
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

January 2016, Vol. 59 012103:1–012103:15

doi: 10.1007/s11432-015-5299-5

c© Science China Press and Springer-Verlag Berlin Heidelberg 2015 info.scichina.com link.springer.com

BufferBank storage: an economic, scalable and

universally usable in-network storage model for

streaming data applications

Hongyi CHEN*, Zhigang SUN, Fei YI & Jinshu SU

School of Computer, National University of Defense Technology, Changsha 410000, China

Received October 17, 2014; accepted January 29, 2015; published online July 16, 2015

Abstract Large-scale streaming media distribution services impart unprecedented pressures and challenges to

existing Internet architecture. Researchers have proposed CDN, P2P Cache, ICN and other solutions to alleviate

the pressure of the core network, as well as improve the user experience (QoE). All these solutions achieve their

goals by deploying storage resources close to the end users to cache the hot data. Based on the advantages of

P2P service, which takes into account end-users resources, we proposed the BufferBank Storage (BBS). It is

a new streaming media distribution-oriented storage model by aggregating end-users resources. This provides

a novel approach for implementation of economic, scalable, dynamically deploy streaming media distribution

applications. However, the dynamic character of the end-user behavior brings challenges to BBS designation. In

our previous work, we have analyzed the basic principle of BBS and its feasibility. There is lack of substantial

research on resources management and reliability assessment, which are the core issue of BBS implementation.

After carefully analyzing the reliability and security issue in BBS deployment, this paper has proposed the

implementation model of BBS and studied the performance of different buffer allocation mechanism through

simulation. Our work mainly provides a new way of thinking for the dynamic, universal scalable storage system

in the Internet, that suffers “weak reliability”.

Keywords in-network storage, P2P Cache, streaming media, distributed resources management

Citation Chen H Y, Sun Z G, Yi F, et al. BufferBank storage: an economic, scalable and universally usable in-

network storage model for streaming data applications. Sci China Inf Sci, 2016, 59(1): 012103, doi: 10.1007/s11432-

015-5299-5

1 Introduction

In-network storage [1] is the primary method to accelerate the large-scale data distribution in the Internet,

particularly for the streaming media distribution. Its main principle is to deploy the network storage in the

edge network, caching the data which is frequently accessed to satisfy user requests in the edge network,

reducing the core network bandwidth, decreasing the access latency and improving the user experience.

And it has become a critical method for enhancing the efficiency of streaming media distribution, which is

widely employed in the Content Delivery Network (CDN) [2], P2P Cache [3] and web cache. Information-

Centric Network (ICN) [4], which is widely studied, embeds the storage into routing and switching, to

*Corresponding author (email: chychenhongyi@gmail.com)

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:2

Table 1 The attributes of different in-network storage systems

Storage from ICP or ISP Storage from end-user

Application-dependent P2P Cache [3] P2P

Application-independent CDN, NDN [5] Our work

maximize the efficiency of content distribution. Compared with the storage in cloud/data center and

enterprise network, the In-network storage has following features:

• Lower reliability. Considering that the In-network storage is mainly the content cache, wherein data

can be derived from the server if it is lost and will not incur fatal errors.

• Lower security. The content which is stored in In-network storage is mainly streaming media data.

Even if these data is tampered or eavesdropped, it will not cause irreparable damage. While when the

data is related to scientific computing and financial transaction, the tampered data would lead to a

failure.

• Stronger adaptability to transmission flutter. Transmission flutter contains the flutter of data access

bandwidth and latency. The cache-play mode of streaming media applications determines the strong

adaptability to the transmission flutter. The clients of a media flow, with 2 Mbps bandwidth, only

require 16 MB when cache 60 s media data. Hence, it can effectively facilitate the access to the storage

network bandwidth and latency flutter.

With the features of low reliability and security in In-network storage, P2P system has achieved great

success in the past decade. From the storage perspective, each peer in P2P system caches data on

end-users’ computers. The P2P applications query the indexing tables of peers to locate the position of

cached data. Unfortunately, the distribution scheme which P2P adopts makes it quite difficult to query

on combination with the physical location and reduces the querying efficiency. Further, P2P system lacks

an efficient incentive model among network operators, content providers and end users, which hinders

with its further development substantially.

Table 1 classified current In-network storage technology in two dimensions. One is storage source, and

the other is application-dependency. On the dimension of storage source, if applications use ISP/ICP’s

storage, they can enjoy a reliable service however it is expensive. Using the End-user storage resources

can save operation costs while they are not very dependable and trustworthy, such as P2P. With the

other dimension, Application-dependent mode can optimize data model for specified applications and

achieve high efficiency, but each application uses these storage resources separately. For instance, each

P2P system controls mass storage resource, while using it independently. On the other hand, application-

independent mode aggregates resources as a common infrastructure, which provides In-network storage

services to different applications. Recent research shows that application-independent In-network stor-

age will be prevalent, such as NDN which will embed In-network storage into the basic switching and

routing functions of the network [5]. Actually, IETF has already setup Peer-to-Peer Streaming Protocol

(PPSP) [6] and Content Delivery Networks Interconnection workshops to push P2P and CDN to become

a common service for all applications.

After putting all popular In-network storage solutions in the right place in Table 1, it is surprisingly

found that there are no application-independent solutions based on volunteers resources. Thus, our work

can draw P2P’s advantage and aggregate end-users resources to provide common storage services for

streaming media applications.

Therefore, we proposed the BufferBank Storage (BBS). It aggregates storage resources in edge network

to provide scalable storage services for streaming media distribution applications through effective stor-

age management mechanisms. Similar to the banking transactions, the end-user who provides storage

resources is like a depositor in the real bank system, so we call it BufferBank Depositor (BBD). Buffer-

Bank Manager (BBM) is like the bank, and streaming media application, which is called BufferBank

Application (BBA) in BBS, is like an enterprise that asks for a loan from the bank.

