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WE AN ERMFENFALTEAER RGBT EHNEEZREA. RE R E (quality of service, QoS) % K 77 @
FHEER, UR L& BEEE WL (wireless powered communication network, WPCN) H 3 3 77 £ By “W L Ir” [
A, ASCHE T T — 2 G648 K T (reconfigurable intelligent surface, RIS) ## B 4 % 249 89 WPCN A g A 38 33
BRAERUERER A, TRERREMTELSE, §ERANREN MG ERE. 40 EA, 28T
— PR T T R B % (accelerated proximal distance algorithm, A-PDA) #E R R A& 5K FE2 T 7 £. £
F ZFN R XA EABEAE R, ZBERUENTEA, EERSFEREMHE, P ER*XHA A-PDA 73| RIS
HEHERENARE. HEEREH, MRTEERAT R, TR Fs R RS, AR T FHEATHRE,
HXRIAB R AR B aE, LEENRKHANEGETHRBRAEN T E.

XKiiE Eeegkw, TAEERERGSNE, BERARE, KRS, fwiEEH %

1 5§

5G IR I PR Td R R AE RS 1 T ELIATIR BE 7 o I S B, AR HE TR & B R I SURIE K S I R
IR, AL LI A B B T SR TGV T A2 S BTN B % IR 5 R 2L sz B )z AR A A 1 e VR
LR, ToZe it B AE 4% (wireless powered communication network, WPCN) #IL TGk GEE AL ¥ (wireless energy
transmission, WET) 13 20 Z&ff T % & e 2RI A Bl WPCN K Yo REE S5 &% (harvest-then-transmit, HTT)
P, e S IR A Yo R AR SRl R T RE &, Bl S R USCER B I B B b AT B4R 15 S A% i (wireless information
transmission, WIT) 4, J8 145 LA BT [A] 43 1E, REMR R T 1% G0 261815 19X 28 41 i R HE 1) 1), SCARAIE T RE RS 2
(1 5E AL I IR R G PERE, M RE K 1 % (1) A iy A 0. E TR 2R 45 1 (4343 7 B R il 7 WPCN 978 s i el 5
SRR, H 2 FEEER W BLAh, X TR S B WPCN R4, B BEE K 4G (power station, PS) I
R (receiving station, RS) £ — MRS A & (hybrid access point, HAP), ] HE& = A [ “XU
ZEIT” (doubly near-far) W8, MIMPRE] T RGutkGE, £ 2 FEEER W O Bpkth QUi m) @ fe fEiR A &
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FAM WPCON REGiHh, LA A IH RS HAP B, 1852 [ B A UFEE ™ 5, D5 e ic e 31 i e B K a2, ik
2 HAP ITH) B AHEL, 075 2 FE 5 2 R keSS 2 HAP, 1SR AE 4R i 17 77 Th 52 2Pk, Dyt
SCHR [6] B2t TR E LT R AR ST, XA PS 5 RS A FEIE R WPCN R4t, I 25305 4244 [f) WPCN,
MARAS Bl 7 “RUzian [, SEL T RGEMERE AL (781 F BRI A RIBE ML B A, TR [9] B3 242
#E WPCN, DL RACHT A I B MErE R B AR, A RRRE 7 R B 2P, SCER [10] BF5E 7 5G/B5G H
KB WPCN R4t f2th 7 — P B St 7 FL 500, B AR B = B B SR AR I [RIIN, fe KAk AT BE 6 1) e

RN PR ARRAE S XEZIL” W, B RS ER I (reconfigurable intelligence surface, RIS) 1E ~N—F T
MR AREEOR, R EACRA . T I To U5 SO B e 2 R, Sl AR NSRS S IR AR AL, Re A 351 15
ARG 77 1 LA sl AE PR (112 RIS SR TR, BEAGE F S BIUR SRR, AN TR R (S 5 b
FOR, MECT Sl S 4k, SEIL 7 BRI BE R AR BEAE ROAS. BN, RIS REAE RIGHLEL B LR T . RAEHR
S, EINER SRS, 2PN RER X RIS HBhREE R TIR AT, F1 RIS fBhH
B N (single input single output, SISO) &4t 131, Z4 A Bk (multiple input single output, MISO) %
g 14191 JEIEAZ Z HEFE N (non-orthogonal multiple access, NOMA) F#4t 1617 JE AHLIEAE 18] 25 il 5 156
iE T RIS {EFR il 5 R AP EEVE . M oRfE 5 78 o, USRI 4 1t BE 55 J7 T 2R L H R A0 5. STk [13] 14
3T RIS Hiilh SISO A5 R HIMERE, S 1 i A s R LR, 3RS 7 P W iR i M. B
RIS HfBIH) MISO #R4t, SCHA [15] $2H T — P B, BRI INBURIE S, STk [17) % 1&3] 5G &
LML )28, K RIS SI B RA S s R K NOMA R4, Hgt 7 —METIZXIMEL (successive
convex approximation, SCA) FFAGM AL E JBEHIE, 15 1 LIERZ Z 8N (orthogonal multiple access, OMA)
U5 S AR BRI BE. D X P HR X 1 2 B O Pt R B Pk, SCBR (18] #F RIS #EEAE T AN L LA BIK
LB, JHR T — M BRI RS RE LS.

