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Figure 1 (Color online) The framework of progressive cross domain aspect sentiment analysis.
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Table 1 Statistics on the number of sentences and triples in SemEval dataset.
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PSR S R, 3 NMETIFIR B &7 e B ARIE, ry DU Rk, BB 6 MR, Xt
ot B 2 H A B B AU A TT B B B B, e i IR YE S AR R 1) WL AN ] 3 ANERE, T RASEILZ ]
Z A AR T SRR E PRI

4.2 XEEFE

Sof bE 7 9 AR RE SAEAS 3 N 72, 40 BERT-UDA; ¥F8 B SOvFRZ A 7%, 40 CDRG; Akt
SIS IR L, 0 GAS. AR B SRRSO VAR RCR B E R, ASCGERLT SpanASTE Al RoBMRC fE
Xt 725, AR VIR BEAT I 2R A PATIE RS

(1) BERT-UDA P71 %77y i FRAF F & N AR A H3E B, SR8 (S 3z ARE 7). REAE HE RE T 5
ANBREBAS S, FEAS B IS BB T — AN Gl 28, R A R AR 3T B S VR 47
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i, A3 B — AN TE R R VS AR AL, K A AP 7R Jvfan A\ AR B H BRI PE 18

(3) GAS BT iZJrikig — g — A B RHE L, ZAE LR P A @iy o R U A A, v
P AAE S ) el AR 2 A B A S R R 1 H A ), e R AR i N ) 7 B X L P 7 SRR 25 P 54 32
Hbrh).

(4) DA2LM P9 %753k R BALHE 3 AP B, M B —, A U AR 1| S Ao AR 2R 5 Sy H AR A ) £
AL bR S, BB, MR A bR 2 1 IR R B OV AR S H ARkt BT R, BB =, KA E A A RO K
FNEE T RER I AL BRI, B B 2E OK B b 28 1) H AR A T 3 .

(5) BGCA B, %742 7 — AN A il s AT A RE i 15 B AT HE 28 8 3 e Y5 B 1 5t A
B, FEh B AR AR s D bR . BRI R — AR 2 B SCAR AR, S8 5 FZ B Y AR 5 H AR 53 O b 2 AH U T
(R0 ) 7. T e 2% VRN H A Sk 1] 2 5 A 2.

(6) RSDA BU. 1ZJ7¥E7E BGCA [AEA Ext B AREE SEAT R A IR 1k, 3845 i & H b, 1271 B s
B 2 R, R S 28 (R ISURT E BRI )1 s 1 2.

(7) SpanASTE B8l %7721 IRAE 7 WL s B I OC R TN b XA T IS 5 2 MAZ TR R, %
BT AN e A AL B 22 1] 2H B 77 TSSO A, 3 RE A SRl e R 20k, B2 1 A J7 TGI8 BT 7 VR B8R

(8) RoBMRC B9, iZ 5kt iy 7 — Rl X 5 Th 9 175 B8 = Je 4L B F & #E f Ak BMRC #i7. BMRC 383 XU
] B AL T T . B LA IR G B A2k R, A ALE I 50 N HEAh 4 S8 88 DU S 250 TR S 01 200 . S FEDTALD
FHN RO 22 A4 B SR 523 BMRC B4

4.3 SR ESIFMIER

SEIG A T5-base WA BHTEE TR, AL IR Adam, ST HA 3e—5, RN N 16, SCAA: idh
P A SO . 058 1 BB, BRI GREE RN 15 48, STHUa O R F A SO %, DRI DL X 335 B g
R, N BB LM, mORERN 0.1 7E5 2 Wi, A 1 rB 2500125 15 52, THERICI 2 H Aris
FHASCARN NLI A deberta-v3-base-tasksource-nli 401 7E25 3 BB, f FH SCAHE SHA t5-paraphraser (41
TR LW B N 0.7, I HR AR AR 2 A0 25 CRUE R 5 AN R FRAE N 2, B 28 2 BBt NLI AL R P i 1)
PSSR, B A B EE 2 BRI LS HONIZR 15 6, 1R MBS AL, fEVEM R AR T I, F1 1R AR
2 Bl R R A3, 42 T 2R G PRSI AL A R BE, AR SCHR B AR 9P FE br.