In BBS, BBM provides profit to incite BBDs to deposit more resources, just like deposit allowance in

the bank system. Meanwhile BBM charges BBA for the storage service, resembling interest on loan in the

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:3

bank system. After performing a survey on the idle resources in the campus network [7], we found that

most hosts have idle rescouses when they are in normal work(such as processing a document). End-users

have the ability to contribute most of the idle resources to BBS and obtain benefits. If there are 2000

users in the edge network, every one contributes 512 MB storage space; the total capacity could reach

1 TB. The article [8] mentioned that no proper cache size is given, typically considered in simulation

are much smaller (2 GB [9]). They select cache sizes of 10 GB as a realistic case study. While BBS’s

born scalabel architecture could acheive greater capacity easily. After reorganization by BBM, these

In-network storage can provide low-cost local storage service for different streaming media applications.

The advantages of this storage service are: (1) little infrastructure investment, involving only the software

installed on end-users and BBM; (2) the more end-users, prompting the larger storage capacity; (3) the

performance of RAM-based system is higher than disk-oriented storage system.

In order to obtain a high performance, we collect RAM resources from distributed end-nodes and pro-

vide a unified access to customers (BBA), which has been studied in Data Center such as RAMCloud [10].

However, unlike the centralized managed servers in Data Center, the behavior of hosts in the Internet is

uncontrollable. So BBS faces more challenges which are absent in Data Center, including:

• The dynamic management of storage resources. As the behavior of each end-user is uncontrollable,

we must consider the user opting off-line due to sudden problems. The sudden off-line will result in data

loss if the streaming media data is stored in the lost node. Therefore, the redundant and dynamic data

migration must be designed.

• The reliability assessment of storage services. Although data loss will not bring fatal errors to

streaming media applications, as a storage service provider, BBS must possess the storage reliability and

provide distinguished reliability service for BBA according to the QoS.

• The scalable resources management. The number of BBDs changes dynamically in some networks

such as the campus network, where end-users are relatively centralized. Sometimes it has large number of

end-users available for the BBS system, while other times just a few. Moreover, each BBD has different

properties, such as different sizes, different reliability and different contribute timings. Hence, it is a

challenge to manage these resources effectively.

• End-users’ stimulation and evaluation. Similar to P2P system, stimulation and evaluation in BBD is

a critical issue in BBS. However, unlike P2P, BBM breaks the tight coupling between resource provider

(BBD) and resource consumer (BBA). Therefore it has greater design space on BBD stimulation and

evaluation in BBS.

We analyze the feasibility of BBS in [7], including statistics on remaining resources of end-users by

preliminary comparison of the performance between BBS and the local storage service. In [11], we studied

the BBD evaluation methods, and proposed a credit scoring model based on genetic algorithm. However,

the first three challenges have not been studied.

To the best of our knowledge, BBS is currently the only mechanism that considers aggregating the

end-users’ distribution and unreliable storage resources to provide In-network storage services for various

streaming media distribution applications. This paper described the core issue in BBS which contains

dynamic management, reliability assessment, and storage management. The main contribution is as

follows.

(1) We analyzed the principle of BBS and described the reliability, security and scalability issue in its

deployment. We also designed a probabilistic-reliability storage system in the Internet against the feature

of weak reliability. It provides novel approach for implementing a dynamically deployed and scalable local

cache for streaming media applications.

(2) We showed a formal definition of distributed buffer management issue in BBS. Incidentally pointed

out that the core issue of buffer management would be the various buffer allocation strategies through a

simple example, and described buffer allocation algorithm in detail.

(3) We designed a BBS simulator named BB-SIM, and analyzed the performance of these three buffer

allocation mechanisms. The results confirmed it having different effects.

The rest of this paper is organized as follows. Section 2 introduces the basic idea of our BufferBank

storage model and describes some issues in BBS. Section 3 gives the distributed buffer management model

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:4

To external P2P clients

Distributed buffer

P2P Cache

Backbone
network

C1 C2

BBM
Storage service

The edge network
BBD1

b1 b2

BBD2 BBD3

b1 b2 b3 b1 b2

Local P2P clients

BBD1 BBD3 BBD1 BBD2 BBD3

b1 b1 b2 b1 b2

DB1 DB2

(a) (c)

BBD1 BBD2

b1 b1

C1 C2

(b)

C1 C2

Figure 1 The deployment of BBS. In (a), the doted lines represent P2P systems, and the solid lines represent BufferBank

system. P2P Cache is using BBS storage service. (b) Describes a simple resource mapping method. (c) Describes a resource

mapping method that consider storage reliability, and now it is deployed in BBS.

in BBS, including buffer allocation algorithm and some organization mechanisms. Section 4 presents the

simulation results and analyzes the performance of three organization mechanisms. Finally we have

discussed some open issues in BBS and drawn a conclusion last.

2 Overview of BBS architecture

2.1 Basic idea of BBS

A BBS system contains one BBM and lots of BBDs, whose basic principle is shown in Figure 1. Sup-

pose that in this scene, BBM manages 7 buffers contributed by 3 BBDs. The buffers are BBD1(b1,b2),

BBD2(b1,b2,b3) and BBD3(b1,b2). As an application in BBS, P2P Cache applies for two buffers (C1, C2),

which are used to cache the local P2P traffic. A simple allocation method is shown in Figure 1(b). BBM

maps C1 to b1 in BBD1, C2 is mapped to b2 of BBD2. When P2P Cache wants to read and write data

in C1, BBM will redirect the request to BBD1.

From the above example, we can see the advantages of BBS. On one hand, BBA, which is the P2P

Cache in the previous example, can benefit BBS storage service without deploying its own local disk

array and other hardware facilities. It reduces costs and simplifies device management. Meanwhile,

BBA’s existing code needs not change much, as BBS can provide an API similar to file access interface.

On the other hand, BBD can obtain certain benefits according to contributed buffer size and number.

At the same time, BBS can charge the BBAs, according to its usage, such as the time and size of buffers

it demands. Therefore, the above scenario meets all requirements of a clear economic model.

However, BBS must resolve storage reliability problem in order to be practical. For example, P2P

Cache’s data C1 is stored in BBD1(b1). Due to the complex Internet environment and BBS also is unable

to control the behavior of BBD1; it is possible that BBD1 shuts down the computer without notifying the

BBM. This will lead to data C1 loss. Therefore, it is imperative to solve the storage reliability problem

in BBS.

