CCLR-Sc+SPM [32] Our method

Aeroplane 74.8 77.5 80.0 74.3 80.2 78.7

Bicycle 65.2 63.6 67.4 63.8 67.1 67.6

Bird 50.7 56.1 51.9 47.0 52.7 54.3

Boat 70.9 71.9 70.9 69.4 71.3 70.5

Bottle 28.7 33.1 30.8 29.1 31.5 31.0

Bus 68.8 60.6 72.2 66.5 71.9 72.4

Car 78.5 78.0 79.9 77.3 80.4 80.1

Cat 61.7 58.8 61.4 60.2 61.8 62.1

Chair 54.3 53.5 56.0 50.2 55.7 54.8

Cow 48.6 42.6 49.6 46.5 49.6 47.9

Dining table 51.8 54.9 58.4 51.9 56.2 57.4

Dog 44.1 45.8 44.8 44.1 44.7 45.9

Horse 76.6 77.5 78.8 77.9 79.1 79.4

Motorbike 66.9 64.0 70.8 67.1 69.3 70.1

People 83.5 85.9 85.0 83.1 84.8 86.2

Potted plant 30.8 36.3 31.7 27.6 31.9 31.2

Sheep 44.6 44.7 51.0 48.5 48.6 44.4

Soft 53.4 50.9 56.4 51.1 56.6 56.5

Train 78.2 79.2 80.2 75.5 79.9 78.6

Tv/monitor 53.5 53.2 57.5 52.3 56.3 55.3

mAP 59.3 59.4 61.7 58.2 61.5 61.2

inspired by Fisher kernel integrates the power of both generative and discriminative models, and it

can thus preserve more information than reconstruction-based coding methods. The CCLR-Sc+SPM is

a new image classification framework involving dictionary learning and data de-noising by correlation

constrained low-rank and sparse matrix decomposition, while our method only focuses on the coding

procedure. The comparable results show the effectiveness of our coding method for image classification.
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Besides, our coding method can be combined with CCLR-Sc+SPM by replacing the nonnegative sparse

coding and LLC with our coding method.

6 Conclusion

In this paper, the nonnegative correlation coding method has been proposed to transform low-level fea-

tures into high-level representations for image classification. The nonnegative correlation coding employs

the nonnegativity, locality, and similarity of codes as constraints to reduce information loss in coding.

By imposing these constrains, our method makes similar local features share their neighboring visual

words as many as possible and thus enhances the discriminative power of the final representation. The

Nesterov’s gradient projection algorithm with guaranteed quadratic convergence is quite fast for solving

the nonnegative correlation coding. Experimental results show that the proposed method is effective in

image classification.
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