HHT, P22 RIS #E 3] WPCN R4+, @i RIS FReME 5 R4, Bef% LIARAK I e & miAs 5 B A%
KA R B PR DU R E R R, T B AR O A S B R R WPCN BE & AHE BEAL fa KR AR
NI L TR [19] I B A LA IR D ZE 40 BE . RIS MRS RERE, Dl ME HAP BEHIRERE. AT 40 2
Hil (time division multiple access, TDMA), NOMA et EAH RN A5t I RS EZ A P, IR RGMZ A P
SHRET, BN 6G BRI S EIE 7 S22 — 20 SCiik [21]) HRERIEGE KRG m st |z Bm Bk, a7
RIS #BI) NOMA-WPCN W%, $2H 7 —FhE T2 IEZFATH (semidefinite relaxation, SDR) B /775, BILHEA
oAk RIS AHAS FIBEIR 73 e e KA S AR B, SCHR [22] BExF 2 R HAP, BCEIUALA TR JCIRBOR Y DL B8
PG, $EH T — MR T SDR M SCA B B, Dl KA St &, UL EEET SDR W78 2R
=i (Gauss) BN H] RIS AR B ATAT MR, B2 05 1R B 2% BE B m OF H R BEIRTGE AU, STk [23] BIFFT 1 9k
YT, RIS 4B WPCN $RALrTSgffidE At d, SR A SCA 456 TR B R B 2 E %, BIESB/IMELRIEE B
AL RRIS TA). 0T X0z o)/, SR [24] SR T 70 B 2EH 1) WPCN, ZEG R RIS HIRBI T, Pl KA Mg 3
NERR, FEH T R TR B BRI EE. BRI, RIS IS WPCN MO Birm E A, BUNRER 2R
WAt A e B AL A I R, SEIRATSE RS B AL, RIS, RIS 4B WPCN RS7EIR L4 E RA R
3 T BA ARG IR .

YA RIS %l WPCN RGMH T R 2L T WPCN HIRG S 4L, @il A R IR L 5 RIS
B B BRI R G A i R /M R S DR SR, SRR & 5 B IR 2 AT o 7 A L) <X 1)
A, B8 T WPON {5 B AL 4 FIBE B AL 2 [ LT, DRI, 32 WPCN R4 AR Z W& MR ESFR LG R
KV H I 50T K. B I — W, AR SCH IR RS RIS fliBh B WPON 2R Gt A [F) 5 438 15 AU
HI3g s, St — M DL KA B ISR BE 28 H AR BB R B 5 B2 7 e 07 8. A SCHY ZE QT st T

(1) BB BAEYIE N To % i £ Be B2 FR Y37 5, RIS Al NOMA FiiBh7r S48 1) WPCN R4, Jfl
PEANF VA& WSS BT (quality of service, QoS) 753K, BFF T B A& I BE R AL I . il B &4k PS AN
RS B IR AR Y . RIS JoUSB A A I [A] 73 Bc A K B8 R S DI 2R 0 S, & AE B R B BT BE AL
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Wireless sensor devices
Power station Receiving station
(PS) (RS)

1 (MEIFE) RIS @AM WPCN #4.
Figure 1 (Color online) RIS-assisted WPCN system.