2.2 Data reliability issue in BBS

Increasing the storage redundancy is the main way to improve the reliability of BBS. For example, to

improve the reliability of C1 and C2, BBM distributed these data multi-replicas. C1 was stored both

in BBD1(b1) and BBD3(b1), and C2 was stored in BBD1(b2), BBD2(b1) and BBD3(b2). Obviously, the

redundancy of C1 was 1 : 2, and C2 was 1 : 3. The reliability of C2 was better than C1, the data of C2

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:5

would be lost only when all of BBD1, BBD2 and BBD3 were disconnected. But for C1, the data would be

lost just when both BBD1 and BBD3 were disconnected. Suppose the disconnected possibility of BBDi

was Pi, and the data reliability of Ci in BBA was Ri. Then R1 = 1 − P1, R2 = 1 − P2 in Figure 1(b),

and R1 = 1− P1 × P3, R2 = 1− P1 × P2 × P3 in Figure 1(c).

In Figure 1(c), especially for C2 the improvement of reliability in storage leads to lower the cost of

inefficient use of buffer. Another way to improve the utilization of buffer was dynamic data migration.

An example is the C1 that was reserved in BBD1 and BBD3 as shown in Figure 1(c). If BBD1 was

disconnected, the data would not be lost, but it would decrease the storage reliability to 1−P3. Then we

could redistribute BBD2(b2) for C1 and copy the data in BBD3(b1) to BBD2(b2). The result was that

R2 increased to 1 − P2 × P3. The method of dynamic data migration can improve the buffer efficiency,

but the cost in BBM management and network bandwidth will increase simultaneously.

As the loss of data stored in grid will not bring a fatal error to streaming media applications, thus

data replacement is necessary in streaming media buffering, such that storing with BBS, BBA can send

a reliability requirement to BBS. The higher the reliability required, the greater is the cost to realize. In

fact the higher BBA will pay for the cost. Hence, BBS can provide a buffer redundancy backup strategy

with a certain probability according to different requirements from BBA.

2.3 Data security issue in BBS

As BBS stores data in user host which cannot be controlled, we should pay special attention to safety

issues. From the view of BBD, the security problem is the potential risk of local agent programs, which

will control local noncontributing resource, or invade the local system illegally more rampantly. However,

we are not discussing it in BBS, as any third-party software installed in local systems, for example the

P2P, will cause such a problem [12].

3 Distributed buffer management model

3.1 Buffer definition

Buffer is the basic unit of BBD contribution and BBA application in BBS system. The size of Buffer if

too small will increase the management complexity of BBM, while too large Buffer will cause the wastage

of storage resources. The optimal buffer size is not the focus of this paper(smaller than 10 KB would be

an overkill [8]), and we suppose that BBD contributes and BBA can be applied in a uniform buffer size.

From the perspective of BBM, the attributes of each Buffer could be described by triples 〈DT,DF,DR〉.
DT refers to the contribution time. DR refers to the expected expire time. DR refers to the reliability

property. Then the buffer ID i can be denoted by bi〈DTi,DFi,DRi〉. For example, an end user turned

on the computer at 8: 00 pm, and expected to shut down at 11: 00 pm. Thus the user could start the

BBD client application (client ID is i) and set the contributed buffer’s property DT = 8: 00 pm, DF =

11: 00 pm. DR is the loss rate based on the client’s historical information gathered by BBM.

From the perspective of BBA, as the application makes it difficult to determine when to release the

buffer, so the applications only have a reliability requirement which is denoted by AR.

Logically, BBM contains two buffer sets. One is FBS (Free Buffer Set), which refers to the unused

contributed buffers and the other is UBS (Free Buffer Set) that refers to the buffers having been used.

3.2 Buffer management in BBM

BBM buffer management contains the following four kinds of scenes. (1) BBD contributes buffer b. BBM

will add b to FBS directly. (2) BBD withdraws buffer b (including BBD dropping due to network failure).

BBM will calculate the income BBD gains and update the credit value. If b belongs to FBS, then remove

it from the collection directly. While if it belongs to UBS, BBM should do data migration before removing

it. For example, in Figure 1(c), when BBD1(b1) was withdrawn, it would trigger BBM to migrate the

data whose copy is stored in BBD3(b1) to the newly allocated buffer BBD2(b2). (3) BBA applies for

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:6

buffer c. BBM selects one or a set of buffers which could satisfy the reliability requirement of buffer c

from FBS and removes these buffers from FBS, then adds them to UBS. The details are discussed in

Subsection 3.3. (4) BBA free buffer c. BBM removes the corresponding buffer set from UBS and adds

these buffers to FBS, then BBM calculates the cost.

Obviously, there are mainly four complex algorithms or processes in the above buffer management

processes. (1) BBD income calculation algorithm; (2) BBD credit updating algorithm; (3) BBA cost

calculation; (4) FBS buffer allocation algorithm; (1)–(3) algorithms will be studied later. In this paper,

we discuss the FBS buffer allocation algorithm. The aim of the algorithm is to select a buffer set (BS),

which contains s (s > 1) buffers, from FBS to satisfy the reliability requirement (AR) of BBA. The ith

element’s attributes in BS are 〈DTi,DFi,DRi〉, and satisfy the formula (1).

1−DR1 ×DR2 × · · · ×DRs > AR i.e. DR1 ×DR2 × · · · ×DRs < 1−AR. (1)

To ensure BBA buffers’ reliability demands AR, data migration operation would be triggered when

some buffers in BS were withdrawn. The buffer allocation issue involved in the migration operation can

be described as: given the BBA buffer c〈AT,AF,AR〉 and the buffer set BS which contains s buffers

(s > 1). The s buffers DR attributes meet formula (1): 1 − DR1 × DR2 × · · · × DRs > AR. When the

ith buffer was withdrawn, it was required to find m (m > 1) buffers in FBS to form a new buffer set BS′,

which is met in formula (2).

1−DR1 ×DR2 × · · · ×DRi−1 ×DRi+1 × · · · ×DRs ×DRs+1 × · · · ×DRs+m > AR. (2)

If we multiply both side by DRi, we get

DRi −DR1 ×DR2 × · · · ×DRs ×DRs+1 × · · · ×DRs+m > AR×DRi,

DR1 ×DR2 × · · · ×DRs ×DRs+1 × · · · ×DRs+m < DRi(1−AR),

DR1 ×DR2 × · · · ×DRs <
DRi(1−AR)

DRs+1 × · · · ×DRs+m

.