4.4 SEWERKESH

(1) BEIJ7 TR, 3R 2 5 T AR ST 7515 HoAth 32 I 7 V270 195 3 7 T 1) e AT 45 ) 1 e ko B s s
I3, SZERE LT, BRI S REAS H 3E N U7 BERT-UDA Mtk 2. BERT-UDA V1 F1 0N 42.97%,
AR P R R I 7 Z BN, XU Z VAR Z U RN EAT B B REA L, JLHAE R—S 1 L—S iE
7510 RIS, 1K HE— 0 F S AR 1] 1 AR AT X RAFAE AT I B 1) 7 A Ak 22 57 B 2 3% 5 AP AE SR
B PPE EM SR %%, CDRG BAE LR Ml L—S _EEUS BT SR, (BT 1550 49.90%, 1
BT e AU DAZLM MIFEZ A 7 MR IR, Hod SR Al LR 4605 m, R AR A ok
WEAE S T e b A RIFIER A )0, ARG b, GAS RBUREE, 1 B 80— 2E il S v JE 108 00 o
BT S BGCA TEZ e br 2L DAZLM, J81F T FERUA AE BAEZE (194 2. RSDA WITE 2 ANE R 5 H HY
U R 5R, I BA L A B S 1 58k SR W T 22 R PR RIORE B 2 (VP T RAF-P . A SO iETE A TR i 1) 13
BUSEUFIEE R, P MERESR T 0.62%, MEREM T Z R KN R—D F S—D ¥ FRIAE, X2&H T D
VBN B FRIgi B 5 A i BT 7 vALE oA I RE R v Re BT, 3R L 5 A 5 S R E R ) AT AT
fadgtt 5@, JUHAE D—R, D—S Ml L—S & mMEEEAE %S EIHUS L, RIL 1 438 1) B Ar i & 5 U 4
A BT E, BROETE CRUF A BY 14 B8 1Y) [R] B S B S~ g

(2) BEIR T T s I = e . 3 3 45 T AR 7 VAR s I T 1 8% = n A AT 25 o (1 1 BB S 58
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* 2 AEFEEBEFEITMES LY F1 E (%) Mo RMERMERTE.

Table 2 Comparative analysis of F1 scores (%) for cross domain aspect extraction tasks. The best results are highlighted in bold.

ATE S—R S—L S—D R—S R—L R—D D—R D—S L—-R L—S Mean Variance
BERT-UDA 56.08 43.98 38.36 34.62 46.87 40.34 50.54 34.52 51.91 32.49 42.97 7.77
CDRG 60.20 39.49 38.59 49.97 55.50 34.89 57.51 43.19 68.63 51.07 49.90 10.24
GAS 54.61 35.12 35.81 30.99 43.50 39.29 53.40 33.34 49.06 29.64 40.48 8.72
DA?LM 65.78 44.96 43.24 43.41 54.55 44.29 63.86 38.20 68.72 41.06 50.81 10.83
BGCA 63.20 46.15 38.24 45.86 57.13 37.15 65.33 54.07 69.53 44.85 52.15 10.83
RSDA 63.69 47.47 39.12 49.82 58.15 38.25 66.74 54.45 68.69 51.48 53.79 10.12
OURS 65.78 49.58 39.91 49.24 60.38 37.04 67.55 53.57 71.37 49.66 54.41 11.00

® 3 TRIGFEEBEHAFARER=TEAMMES LK F1 & (%) ME2H. RMERMERT.

Table 3 Comparative analysis of F1 scores (%) for cross domain triple extraction tasks. The best results are highlighted in bold.

ASTE R14—L14 R15—L14 R16—L14 L14—R14 L14—R15 L14—R16 Mean Variance
SpanASTE 45.83 42.50 40.57 57.24 49.02 55.77 48.49 6.86
RoBMRC 43.90 40.19 37.81 57.13 45.62 52.05 46.12 7.29
GAS 49.57 43.78 45.24 64.40 56.26 63.14 53.73 8.91
BGCA 53.64 45.69 47.28 65.27 58.95 64.00 55.80 8.32
RSDA 54.66 48.39 50.96 66.15 60.52 66.36 57.67 7.89
OURS 55.44 49.86 49.37 68.71 61.58 68.74 58.95 8.77