(2) AT AT TR AR AL R, BT — BTN G i v BE 2 VA (accelerated  proximal
distance algorithm, A-PDA) WK A5 G0 B 7 2. Frde 7 SRl id 2 o ORI AR e A 1) JE, 52 B AL
BRSO S R oA e E k. B, SR A-PDA KA RIS JoUs B R B (R M R4 — iRk
K (quadratic constrained quadratic programming, QCQP) ¥ [Al#l. PR /> BTl B 7 Frde 7 RAEUR S AT J
JEE 77 THI R A A A

(3) P LEE RR I, MECT Fofth 77 %, BT J7 S Rets PRl s 8k, IF BAE/N RS Dh 235 T R I 5 A
SRUMACRI e RE, BT LM PIET SDR AIE 2 (Riemannian manifold optimization, RMO) J5
F, W07 W1 AT I TA) S 35 B A1, S T S i AR 3 53¢

2 REEBERMILER

2.1 RIS #E197E5448 NOMA-WPCN #H%;

AR 1 Fni RIS 4Bh7r B 28/ 1 NOMA-WPCN R4, Eh, R4GHE% 1 NAEE R ATuE PS.
1 AME BB RS K AMRER 2R IE LML B, L 1 ANEA N AN RITH R RIS. Hd, PS fil RS
S M OARRER Q MRRELR, LRI &I N RER. R4 HTT Wrill, S RpSEmfa] T #5450 B B L,
R REEALSBN B to AVE EAERIMN BL ¢, BB TR AT IR —1k, B to + 11 = 1. ANR—BHE, BEIEE
TEWNWERR ATV, HAFERE(E R (channel state information, CSI) A5¢3€ CSI 22, GERALHIBNEL, PS 3|
RIS, RIS 24 k, PS B3 k MIEIEDHERN H, € CVM BRI e CUON by € CY A5 AR BL, B
# 3| RIS, RIS 3| RS ML E] RS MAGEDHFEIRHN gur € CVXL, G, € CON, g4, € CO1 RIS XML
I RHGEREN ©; = diag (0;) € CV*N, Hirr 9, = [elein oleiz . olein]™ i e {0,1} F% WET/WIT HrB RIS
S R BRI, 4., € [0, 27 s WET/WIT BrBCF RIS 55 n ANJClERIAHES.
1 WET BB, PS 1E to BIFFEERT RN e B (5 S, AR MERERERE. ) wy e CM* R
ST R B AR, W&k IERRER N
By = nito |(h'g,k + h’qu,k@OHT) '“’0|2 (1)

= nito [hrwol®

Hr, e (0 < i < 1) FoRBERWERICR.
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fE WIT BB, Frfy s R R B Re &, J8id NOMA R[] RS 4 AE R, W s, p RRRHF k
FOEIBIETT T, pr FRB& k BRI, W RS #REPRE & DM HIE 5 IRR N

K
u = wy (Z (9ak + GrO1gu k) \/PeTui + nr)
k=1
p (2)
= wllc{ ng\/lTkxu,k + wlljnr,
k=1
Hrt, n, ~ CN(0,081) 72 RS #lUm RE& G ARG HEE A, w), € COX! TR RS BRI K&, 1E RS 4b
8 F B AT TP BR (successive interference cancellation, SIC) K. HITE18 i 5 2 )& B A 5 322G E b E
RAUF &I T, RO e B RS T & R 4 2L R AT I & BB ST A (91 > (g0l >
> |gi|?, 5836 SIC ZJa, 5§ k MRS IER A LIFRR N

H 2
w +G,0
Ry = t1log (1 _ x| Hk (9d,k r 1gu,k2)| _— )
Zi:k_H pi |wk (9ai + Grelgu,i)| OjWg Wik

3)
=ty log (1 + k).

HI A2 ot i e a2 RS WIS B AME, 8 T PEA RS Z M FRZER, SIABE g, K&K
AW K RS ZRIY, AT i B AU R Dy

K
Rsum =t Z ﬁlev (4)
k=1

HI IR X P e 26 % I e 2 T H 2 RE RS2 BR 1Y), DRIAS S5 R o 2t ik i a6 (M RE BRI KA. i Pp 2 i
£ (R LR DO R, ToZ B IR I S REAE T DL R

K K
sum = Z P + Ztlpk- (5)
k=1 k=1

2.2 RFMINFIRER & AL iB)E

”P$5E§|€%E9€HLF%E\EP IR BER R IR TCEAL B & AE QoS i SR EAFAE 2252, ASSCHIE ST T Ff RIS
BN WPCN 815 R4, il B0 B A AU I & BE T, P KL BE R 32 BR & RN RE &%, DLk i)
R AR N (P1):