As with formula (1), the issue can be transformed into finding m buffers to meet the requirements of

formula (3). Comparing formula (3) with formula (1), we could conclude that the data migration issue

can be transformed into finding m buffers to meet the reliability demands DRi. It is equivalent to the

buffer allocation problem.

DRi(1 −AR)

DRs+1 × · · · ×DRs+m

< 1−AR ⇒ DRs+1 × · · · ×DRs+m < DRi. (3)

3.3 Buffer allocation algorithm

FBS buffer allocation algorithm is the core issue in distributed buffer management. The algorithm should

be simple, besides meeting the reliability requirements. Different buffer allocation methods will lead to

different data reliability as well as different system recovery traffic.

3.3.1 An example of buffer allocation

We describe the effect of different data allocation mechanisms on the system reliability and other aspects

through a simple example. There are three allocation mechanisms that are based on: (a) the sequence

of events; (b) the remaining survival time; (c) the reliability.

To describe more clearly, we use a three-tuple 〈DT,DF,DR〉 = 〈time, expired time, loss rate〉 to rep-

resent each contribution operation of BBDs. As shown in Figure 2, Ti ∼ Ti+1 interval is a time unit,

denoted as 1t in the timeline. BBD1, BBD2, BBD3 have a contribution operation at time point T3, T1, T6

respectively. Incidentally BBA stored data at time point T2, T4, and T7. The BBDs reliability is shown in

Figure 2. Figure 3 (a)–(c) show the resource usage at the time point T2, T4, T5 and T7 under these three

different data allocation mechanisms. The colored blocks represent the buffer that has been allocated.

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:7

T1 T3 T5
T6

BBD2 contribute BBD1 contribute

BBD1 expired

BBD3 contribute

Timeline

BBD1 BBD1

BBD2

BBD1

BBD2

BBD2

BBD3

T2 T4
T7

(T1,T8,83%)

BBA store BBA store BBA store

(T3,T5,92%) (T6,T9,79%)

Figure 2 An example of resource management.

BBD2
BBD1

BBD2

BBD1

BBD2

BBD2

BBD3

BBD2
BBD1

BBD2

BBD1

BBD2

BBD2

BBD3

BBD2
BBD1

BBD2

BBD1

BBD2

BBD2

BBD3

6t,83%
4t,83% 3t,83%

3t,83%1t,92% expired,92 %

2t,79%

6t,83%

6t,83%

4t,83%

1t,92%

4t,83%

1t,92%

3t,83%

expired,92 %

3t,83%

expired,92 %

3t,83%

2t,79%

3t,83%

2t,79%

(a)

(b)

(c)

T2 T4 T5 T7

Figure 3 Three different allocation approaches.

Approach (a) in Figure 3 adopts the allocate mechanism based on the sequence of events. At time T4,

there are 2 BBDs and 5 buffers in the system. As the BBD2’s contribution operation comes later than

BBD1’s, so BBM will allocate BBD2’s blocks at time T4 according to the allocation mechanism. Then

BBM should do data migration operation when BBD2 expires at time T5. For the same reason, BBM

will allocate BBD3’s block to BBA until exhausted at time T7.

Approach (b) adopts the allocation mechanism based on remaining survival time, which means all

those moments BBM stores data to those who has the longest survival time blocks. For example, BBD1

only commits to contribute 2t at time T3 which will be expired at time T5. However, BBD2’s buffer

will be expired at time T8 (8t > 2t), so BBM will allocate BBD2’s blocks to BBA at time T4 according

to the adopted approach (b). Compared to approach (a), BBD2 had stored nothing at time T5, so it

is futile to do data migration at that time. BBD3 joins to contribute 3t at time T6, more than that of

BBD1’s remaining time 2t. Then after time T6 (for example at T7 time), BBM will distribute the data

on the BBD3.

Approach (c) adopts allocation mechanism based on the reliability. The best reliability buffer always

prefers to be allocated. As reflected in Figure 3, BBM will allocate BBD1’s block at time T4 and BBD1’s

blocks at time T7. Only when BBD2’s buffers are used up will BBM consider allocating BBD3’s buffers.

As showed in Figure 3, the allocation effect of these three allocation mechanisms is different, and has

different data reliability as well. Using approach (a) and (c), then BBM needs to do data migration after

BBD1 expires (at time T5). While it is not necessary if it adopts approach (b). When approach (c) is

adopted, the data is distributed by priority to the high reliability BBDs. And then when these BBDs

expire, BBM needs to move a large amount of data. For example, at the time point T7 in approach (c),

all of BBD2 blocks have been allocated, so that the entire data stored on BBD2 migrates upon expiry at

the time point T8, resulting in a relatively large data migration traffic.

The example in Figure 3 actually does not take BBD abnormal loss into consideration. Considering the

suddenly exit, BBM does not have time to do data migration. So BBM should have a backup strategy

to ensure its reliability. This has been described in Subsection 2.2. It should be noted that different

allocation mechanisms have different impacts on data reliability. If BBD3 dropped at time T7, then

the adoption of approach (c) will have the minimum data loss. In a real BBS system, BBD loss is a

probability event, and the loss probability differs at all times. Moreover, it is difficult to use the same

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:8

data set to compare the performance of these three different allocation mechanisms, thus we implemented

a simulator to generate a data set and save it to disk so that we can compare their performance using

the same data set.

3.3.2 Buffer allocation algorithm

It has been mentioned in Subsection 3.2 that the buffer allocation algorithm is to find a set of buffers

BS in FBS to meet the BBA’s reliability needs (AR). In fact, it is not necessary for BBA to provide the

specific value of AR. Further in order to provide a compatible API, we propose the concept of reliability

level. The storage level determines what BBA needs to provide when it stores data in BBS. It is a flexible

restriction of the reliability and refers to a reliability interval. BBS offers three storage levels to BBA,

namely high, medium and low. Each storage level refers to a reliability interval. The three intervals are

(ARhigh, 1), (ARmedium, ARhigh) and (0, ARmedium) respectively.