Br. MSZI&ZE B A W, SpanASTE Al RoBMRC iX i il A 22 B I AL H 1) 05 1k Sz R B 4 1190 I B 1 44 5 %%,
T84 PRI JE AN H BRIk 2 A7 TR 235 (1) 22 S AN A 2. A, AN SCHE H 1) 5 YRR 4 K 22 B0 1 50 b LTS
T EAEMCEIITERE, M T RSDA J7VEA 1.28% MIEF, NAE R16—L14 5 KK T RSDA Jiik, X—IE
AREYE T RSDA FITK I HEHE 34 0 SR AR 8 B4 TR & — 2 M. HBAM S, AR H KA
JEDLH oA S LR E P e R L.

4.5 HEASSERSHSH

(1) BYBeif ik, ASCHEH T 758 4 M, 57 3 AU BOZ S IAE B R ddE o i s i E ) H
PRIBCEHE, B AESE 4 B B SIS S 5 TR A B A, AR S B BRI DTk, A0 AT 3 B B o ol g A7 i
5, 2R WER 4. HRPY B, MU E & HAREOUA, J5 8 R A R H ARSI SCARTER B 3 AT SRR S
SRR, BANCEY) FLE TR T 2.23%, JERZ IR B AR 2 MR 2 5 DARR A7 AR o e e, E e
H RSSO R D bR 2 F TSR 27 AR E S | RO A S R, 8 BAREBOCR S &, EE SRS s
2 B AT ) — B0, AR S R AR . THR B =, RUNANHHT SCARE S B FLAE R T
1.63%, 2 B B — i A 119 ) X DU TR0 B (19 22 Ak A1) 2, T80 3 15 A il 2 R ) s Re FR THISE B2 AL R ), A BN
TR e 2 =T BRI . st RUATEIRSON SRlr A2 B A T H Rl A5 2 p) R R Ak
W, P FLE TR T 9.57%, R T IEE0R B AR L U W2 A fe 20

(2) BB P RHOE R AR SCHR S RS SO R 5 VA AN M B L SR R B T, B K e A T
PEIE R VR RE I B AR sE ), AT T A R A SEES, 45 R ILR 5. HAl DANN” $8 12 1E H bR iR
Az B B, AN 380 B N 48 SR SR IR A S R D b 25, T 2 B 2 F RSN R A PR B R SR SR IR ARSI D A 2. Sk
55 R IT35) F1E TR 2.38%, B2 DANN @ 00 BT A i 1 IREE H PRI A0 22 57, (AR 2% 5
BB 2 TERRHIE, T4 E B ARz A Re 7). AP SEOBERY J) 5 T2 ST YRR B R AE, PR E ARz AR
Bl WS HUELE a5 IER M B ZRAT S RV B S5, ANk ART— M BEUISR G IS4 S0 3R A
TS5 F1MH R BE 1.06%, 3R IESEY B S HOL X RFHT 5 E S A AR A R S B M. RS o i R a5
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® 4 MEHBMXEBETERER=TTAM F1 E (%) B0,

Table 4 Impact of stage ablation on F1 scores (%) for cross domain aspect-level sentiment triple extraction.

ASTE R14—L14 R15—L14 R16—L14 L14—R14 L14—R15 L14—R16 Mean Variance
OURS 55.44 49.86 49.37 68.71 61.58 68.74 58.95 8.77
Ablation of phase 2 53.16 46.40 46.81 67.64 60.27 66.05 56.72 9.34
Ablation of phase 3 52.94 46.89 46.69 67.52 61.51 68.36 57.32 9.84
No-cross-domain 44.99 36.81 39.93 59.56 55.01 59.98 49.38 10.14

* 5 BMERPFRIGEMMNEBEASRRBR=THEME F1 E (%) 8950,

Table 5 Impact of sub-module ablation at different stages on F1 scores (%) for cross domain aspect-level sentiment triplet extraction.