(P1) :t,p,@(’r’n@afwo,wk fa (£, 0,000,071, W, wy) = %7 (6)
st. (to+t1) PS +tipr < Ex,Vk € K, (7)
to+t1=1,t0>0,t; >0, (8)

i = 0,Vk € K, (9)
0;n>=1,Y¥n=1,...,N,ie{0,1}, (10)
[wo|* < Pr, (11)

bt = [to, 1] PR BUBAERMERI ], p = [p1,po, ... px] W K DRSS IR X (7) A& HIREREL
W, Herh B, N8 k UEERIRREE; X (8) WA BCLIAR; X (10) s WET A1 WIT BirB RIS St REH)
TERLZIAE; 30 (11) &R PS IR DIRLR, o Pr o8 PS MIBCRR S D, aTAE , L@ (P1) & —4
R A R R, H H b ek AN A X BORT ) B, 320 52 30 R A ) 4 s A, ARBCT A% G i) o R B0 2 A
RN 2. seAh, ZARERIRE G LS AR LR R A AE A DAL el AU L B SR A
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3 ET A-PDA RURRABESHRDERR

NT R L IRAE AL R, AR T R T A-PDA IR BT R, B E SR A 2 U R R O
ARl B, AR JE B R R . A-PDA . BB H (Lagrange) SHE R T 1EZ B SA T8, e iEFRIEN
HL ARSI, 19 B 0] R B 24
TR (PL) BB AR R EOR E 21 RO, A SCR A Dinkelbach 25 RO 3 ARAL R R (P1) ¥4 N
(1)
(P1) 2R fa1 (&, D, 0,01, wo, wi) = Rsum — @Esum, (12)

s.t. (7) ~ (11),
Hrh o >0 235G, KRN o°Pt = Ram/Esum-
3.1 BYESELIL

B Sl I R S DR I A RN TP AR SR A RIS TR 2 E {0, £1}. X T REE 1 {p, B0, ©1, wo,
wi}, AL (P1) REMSHAL NI (P2):

K Pk ‘wllc{gk|2 = X
(P2) smax 1 | Y Bilog {1+ —a) pp|—a) P (13)
k=1 k=1

2 2
k=1 i=k+1Di ‘wl?gi’ + o7 [|wk|

s L
Nk Ihkw0|2 + Pk
TR (7 0K 0 s, ¢ o o S (1 s i)
i=k41 Pi|@y, Gi ol|lw
—a K pr, BERAR R RS

minl—M c>0
topt_ ’
Pt —

st 0<t; <1— Yk e K. (14)

k e [hwwol” + pi (15)
0, c< 0.

3.2 WIT i RIS SERREMML

BRI (P1) (9 EARBRER R 55T WX HON W, ¥ G R R RAA I ity Ry, SR
He B F AR 270, B ey oy 2GS0 BB BT IFOR A ¢ Yo, Bl — o S5 Pe by,
BEIN AR B O BOREUR — 2 R AT, 3R U 27 g ol oo s, mid ks )
IR AR SO — Ut R (P1) O TRAL IR (P3):
(P3): max  f;(p, O, O1,wo,w)

P,00,01,wo,wi

K K K
=t Z <2\//7/§pk Re {rfwilgi} — |m/? (Zlh‘ \%?.%‘24— | w1 U%)) - QZPE +tipr,  (16)
k=1

i=k k=1
s.t. (7),(9) ~ (11),

St g 1 i S B B FL SR O3 NIBYE TR, SURAEARA AN 527 =, 7% = (S5, i |

-1 [ 2 N
+ || wr 12 ‘78) HEDk ’wlk_lgk| , Hod = B (1 + pg).

i Ry AR, KA R (P1) AN I (P3). Ed ] e A AR R AL WIT BB RIS AHFS
I @y, LAl (P3) AT LA S g RAs B A AL ) A (P4)

(P4) :max f (61)
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K K K
= " 2v/lipk Re {rjwilge} = > Iml® (Zm |wilgi|” + |l wi |12 03) : (17)
k=1 k=1 i=k
st |in>=1,¥n=1,...,N. (18)

NTAET R, # (18) Hetb AT 6, B, 1531
K K K 9
fer (01) = > 2V/lipr Re {77 (b + 0l'ars) } = > |7l (Zpi |bgi + Oy |” + |wk|2ag> , (19)
k=1 k=1 i=k

Hrt by k= wilgar, ar = diag(wl'Gy)guk, bei = wilga, ar; = diag(wIG,) gy, I (19), AL (P4)
AL N (PA):