The buffers are also divided into three levels based on its DR attribute, namely high, medium, low.

With their its corresponding DR intervals are (DRhigh, 1), (DRmedium, DRhigh) and (0, DRmedium). The

three levels of buffers store the corresponding levels of BBA data. Only when the corresponding levels

of buffers are used-up the mix-store can be accessed. When BBA selects the buffer of the same level to

store data, BBM needs to distribute two replicas to meet the reliability requirements. That is to say the

value of s in Formula (1) should be 2 if the data is stored on the same level. For example, BBA data c

whose storage level is high, when it is stored in the high level buffer, BBA should look for two buffers

satisfy 1−DR1 ×DR2 > ARhigh. Evidently, DRhigh should meet (4).

DRhigh <
√

1−ARhigh. (4)

However, when a certain level buffer is not enough, BBA needs to store data on a low-level or high-

level buffer, and the reliability should also meet formula (1). To achieve this and avoid the unnecessary

reliability calculations every time BBA stores data, a simple algorithm is adopted. Each of the lower

levels, distribute one time more, as showed in Procedure 1. If the low-level buffers are used-up then the

higher-level buffers are opted. In this way DRmedium value must meet (5).

1−DRmedium × · · · ×DRmedium > 1−DRhigh i.e. DRmedium <
√

DRhigh. (5)

When allocating buffers, BBA should also avoid choosing the same BBD’s buffer, because it is useless

to distribute two replicas on the same BBD. If the BBD is offline without notification, both of the two

replicas will be lost. (σ(bi) denotes the BBD bi belongs to, σ(Y) denotes the set of BBD which all bi in

set Y belongs to.) The algorithm is shown in Procedures 1 and 2.

The procedure FindPhyBlock(L,K, Y) is a key process in the algorithm. It completes the function

of finding k buffers in FBS[L], and adds the buffers that result in collection of Y . However, choice of

bj in procedure FindPhyBlock has great implications for the ultimate reliability. Generally, FBS[high],

FBS[medium], FBS[low] are organized into a queue. Each time the selection starts traversing from the

head of the queue, the diffident organizing method will result with different reliability.

3.4 Buffer organization in FBS

Different FBS organizing methods will lead to selection of different buffers during the bj allocation process.

According to the buffer’s three attributes 〈DT,DF,DR〉, we can get the following kinds of data organizing

methods.

(1) Management mechanism based on the sequence of events.

Organize FBS according to the sequence of events (DT attibute). In this method, each time BBM

selects the buffers which has just be contributed by BBDs to store BBA’s data.

(2) Management mechanism based on the remaining survival time.

Organize FBS according to the remaining survival time (DF attribute). In this method, the data

stored in the block can obtain the maximum storage time, i.e. the number of data movement caused by

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:9

Procedure 1 DataDistribute(L)

Input: L; {BBA storage level}

Output: Y ; {block set Y = b1, b2, . . . , bk}

k = 2; {default distribute 2 copies }

if i = FindPhyBlock(L, k,Y) < k then

{k represents the k copies need to distribute}

if j = FindPhyBlock(L− 1, k − i+ 1, Y) < k − i+ 1 then

{there isn’t enough blocks in low level BBDs}

if FindPhyBlock(L + 1, k − i+ 1− j, Y) < k − i+ 1− j then

{If there isn’t enough blocks in high level BBDs}

Add the data to need replicate list;

end if

end if

end if

return Y

Procedure 2 FindPhyBlock(L, k, Y)

Input: L, k, Y ;

Output: num; {the number of physical blocks was found}

while num < k and FBS[L] 6= ∅ do

Choose a buffer bj belongs to FBS[L];

if bj ∈ σ(Y) then

j = j + 1;

continue;

else

Y = Y ∪ bx and FBS[L] = FBS[L]− bj ;

num ++;

end if

if have traversal FBS[L] and num < k then

break;

end if

end while

return num

expiring of the BBD buffer is smaller. If BBDs keep their promises, then the data migration pressure will

be much smaller.

(3) Management mechanism based on the reliability.

Organize FBS in descending order according to buffers’ DR attribute. In this method, the first choice

is the lowest loss rate buffers, that would achieve the least number of data movements caused by BBD

loss. But data movement caused by expired BBD is more than the second mechanism.

3.5 Dropped BBD detection strategy and data recovery strategy

Dropped detection strategy is divided into active and passive dropped detection methods. Active dropped

detection means that BBM scans BBD Database regularly to determine if it is online. Passive dropped

detection means that BBM does not perform periodic scans, however through the timeout event it

interacts with BBD to determine whether this BBD is online. Active detection strategy can find dropped

BBDs earlier, and perform data migration on time, rather than doing it until all the copies are all lost.

So it can reduce the data loss probability.

For the purpose of data recovery, there are several strategies available as well. (1) Recover data

immediately after having detected the dropped BBD. This approach momentarily leads to hundreds of

MB traffic for losing just one BBD, which is a big pressure to the existing network. (2) Recover the block

when BBA accesses it the next time. This approach may lead to failure in copying all the data, and

result in data loss. (3) Recover the data when BBD’s next heartbeat packets are sent. In this way traffic

can be dispersed effectively.

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:10

4 Experiment evaluation

4.1 BB-SIM design

In this section, a BB-SIM was designed to simulate BBS and evaluate three buffer allocation strategies

based on its organization mechanisms. The main function of BBM was implemented in BB-SIM, such

as those of the distributed buffer management mechanism and buffer allocation algorithm in BBM as

described in Subsection 3.3. For some complex communication process, we simulated them rather than

their implementation, for instance, the communication protocols between BBM and BBDs.

For BBM, the interaction with BBD or BBA was actually a series of event processing. The events

that BBM have to handle are (1) BBD contributing buffer; (2) BBD’s buffer expiry; (3) BBD loss or

logout; (4) BBA apply for buffer; (5) BBA free buffer. Take for instance, the contributing buffer event

processing of BBM; BBD sends a message to BBM to allow contributing a buffer and the contribution

time at a certain period, after receipt of the message, the BBM processes and sends back an ACK message

to indicate successful protocol. If the network communication is always successful, then the handshake

process can be ignored then. The BB-SIM was designed based on this idea.

