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随着人工智能 (artificial intelligence, AI) 技术从

传统机器学习不断迈向生成式智能与基座模型

(foundation models), 其在金融、医疗、交通、工业控制

等关键领域的渗透日益加深, 系统形态也愈发复杂. AI

系统已经从单一模型、单节点训练的集中式形态, 演化

为涵盖联邦学习 (federated learning)、拆分学习 (split

learning)、云边协同以及多模态基座模型在内的庞大生

态. 在这一过程中, 安全与隐私问题正从边缘议题演变

为制约 AI可靠落地的核心瓶颈: 数据投毒、后门植入、

模型劫持、梯度反演、对抗样本与模型窃取等攻击手

段不断涌现 [1,2], 大型语言模型 (large language models,

LLMs)与生成式模型还面临越狱 (jailbreak)、提示注入

(prompt injection)、训练数据泄露等新型风险. 如何在

充分释放人工智能潜能的同时,有效防范贯穿全生命周

期的安全威胁与隐私泄露,已成为亟需系统化梳理和深

入研究的关键课题.

SCIENCE CHINA Information Sciences 在 2025年

68卷第 8期出版了冯登国院士等的综述文章 “Artificial

intelligence security and privacy: a survey”,本文系统回

顾了近年人工智能安全与隐私领域的大量代表性研究

工作, 从 “训练 – 推理” 两个阶段、“集中式 – 分布式”

两类部署形态以及 “传统模型 – 基座模型” 两类技术

英文原文: He X L, Xu G W, Han X S, et al. Artificial intelligence security and privacy: a survey. Sci China Inf Sci, 2025, 68: 181101, doi:

10.1007/s11432-025-4388-5
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图 1 (网络版彩图) 人工智能模型中的攻击与防御分类. ML: machine learning.

Figure 1 (Color online) Taxonomy of attacks and defenses in AI models. ML stands for machine learning.

范式三个维度, 对 AI 系统中的安全威胁与防护机制进

行了细致的分类与分析 (如图 1 所示). 在训练阶段, 重

点总结了非定向数据投毒、后门攻击与模型劫持等针

对集中式训练流程的攻击方式,以及联邦学习与拆分学

习场景下的模型投毒、数据投毒、梯度/特征反演和服

务端操纵等新型威胁. 在推理阶段, 系统梳理了成员推

断 (membership inference)、模型反演 (model inversion)

等隐私推断攻击, 故障注入与侧信道攻击, 对抗样本攻

击及其物理实现,以及通过大规模查询实现的模型窃取

(model stealing)等问题,并进一步扩展到基座模型和大

模型面临的越狱、提示注入、恶意微调与安全对齐退化

等前沿攻击形态, 呈现出一个从底层数据、模型参数到

上层应用与生态的立体化攻防图景.

在防御层面,以体系化视角总结了多层次的安全加

固思路: 在训练阶段, 涵盖鲁棒优化与稳健训练、异常

样本与恶意更新检测、后门分析与模型净化、差分隐私

(differential privacy)与安全聚合 (secure aggregation)等

隐私保护训练机制, 以及面向联邦/拆分学习协议的安

全设计与可信执行环境; 在推理阶段, 则包括对抗训练

与认证鲁棒性方法、访问控制与水印技术、同态加密与

多方安全计算等隐私增强推理方案,以及针对大模型的

安全对齐训练、安全评测与红队测试、提示过滤与日志

审计等治理框架. 通过对典型攻击与防御方法的对比

分析, 强调当前尚不存在 “一劳永逸” 的通用防御方案,

实际部署中必须在安全性、性能开销、系统复杂度与可

用性之间进行精细权衡, 并根据应用场景构建分层、多

点联动的纵深防御体系.

在此基础上,本文进一步凝练出若干具有代表性的

未来研究方向: 一是面向持续涌现的新型 AI 范式 (如

多模态基座模型、代理化系统、联邦大模型等) 的安全

与隐私威胁识别与专门防御设计;二是从受控实验环境

走向大规模、异构、动态真实系统的 “更现实” 的防御

策略与评测基准;三是将可解释性 (explainability)与可

理解性 (interpretability) 深度融入安全防护过程, 使模

型能够解释对抗输入与异常行为,从而提升关键场景中

的可信度; 四是面向云、边、端协同部署环境的跨平台

安全机制, 兼顾资源受限设备上的效率与鲁棒性; 五是

进一步强化密码学、系统安全、软件工程、法律与伦理

等多学科协同, 构建覆盖技术、制度与治理层面的综合

性 AI 安全保障体系. 总体而言, 本文旨在通过对人工

智能安全与隐私攻防格局的系统梳理,为研究人员提供

了清晰的知识地图与问题脉络,也为产业界设计和部署

面向未来的安全可信 AI 系统提供参考与启示.
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