ASTE R14—L14 R15—L14 R16—L14 L14—R14 L14—R15 L14—R16 Mean Variance
OURS 55.44 49.86 49.37 68.71 61.58 68.74 58.95 8.77
Ablation of DANN 53.64 48.02 44.80 66.15 60.90 65.91 56.57 9.14
Ablation of parameter transmition 55.28 46.50 48.89 67.44 60.97 68.24 57.89 9.22
Ablation of NLI filter 53.81 47.64 48.67 66.04 59.10 68.35 57.27 8.74
Ablation of source domain supervision 52.23 45.64 46.63 65.22 59.00 65.45 55.70 8.85

B BUORSF— B R R 22 ), e dE IR R I E 72 I 3& B H AR IRFALE, A RERTTH R IEM HOR. “IH Rt NLI L&
FERT H A Igl S AN 5 SCAAS FHAT T AR 5 HE R VR AT PR ). SEIR S R BR-T 1) F1E TR 1.68%,
WIRZE NLI 3 SISO A RE & A 5 JERREE1E XA ET E AR, ZAMHERIRE - SR ik A, #
MRERB R, “THRLIEIRTR 3 Fe RN R AT, AU A2 i B AR D AR E B, 1A IS e it . e
SR FLOE TR 3.25%, JRIEZET HARROI R4S B2 L W BAUfl, 54N RT3 S A7 AR e A5 55 ANl e . U
AR I N TRRE, o S e HL S INARE , 25 BRI vk 58 S D i, B 5 27 3] SI49 Ml 22 (1 1R 1L
Fr, BEERAERER.

(3) HARECAEMSHII T, N 7 VA A SO V2R ) B AR s £ 5 38U 55 7 10 Rk S T Sk, A
R H RIS B AR e AT PERE 20 TR AR I S e A B SR A I, Afs P s, (A FH 26 i
) H RIS FR A B RN Fr 2, 58 7 TH 1 R = e U 55 e B B AN R 1 7T ) H AR A
SR, AEBEREER) 6 NFEETT BT IR, WAL F1 AR, SR aE R 2 P, SEIREIREOR, BEE
A 2R AR A SR R N, SRR RE R BT IX— S5 RER W], AR SO i ) F AR B A e
W SCAE SRS — B0, RMEAE 58 A AR 2 52RO R, thagig o SR B s Bt fe. 28
JAEARRIE R — E MBS, TR BUE TP I &, X0 KV 2 IR A SURE R R THREA B 2 5 2 R,
B B2 B A B 328 DBl S

(4) ¥'5 XA RN SEONT. AR CEEIENE 3 BGIN T SUARFE S, S5 2 By Be A ) B Arisk
HEXABATES, U SCARIEN AR T ARIEZAEER A 2, AT GpT-2 A 421 3t
HCARME R JE R EE (perplexity). PRIEKE 431 S48 5 A5 BT 5 SCA T AE 2 ) 4 A, FLAUERVIR, FoRES
RS ZSCAR I TR AR 5, RIZSCARERF & HARTE = MSuTH R, S @i 548, & 6 4 778 6 N
] b, HARIEE SR S S ORI N SR L. SRR, SINSCRE SRS, B ARECCAR I 35 2R B
230.98 BE FREAE 111.96, RS G SCARIEE SR SIEAG B A HERA. BAAKESEE
IR Bl T A5 B U AR P SCAR R TB R 45 4 508 U IR, 38 G DR 5 SR T 7 A R B AR e 2. T B AT 55
W VS H AR B RIA RS A SR VRIS H AR (A AR 2 R, SRR AL H AR IE R, RIS, B
HRISZIG R 4 MG RATE, I N AR S B G, & = e BUT S8 F1 EH 57.32% 5 £ 58.95%.
K — DRI T 3% 5@ e H RO T &, 327 T 5 8 = n 4 S EUT 55 (1 14 RE.
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Figure 2 (Color online) Impaction of different numbers of target domain generating samples on cross domain aspect triplet extraction
(F1).

* 6 BREBXAEERIRMNERERILL.

Table 6 Perplexity comparison on target domain text transcription.