BB-SIM consists of three simulation modules, BBM-Simulator, BBA-simulator and BBD-simulator.

A variable i is used to represent the time slice and the increment of i indicates the time flow. In the

simulation of BBD contributing buffer, BBD-simulator randomly chooses a start-time, and generate a

contribution degree and a contribution time randomly, then these parameters are written in a specified file.

By reading this file, BBM-simulator can get the process information. BBM and BBD can communicate

with each other in this method.

Similarly, BBA chooses the start-time randomly, assigns the storage level, and writes in the sample

file. The events mentioned above could be simulated by BBD-Simulator and BBA-Simulator adopting

this method. A series of simulation events are written on the sample file, and then the BBM-simulator

reads and processes the file off-line. Through the increment of timeline, BBM keeps on dealing with the

coming events just as in a real system. Only sample file guarantees the fairness of different tactics and

reliability of contrastive results.

4.2 BB-SIM parameters

In this experiment, BBD-simulator instantiated 30 BBDs. The buffer number of each contribution could

be one of these three numbers 500, 1000, 1500. BBA-simulator imitated written operation 9475 times, the

simulation lasted 10000 time slice, and the events were distributed in the 10000 time slice randomly. The

backup strategy was backing-up data immediately when BBD exit was detected. And the experiment

adopted passive off-line check strategy. That is to say BBM did not check BBD’s online status all the

time. The checking operation occurred only when reading or writing operation happened. Once the

BBD off-line event had been checked, the simulator started to backup data immediately. The backup

strategy and off-line checking strategy will have a great impact on the experimental results, such as the

distributing of data movement.

As BBS is to provide differentiated storage service, we should divide BBDs to different classes according

to its loss rate. Define ARhigh = 99%, then we could calculate that DRhigh = 0.1 according to (4). So

DRmedium would be less than
√

DRhigh =
√
0.1 = 0.32 according to (5). In this experiment, let DRmedium

equals 0.3. The BBDs whose failure rate is less than DRhigh = 0.1 are assigned to the high-level, storing

BBA’s high-level data; failure rate is less than DRmedium = 0.3 greater than DRhigh = 0.1 are assigned to

the medium-level, storing BBA’s medium-level data. While the rest BBDs are assigned to the low-level.

4.3 Preliminary simulation results

BB-SIM simulates the BBS system, and the following figures described the simulation results. Figure 4

reflects the variation of total buffer number. The inflection point indicated that some events happened

and had influenced the status of the system. For instance, the event of BBD contributing buffers, expiring

of buffers or the logout event of BBDs, with either of these occuring, the system’s buffer number alters.

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:11

Time slices

2000 4000 6000 8000 10000

B
u
ff

er
 n

u
m

b
er

20000

22000

24000

26000

28000

30000

32000

34000

Total buffer num

3000,25500

4500,27000

7000,28000

Figure 4 Variation of total buffer number.

Table 2 BB-SIM parameters

Items Value

Number of BBDs 30

Contributed size One of 500, 1000, 1500

BBA write buffer number 9475

BB-SIM run time 10000

Storage level ARhigh = 99%, ARmedium = 91%

Loss rate DRhigh = 0.1, DRmedium = 0.3

Before time slice 3100 we can see that, it belongs to the system warming-up process, and almost didn’t lose

data. While after time slice 3100, downward lines began to appear, which indicated that buffer gradually

expires or drops. Since we assumed that every time BBD contributed a buffer set (described in Table 2).

When a buffer was expired, the buffers belongs to the same buffer set were expired simultaneously. This

phenomenon can be observed from the big span of every inflection point in Figure 4.

The simulation applied the same sample and same distributing strategy but in different buffer allocation

mechanisms, so we could analyze the performance divergence objectively. There are three allocation

mechanisms: (a) allocation mechanism based on the sequence of events; (b) allocation mechanism based

on the remaining survival time; (c) allocation mechanism based on the reliability.

We compared these mechanisms in the following three aspects: the number of data movement, which

reflects the system maintain flow of BBS; data loss rate, which reflects the data reliability; the payload

of each BBD. BBM should try to balance the load so as to avoid the great data recovery traffic when a

BBD was lost.

(1) Data movement and loss rate. According to Table 2 managing buffer based on the remaining

survival time could achieve lowest data movement times; however, it may cause significant burst of traffic

reflected by Figure 4. The third method’s total number data movement times are highest, while its data

loss rate is the lowest. Conjunction with Table 2 and Figure 4 we can also see the first method obtains

relatively small number of data movements, and an average maintain flow. The reason would be that the

third method ensures data reliability priority every time, so the failure rate can be guaranteed. However

the data may be distributed to about to expire BBDs, leading to a situation that just completed the

data distribution and will perform the data migration immediately, so that the number of data movement

would be more. On the contrary, in the second method, data is stored for the longest time, so the total

number of data movements are the smallest, but data reliability cannot be guaranteed.

Figure 5(a) reflects the accumulative data movement in the 10000 time slices. It can be seen that there

was not any data movement before time slice 3100, which refers to the warming-up progress. The data

begun to move around time slice 3400, which means buffers began to lose. We can see the data moving

intensively near time 3500, 6000–8000, 9000. The reason would be buffer expired or BBD lose in these

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:12

30000

25000

20000

15000

10000

5000

0

A
cc

u
m

u
la

ti
v
e

d
at

a
m

o
v
e

n
u
m

b
er

0 2000 4000 6000 8000 10000 12000

Time slices

Mechanism (a)

Mechanism (b)

Mechanism (c)5000

4000

3000

2000

1000

0
3000 3500 4000 4500 5000

(a)

D
at

a
m

o
v
e

n
u
m

b
er

Mechanism (a)

Mechanism (b)

Mechanism (c)

5000

4000

3000

2000

1000

0

347 303 398

Mechanism (a) Mechanism (b) Mechanism (c)

(b)

Figure 5 The data move number of three allocation mechanisms. (a) Accumulative data move number; (b) box plot of

the data move number.

Table 3 The general performance of these three mechanisms

Data move number after 10000 time slices Data loss rate (%)

Mechanism (a) 17000 0.36

Mechanism (b) 14813 1.12

Mechanism (c) 19617 0

points. And we can also draw this conclusion from Figure 4. There are significant descending lines in

Figure 4 near these points.