(P4") :min feo (61) = 61'U6; + 2Re {0}'v}, (20)

s.t. (18),

K U= ZkK:1|7'k|2 Zfik piak,iagia v =- ZkK:1 (mﬂ:ak,k — ||? ZzK:k pin,iak,i)-

AT (P47) 22— EEM QCQP W, HETCAH 2 7 iR F X S @, (H 2% i SDR 7754
Th T AR BRI AE L I HL 75 2 i W BE AL AT 2 ) RS (AR SCA T 75 B — AN AlAT HOE i, LB 0L N 48—
AATHE ST R SRR GG QCQP [n) @ —FE R 3E; 22 7 M3 F-12 (alternating direction method of multipliers,
ADMM) AJ GETCVERCSL 128, %5 b, A SO R A e e v i 28 B0y (290 SR B SR Z9 R 3R ™ ) @ (P4Y),
RS T 11 REBGEFILL R /ME (majorization-minimization, MM) BEAE, SEEL T @ & R rEAR.

T 26, I AE H bR B I OCEE B IR T, R LKA IR R (P4Y) ELE N TRAR IARALIR R (PAT):

(P4") - n;iln fes (61) = 61'U6; + 2Re {07 v} + gdist(el,cl)Q, (21)

;E:*EP, Ci1 R 0y E@ﬂﬁf;@mé\, dist(64,C1) = mingee, |61 — C||2 R 0, LS C1 ZIEHE':JEE%, p>0 &S
B, Y p— oo I, IR (P4”) S FARAL I (P4).
HK, K MM FiERAEE [ (PA”) I HARREL f3 (61), B

fe3 (61) < 61U6: + 2Re {61} + 2|01 —Tic, (B1)]], (22)

Horp e, (01) RREATER 0, BEBES ¢, 4 0, =0, B 5 RO, T (22), (AL (P47) ATLL
AL N (PA™):

(P4 : @7 = argmin f.4 (6;)

” ) ) (23)

=67'U6, +2Re {0]'v} + 3 161 — e, (67)]]5 -

N TR R (PA™), e BRI R & o' =Tle, (0}), FRERE A LIRS YR (PA7)):

.1 2
(P4gr0j) ry' =1le, (03) = arg eIlrlelgl 5“01 — 6 |2’ (24)
BRI 0 BERES C LA RARL R,
FLR, SR Sm s [ R (P4 )
(P4 ) 07T = arg min fes(67)
' (25)

= 611U +2Re {0110} + 2 |61 — 5.
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Algorithm 1 A-PDA for solving problem (P4’).

Input: p >0, ¢ > 0, pmax, 0% = 9(1), t = 0, integer m, € > 0, Tiax;
2
1: while Hﬂ’i - 9’{71‘
2: t=t+1;

<eort<Tmax do

Using the Nesterov acceleration strategy of (27), obtain z’i;

proj
Solving the proximal mapping problem (P4// ), obtain 0§+1;

prox

6: Update penalty parameter p = min {¢p, pmax } every m iterations;
7: end while

t
Output: Ofp .

3
4:  Solving the projection problem (P4 .), obtain y* = Il¢, (21);
5

LR, s ] (P4, ) e DNELRE QP R, Mid 4 0f.5(01)/06, = 0, W] LLELHEAFE] 07! KM
A
0 = (I+2p~ 1U) (y" — 2p 'Re{v}). (26)
RTINS | BT S E 4, 7 PDA FEFERE IS8 Nesterov I g (2829 455 A-PDA
Sk XTI (P4, R I (P4),;) T ot BN

L-1
y' =T, (21),21 =61 + 0

SRIG S (P4) ) A-PDA BE NSk 1 s, 5% € RIS B EERE, R R EBNES ¢, a8
(PAr ) T 0F TR X R K B U A, X TR SR AR e R U SAME AT LE S Zangwill 1942 R URSICE
H(30] SRAIE, SCHR [29] 45 H T VELRAE B AL

3.3 RS ERBEMAHFHINERMKL

FEARA T, ST ] e A AR, S R wy, AR IR p BHATHRAL, RAK I (P3) ATLAE S
NRALIR R (P5):

(P5) : maX fa (p,wr)

K K K
=1 22\/ firpe Re {riwiige } —t1 Y |7l (Zpi |wigi|” + flwrll? 03) —a Y Pi+tip, (28)
k=1 k=1