Perplexity R14—L14 R15—L14 R16—L14 L14—R14 L14—R15 L14—R16 Mean Variance
Reconstruct text 170.90 166.02 339.59 202.91 202.99 302.46 230.98 72.53
Transcribe text 120.89 130.42 122.43 99.30 101.12 97.61 111.96 14.23

4.6 ZHISHR

O LR P B AR ST AR HH PR B 3 7 THT 5 SR T R BB, FRATTIE X 6 41 B A AR R BRI 3047 S 091 40 HT,
T T4 5 R () TN 45 51 55 b SR (1 S e SR AR AR ) GAS 55 RSDA #ETXFEE. 8 7 Al THNA) T R ot
RIILSET I — 5 E& =0 HbR%E, HAar 3 AMFEBIR B YRR L14, HAREOA R16 (L14—R16), 5 3 MUIFHR
(R16—L14). & 8 MFIH T ASFIBAL K HISE R, 26 1, GAS ARAEIRH H FIFE 53 108 SR KGR “good”, 2
et L 22 P R 8 15 IR R TA F AR B8 A7 AE — 52 R PR T A SO v iR i T = o, VAR5 3 BB
AL SRR T 2 FEAL I 251, G5 T AU e ) SR SR AR 7, AT BE SE Bt tH = o415 B, 7E
2 W1, GAS 5 RSDA 444 12 MUK 17 S8R 1k 000 Ry i, =5 B RIAE T e AR BE IERARAT B 15 “speaks for itself?
T2 5 0 IE R B VPANY . AL 2R, AR S VA AL B R 1 5 AR B 1 Rk U T L S SR K E SRR . 1 3
W1, GAS 5 RSDA K15 8 Tl A “oke”, T ZME | B BLEERIA TG L 1AL “overpriced”. AXJ7 V2N )
P, T R A O SRR, X A TR 2 BB SCORE LS, 51 SRR TN SCTE A . B
ISR IE, PRAK T B EGRHA. £ 4 71 5 *, GAS 55 RSDA 7£ J7 T Al fl B _E 45 tH B R, B 5fs HARiR N
PEA T G T AR ST v DU AERF 1R 0 HE TR 4 THO O], 150 B LA Oy T A T 45 Hh B B s AR . X RE AR 8 T
53 B AU 2 A, 2T TR B A) S S D R S e AL RE D). B 6 R, AN RZRE RIS R IR
Hff W = oA R B M, T A SO VA AE R R TR RS S, PRI HS LA 4 5 17 B 31 T A . X — e
FEM TR 1 MBI b0 s i B2, AR R T RS A A AR S .

5 ZLMETE

5.1 EEEERRIFNE

DNy PR B AN [ 1) 2 PR A R 6T A S BT 4R T 1 B, JRATTIE I Qwen1.5-4B /N FE JERRAY | IR T5-base 1F 3
PRSI Y SC IR £ RAATIS U . 3 9 25t T SR AR, FRE R T LA tH, AR SCRr i S 0T S s 2 ) 4 A
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&7 BUERGISH.
Table 7 Case study.

ID Sentence Ground truth
sushi d, POS
1 This is some really good, inexpensive sushi. (sushi, good, )
(sushi, inexpensive, POS)
lace, not beautiful, NEG
2 Even though the place is not beautiful, the food speaks for itself. (place, not beautifu )
(food, speaks for itself, POS)
3 It was totally overpriced-fish and chips was a joke. (fish and chips, overpriced, NEG)
4 I got this at an amazing price from Amazon and it arrived just in time. (price, amazing, POS)
ki sier, POS
5 Working with Mac is so much easier, so many cool features (working, easier, )
(features, cool, POS)
6 It is easy to go from one keyboard to another. (keyboard, easy, NEU)

* 8 MHEARESHMRBNEE S ERIFER = THMER.

Table 8 Comparison of cross domain aspect sentiment triplet extraction using different models.

D GAS RSDA OURS
1 (sushi, inexpensive, POS) (sushi, good, POS) (sushi, good, POS)
’ ’ (sushi, inexpensive, POS) (sushi, inexpensive, POS)
9 (pl t beautiful, NEG) (place, not beautiful, NEG) (place, not beautiful, NEG)
ace, not beautiful,
P (food, speaks for itself, NEU) (food, speaks for itself, POS)
3 (fish and chips, (fish and chips, (fish and chips,
joke, NEG) joke, NEG) overpriced, NEG)
A .
4 (Amazon, amazing (price, amazing, POS) (price, amazing, POS)
price, POS)
ac, easier, working wit ac, easier, working, easier,
5 M ier, POS ki ith M ier, POS ki ier, POS
(features, cool, POS) (features, cool, POS) (features, cool, POS)
6 (keyboard, easy, POS) (keyboard, easy, POS) (keyboard, easy, NEU)

o TREEEER S AR AR F1E (%) Q%M.