Although mechanism (c) has the largest total data move number which is shown in Figure 4. However,

when comparing the usual data move, mechanism (c) may not be the worst. The usual data move number

reflects the overall recovery traffic. Figure 5(b) is a Box Plot of data move number, and can reflect the

overall data distribution. We can see that most of the time the data move number of mechanism (b)

was relatively small. But mechanism (b) had a large outlier value which deviated from the highest point,

causing a great traffic burst. Figure 5(b) also reflects that the overall performance between mechanism

(a) and mechanism (c) is almost the same. The median value of mechanism (a) is 347 and smaller than

mechanism (c)’s median 398. It means the average performance of data movement is slightly better.

Comparing the loss rate among these mechanisms, there is no doubt that mechanism (c) achieved the

lowest loss rate, which is shown in Table 3. However, mechanism (c) also has the largest overall data

move number. Theoretically, according to Table 2, the loss rate should be less than 1 − 91% = 9%.

Results in Table 3 are in accordance to the theoretical value.

In general, mechanism (a) can get a relatively small data move number, and a relatively small average

recovery traffic, while mechanism (c) has the best reliability performance. The reason is that mechanism

(c) selects the BBDs with the best reliability to store data so that the loss rate can be guaranteed.

Meanwhile, this strategy could also bring about a situation that distributes data to the BBDs which are

about to expire, causing data migration. Thus, the total data move number is higher than the other two

mechanisms. In contrast, mechanism (b) selects the buffer with longest surviving time so that it has the

least data move number, but the data reliability cannot be guaranteed.

(2) Payload comparison between BBDs. Pick a few representative time points to show the payload of

each BBD. We selected time points 3000, 4500, 7000. Because time point 3000 is a point that warming-up

process has just ended and did not have much data loss, so it can reflect the running state after system

warming-up. Time point 4500 can reflect the BBD payload situation where buffer begins to lose just after

the warming-up progress. Time point 7000 can reflect the payload situation under BBS stable status.

The colored histograms in Figure 6 represent the used blocks of each BBD, and the grey histograms

represent the total blocks on that BBD.

As can be seen from the Figure 6, mechanism (a) can distribut blocks to different BBD compared to

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:13

B
u
ff

er
 n

u
m

b
er

3000

2500

2000

1500

1000

500

0

Owned buffer num

Mechanism (a)

Mechanism (b)

Mechanism (c)

Time = 3000

BBD ID

0 5 10 15 20 25 30

Point 1

(a)
B

u
ff

er
 n

u
m

b
er

3000

2500

2000

1500

1000

500

0

Owned buffer num

Mechanism (a)

Mechanism (b)

Mechanism (c)

Time = 4500

BBD ID

0 5 10 15 20 25 30

Point 1

Point 2

(b)

B
u
ff

er
 n

u
m

b
er

3000

2500

2000

1500

1000

500

0

Owned buffer num

Mechanism (a)

Mechanism (b)

Mechanism (c)

Time = 7000

BBD ID

0 5 10 15 20 25 30

Point 1

Point 2

(c)

Figure 6 The payload of three allocation mechanisms at three time point. (a) At time point 3000; (b) at time point 4500;

(c) at time point 7000.

the other two mechanisms. However, the situation that some BBDs were overload and some BBDs were

idle existed in both the other two mechanisms. Take point 1 in Figure 6(a) whose BBD ID is 23 for

example, it can be seen that it is empty, while the BBD 17 is full load in the case of mechanism (c).

Similarly, at the other two time points, there occurs such a situation. For mechanism (c) in Figure 6(b),

the BBD at point 2 is idle, while the BBD at point 1 is full load. For mechanism (b) in Figure 6(c), the

BBD at point 2 is idle, while the BBD at point 1 has a heavy load.

Overall, mechanism (a) could spread the system maintain traffic throughout the whole running period

and has a relatively small traffic burst as well. The payload of mechanism (a) is also better than the

others two. Although the metric of reliability is not as good as mechanism (c). But in view of the

streaming media applications, the reliability is acceptable. Thus, mechanism (a) performed better than

the other two mechanisms.

5 More discussions about BBS

Data security issue. Similar to the P2P system, BBS have security issues, such as content identification

issue, malicious code issue, etc. However, we believe that the introduction of BBS did not let the security

situation become critical, and does not introduce new security issues. The existing P2P security solution

to these issues can be applied in BBS.

Scalability bottleneck. Early P2P systems, such as Napster1), adopted the centralized control mode.

1) Napster L. Napster. https://en.wikipedia.org/wiki/Napster. 2001.

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:14

Napster encountered scalability bottlenecks while excution. Under the scenario of many P2P users,

Napster server is unable to meet the massive demands. In BBS system, this problem is well resolved, as

BBS deployed on the edge network, only provides service to thousands of users in the edge network, rather

than that Napster serve the whole Internet users, BBS has a relatively smaller scale and the scalability

bottleneck issue would not appear.

BBD behavioral modeling. In the simulator, BBD joins and exits the system randomly. This simple

method does not describe BBD’s behavior accurately. BBDs join and exit is a probability event, and the

probability is changing all the time. However, it remains the same all the time in current simulator. The

backup strategy adopted in current simulator is restore immediately if BBM has detected BBD loss. If

we adopt lazy backup strategy, then it will be necessary for us to analyze the data reliability during the

delayed time to ensure reliable storage service. Then we need to model the BBD behavior to prove its

reliability. In fact, BBD’s join and exit can be modeled by birth-and-death process. In our future work,

we may consider modeling BBD’s behavior to reflect some regularity problems.