(0 —611). (27)

i=k k=1
s.t. (7),(9).
AICLE H, [ (P5) & — N 20 ARk vl R mT DU it v B A 2 e SR A, R B H R ik
L"(wkap7 Ak)
K K 9
=ty (2\/%1% Re {riwi'gr} — 7| (Zpi |witgi] + || w |I° 03)) (29)
k=1 i=k

K K
—ad Pit+tpr+ Y A <77k: (1 = t1) [hgwol* — tipx — Pzﬁ) :
k=1 k=1

Horb Az ZEIAMXHEER. B KKT %04 5913 w, M1 pe RSN
— K -1
wppt = VDT <Z pigigi + ogl ) gk (30)

|7'k| i=k
opt _ ( VIixRe {riwilgr} >2 |
k a+ A+ 20 nl [wlgi)?
T (31) 2T N, I F IR £, k] DU A ik B 2 e m At

(31)
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Algorithm 2 Beamforming and resource allocation scheme based on A-PDA.

Input: to = t§, t1 =1, p = p|”, wo = w(”, wi =w”, 80 = 63", 61 = 6", i =0, a >0, > 0, Linax;

1: while ||ai — ai_1|| <eori< Imax do

2: i=i+1;
Based on problem (P2), update téi), tgi);
Based on problem (P4), update 9§i);
Based on problem (P5), update “’I(ci)v pl(:);
Based on problem (P6), update w(()i), 9(()1');
7 Update a9 = Rsum/Fsum;

8: end while
Output: [a,to,t1, Pk, Wo,wk, O, 01]°Pt.

3.4 WET MEE RIS #1 PS JERAE ML

B {to,t1,p, O, wi} KAAL WET BrELEI RIS HIBSHEEE @0 MKMW AURA wo I, I8 F 5
€ > 0 W R R (7) SR H AR B A IR KRBT 29, M (P3) o LU SRR AL IR (P6):

K
2
(P6)  dnax Je(@o,wg) = Z&mk |(hi ) + By O H, ) wol ™, (32)
’ k=1
s.t. (11), |6on|> =1,¥n =1,...,N. (33)

H
/% H = 25:1 Sk (hff,k + hg,k@0H7'> (h‘g,k + hg,k@()Hr)a HW%@J wo E/Jﬂ%ﬁﬁﬁﬁj\j 2]
WP = / Prtmax (H), (34)

;H\:EP, ﬁmax(') ﬁ%%ﬁﬁ‘?ﬁ{ﬁﬁ@ﬁ@#ﬁﬁﬁﬂ%
XF WET BB RIS A, 1T LR 53R # 07F" JMBARISIRoR AR 607", sllid R RRAL e, # il (P6) n]
LA 5 LA R L (Pe):

(PG") : min fe1(80) = 05 BO, +2Re {6'q} (35)

s.t. (33),

e, B = = Y, Gemaokally, @ = — 30y &mebi paok, a0k = diag (hEk) H,wy, by, = hif wo. I THIEAL
WA (P4)) ~ (P4") 200, WA IR,

3.5 WM MEZEDH

g5 b, SRR IR (P1) I3ET A-PDA YRR AL 5 BEYR 40 7 SR A0 2 Bk,

HHF AL I B ) B bR R B AE IR, JEHAERET A-PDA Y% R R 5 W5 J5 43 FiE 77 58 AR AR v it A2
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Beamforming and resource allocation for reconfigurable intelligent
surface assisted wireless powered communication network
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Abstract In view of the energy constraints and diverse quality of service (QoS) requirements of numerous wireless sensor
devices in the future Internet of Things, as well as the “doubly near-far” problem in wireless powered communication network
(WPCN), this paper investigates a WPCN system model with a reconfigurable intelligent surface (RIS) assisted separated
architecture, aiming to maximize the weighted sum energy efficiency of devices by jointly optimizing active beamforming,
passive beamforming and resource allocation. To address this optimization problem, a beamforming and resource allocation
scheme based on the accelerated proximal distance algorithm (A-PDA) is proposed. This scheme uses fractional programming
to decouple the optimization problem and alternately optimizes each subproblem until convergence. Notably, the A-PDA is
employed for the first time to derive the closed-form solution of the RIS phase shift vector. Simulation results demonstrate
that, compared with classical optimization schemes, the proposed scheme achieves faster convergence, significantly reduces the
average running time, and exhibits superior weighted sum energy efficiency performance, particularly under low transmission
power conditions.

Keywords reconfigurable intelligent surface, wireless powered communication network, beamforming, resource allocation,
proximal distance algorithm