Table 9 Impact of different base models on F1 scores (%) for cross domain aspect-level sentiment triplet extraction.

Base model R14—L14 R15—L14 R16—L14 L14—R14 L14—R15 L14—R16 Mean Variance

T5-base 55.44 49.86 49.37 68.71 61.58 68.74 58.95 8.77
Qwenl.5 56.12 50.75 50.02 69.13 62.11 69.31 59.56 8.64
FERIE .

5.2 BZEITHS

FITHRAE SRR IS () 52 2% o2 2 AR i RS SR A 2 N 25 b R IN B 20N 1, 3 F1 4 BrB, li T AR Ty
T 2] 17 IR 43 WA 553 0 i A A TSR SUAR AR U 55, P TRI R 2R BE G — W] AR O(N x L x H?), Forh N 72
FROKIE S L 2R H RRGERYERE. BRI, I 18] R 2% 2 5 55 i Y SR R AR R/« AR B ) cdfs B Al 2k
IR RO . 2 I 2 BB BOR (R S AR Y | B8 SR PT DASRTHHEZR R R S5, (ECRE SR T B [B) 2R, BAR P
SRAGTY R AT FR B, SRR FEI T BRI S5 . B RAT A L Th A0S AL 3RS TUAN BRI R AR R

N TR R IR, BT LAl LoRA 4582 i RUMUR 5 R el 18 75 060 152 T80T i) 2 80,
ML RE R R L. B s SR KIS 4cE, oT OB B AR B A7 ), UG R
A7 B B e AT LGS A2 A S e 2R PR S S, BEvE SE N R U B SOE IO LA, DAIBR D U 2R A
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SR AT SOR TAR 25 25, A2 B B AR D bR A8, L 0R] ISR 25 45 5 () SCAS H @ A 1Y A il H A 38 7t
A, PRUEINFRZSE 5 B ARECCA B0 55 b JE A H AR B B T U 5 5 ik, DARF SR 27
PERNERATE. B 2e, FIHPLAL G I B ARk e AR s ds e & I A Y 3R FHRE RN H AR IE BLRE /). 7E kit
FEA A Rl — AR SRR, B OR 7 TS B M ARG R R e R R 515, 462N a RS
PISEIGEE R, 5 IE B = ol U7 VAR L, AR SR 753 FLOESETE 1.28%; 5 A B 1540 L
¥ F1$ETF 9.57%. SR, AR SCHE H S 8 7 vk 2 B B IR U R0t R A0 B 18] R B I VE FE 7 TR AP AEAS 2, AT Reil 29
TE TR FISEBRSL . ARk AT R 45 A Sz 1b S B s 28 A8 SR, JF R B8 N i A ) s Sl e ALk, DA 2D
YIZEEA | St & n AT vk
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Abstract Aspect-based sentiment analysis (ABSA) aims to extract sentiment polarities associated with different aspects
or specific targets, and are widely used for public opinion monitoring, business intelligence, and decision-making support.
Traditional cross-domain ABSA methods typically focus on generating labeled data for the target domain and using them
to train cross-domain models. However, these approaches often encounter challenges such as significant semantic deviations
between the generated and original target domain texts, limited sentence structure diversity, and low-quality pseudo-labels.
These limitations hinder the model’s ability to effectively learn target-domain features, resulting in suboptimal transfer
performance. To address these challenges, this paper proposes a framework for progressive cross-domain ASBA, which
consists of four sequential stages: (1) generating high-quality pseudo-labels for the target domain, (2) reconstructing target-
domain texts aligned with the pseudo-labels, (3) refining the reconstructed texts to enhance diversity and quality, and
(4) performing final cross-domain adaptation through joint training with source-domain data. Model parameters are
progressively transferred across stages, facilitating progressive domain adaptation while generating high-quality labeled
target-domain data. Extensive experiments conducted on four public benchmark datasets demonstrate the effectiveness of
the proposed method. For the cross-domain triplet extraction task, the proposed method outperforms existing cross-domain
approaches by an average of 1.28% in F1 score, and surpasses non-transfer models by an average of 9.57%, highlighting its
superior cross-domain generalization capabilities.

Keywords aspect-based sentiment analysis, cross-domain application, multi-stages and progressive, language model