Incentive issue. The intensive access to storage resources in end-users’ computers via edge network may

cause excessive bandwidth consumption to each individual user, which may prevent users from continuing

contributing their resources. It relates to the incentive mechanisms in BBS. We find this problem too

negligible to hinder the development of BBS. In fact end-users could get interested by depositing storage

resources in BBS and get the reimbursement from BBA in the form of value-added services. All it requires

is cooperation with these BBAs. One possible approach is to provide a virtual monetary system. BBD

can get money through depositing storage resources and can use this money to get BBA value-added

services. For the BBA, the income has decreased which reflects in two aspects. On one hand, the money

BBA obtains from a single user decreases as a result of partial mortgage by BBS virtual currency. On

another hand, BBA spends money to pay for BBS services. However, this occurs at the exchange of

not upgrading the existing servers, as well as increasing subscribers. For instance, if the original service

is 10/month, a BBD mortgaged 5 for the virtual money acquired by continuously depositing storage

resource. Thereby the member price reduced to 5/month. This price will be very attractive. Then both

the number of BBA service subscriber and the number of BBDs will increase, resulting in a win-win

situation.

6 Related work

In the domain of In-network storage, researchers have proposed a variety of applications covering different

aspects of the Internet. As it was mentioned in Section 1, In-network storage resources could be divided

into two types. One is storage from ICP or ISP; another is the end-users’ storage resources. Apart from

the two usage patterns in Table 1, the third usage pattern is a hybrid mode, using both ICP/ISP and

end-users’ storage. It is called hybrid CDN + P2P method in article [13]. Indeed, it could save server

bandwidth. Lots of researches have shown that, such as online file hosting system (FS2You [13]), P2P

file sharing system (Napster1)), live video streaming and VoD system (Novasky [14], PPLive [15]) etc.

Although the same storage usage pattern exists, they still have different design, focuses and issues.

P2P online file hosting systems (FS2You [13]) focus on the allocation of limited storage to potentially

enormous amount of data files so that semi-persistent file availability may be achieved. VoD systems and

live video streaming systems, such as Novasky [14], PPLive, require a real-time delivery. In particular,

the key design objective of a VoD system is to guarantee continuous playback and short buffering delays

after a random seek or an initial startup, which is not an issue in online hosting systems.

However, BBS is different from the entire above said hybrid CDN + P2P systems. BBS appears to

be a storage infrastructure in the Internet and decouples the storage from enormous applications. That

is to say the storage resources aggregated by BBS including end-users’ storage and ISPs’ storage, can

be used by a variety of advanced applications. For instance, when FS2You [13] which is a P2P online

hosting system adopts BBS service, it treats BBS as a replication server, which is closer to the edge

network and has a greater storage capacity. In this use scenario, FS2You system is a BBA from the

perspective of BBS. BBS, as an infrastructure, can serve other applications simultaneously, such as the

Chen H Y, et al. Sci China Inf Sci January 2016 Vol. 59 012103:15

VoD application, Novasky [14]. In Novasky, BBS could be treated as a super peer, which has a tremendous

uploading bandwidth as well as huge storage resources.

7 Conclusion and future work

This paper carefully discusses the implementation mechanism of a new storage model, compares three

buffer management mechanisms, and analyzes the performance of these three methods by simulation.

Since it is a preliminary simulation, hence we did not evaluate the system throughput, and delay. In our

future work we would implement the complete system, in order to compare its performance with that of

the existing P2P Cache. Existing data distribution algorithm seems rather simple, and the load balancing

algorithm and other algorithms should be added to the system, and then a comprehensive comparative

analysis could be performed.

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program) (Grant No. 2012CB3159-

06), Program for New Century Excellent Talents in University (Grant No. 4345113151) and National High-tech

R&D Program of China (863 Program) (Grant Nos. 2011AA01A10, 2012AA01A50606).

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Alimi R, Yang Y, Rahman A. A survey of in-network storage systems. RFC 6392. 2011. http://www.rfc-base.org/rfc-

6392.html

2 Berkheimer A D, Dilley J A. Method and system for tiered distribution in a content delivery network. US Patent,

Patent US7133905. 2006

3 Hefeeda M, Hsu C H, Mokhtarian K. Design and evaluation of a proxy cache for peer-to-peer traffic. IEEE Trans

Comput, 2011, 60: 964–977

4 Xylomenos G, Ververidis C, Siris V, et al. A survey of information-centric networking research. IEEE Commun Surv

Tutor, 2014, 16: 1024–1049

5 Zhang L, Estrin D, Burke J, et al. Named data networking (NDN) project. Relatrio Tcnico NDN-0001, Xerox Palo

Alto Research Center-PARC, 2010

6 Zhang Y, Zong N, Camarillo G, et al. Problem statement of P2P streaming protocol (PPSP). IETF PPSP BoF, 2008

7 Huang B, Sun Z, Chen H, et al. BufferBank: a distributed cache infrastructure for peer-to-peer application. Peer-to-

Peer Netw Appl, 2014, 7: 485–496

8 Rossini G, Rossi D. Evaluating ccn multi-path interest forwarding strategies. Comput Commun, 2013, 36: 771–778

9 Muscariello L, Carofiglio G, Gallo M. Bandwidth and storage sharing performance in information centric networking.

In: Proceedings of the ACM SIGCOMM Workshop on Information-centric Networking. New York: ACM, 2011. 26–31

10 Ousterhout J, Agrawal P, Erickson D, et al. The case for RAMClouds: scalable high-performance storage entirely in

DRAM. ACM SIGOPS Oper Syst Rev, 2010, 43: 92–105

11 Chen H, Sun Z, Huang B, et al. Who is more reliable? An evaluation method for distributed-memory aggregation in

the Internet. In: Proceedings of the 2012 ACM Conference on CoNEXT Student Workshop. New York: ACM, 2012.

41–42

12 Kim J T, Park H K, Paik E H. Security issues in peer-to-peer systems. In: Proceedings of the 7th International

Conference on Advanced Communication Technology (ICACT 2005). Phoenix Park, 2005. 1059–1063

13 Sun Y, Liu F, Li B, et al. Fs2you: peer-assisted semi-persistent online storage at a large scale. In: Proceedings of the

28th Conference on Computer Communications, Rio de Janeiro, 2009. 873–881

14 Liu F, Shen S, Li B, et al. Novasky: cinematic-quality vod in a P2P storage cloud. In: Proceedings of the 30th IEEE

International Conference on Computer Communications, Shanghai, 2011. 936–944

15 Huang Y, Fu T Z J, Chiu D M, et al. Challenges, design and analysis of a large-scale P2P-VoD system. ACM

SIGCOMM Comput Commun Rev, 2008, 38: 375–388

