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摘要 本文研究了一类离散时间隐半马尔可夫切换奇异系统的稳定性分析与控制器设计问题.首先通过综合运

用状态空间分解技术, 半马尔可夫核方法, 输出概率方法, 矩阵降幂技术和系数矩阵还原技术, 构造了由一组原

始系数矩阵线性不等式表示的系统正则性、因果性和 σ-均方稳定性判别条件. 在此基础上通过结合矩阵合同变

换和 Schur 补等矩阵解耦方法, 给出相应的异步控制增益矩阵显式求解条件. 最后给出一个数值实例验证本文

所给出理论方法的有效性.
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1 引言

随机切换系统由一组动力学特征各异的子系统和一个协调它们运行的随机切换过程构成, 许多现实生活中

的动力系统, 如电力系统、机器人控制系统、通信系统等都可由切换系统建模研究. 由于马尔可夫 (Markov) 过

程在工业生产的各个领域有着强大的建模能力, 可以有效地刻画切换过程的随机突变特征, 马尔可夫切换系统

吸引了众多研究者的关注, 形成了一整套非常成熟的稳定性分析方法, 也取得了非常丰富的研究成果 (详见文

献 [1∼4]). 马尔可夫切换过程在每个模态的驻留时间只能服从指数分布或几何分布, 这两种概率分布都具有无

记忆性, 这一良好性质对于研究马尔可夫切换系统有很大的帮助, 但是对许多现实应用场景中的动力系统而言,

此限定过于严格, 在很大程度上影响了马尔可夫切换系统理论成果的实用性. 半马尔可夫过程在切换时刻的模

态转移仍具有马尔可夫性, 但每个模态的驻留时间允许服从任何概率分布, 是马尔可夫过程的自然推广. 通过引

入半马尔可夫核的概念描述半马尔可夫过程的概率结构, 文献 [5∼8] 研究了离散时间半马尔可夫切换系统的稳

定性分析与同步控制器设计问题.

但上述研究需要一个非常理想的假设, 即系统的真实模态信息必须实时已知, 而且控制器模态与系统模态

必须要精确同步, 此类控制器称为同步控制器. 然而在现实中, 受切换随机性以及各类干扰因素的影响, 系统模
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态信息很难被实时获知, 进而会造成控制器模态与系统模态的异步现象, 使得同步控制器很难达到预期的镇定

效果. 近年来, 隐马尔可夫模型和隐半马尔可夫模型被广泛地应用到马尔可夫切换系统和半马尔可夫切换系统

异步控制问题的研究中, 通过引入输出概率的概念描述控制器模态与系统模态取值的概率关系, 并结合半马尔

可夫核方法, 文献 [9∼11] 研究了离散时间隐半马尔可夫切换系统的稳定性分析与异步控制器设计问题.

另一方面, 现实应用场景的复杂性会导致动力系统的状态各分量变化呈现时间尺度上的不一致性, 此现象

称为奇异摄动性. 具有奇异摄动性的动力系统, 在忽略小参数的影响后, 可建模为奇异系统来研究. 子系统为奇

异系统的随机切换系统称为随机切换奇异系统, 这类系统对同时具有随机突变性和奇异摄动性的各类复杂动力

系统有出色的建模能力. 奇异系统因其表达式中包含代数方程部分, 在研究方法上与标准系统存在显著差异. 文

献 [12] 建立了奇异系统的理论研究框架, 利用状态空间分解技术深入分析了微分方程 (连续时间情形)、差分方

程 (离散时间情形) 与代数方程之间的耦合特性, 并全面研究了奇异系统的稳定分析与控制综合问题. 在此基础

上, 文献 [13∼15] 对马尔可夫切换奇异系统的正则性、无脉冲性 (连续时间情形) 或因果性 (离散时间情形)、稳

定性等相关问题进行了全面的研究. 文献 [16∼19] 研究了奇异矩阵模态依赖情形下离散时间马尔可夫切换奇异

系统,通过改进状态空间分解技术研究了系统的正则性与解的存在唯一性问题,证明了此类系统均方稳定、随机

稳定、均方指数稳定、几乎必然稳定的等价性, 给出了基于谱半径的稳定性判别条件, 并进一步研究了此类系统

的最优控制问题. 文献 [20] 研究了连续时间半马尔可夫切换奇异系统的控制问题. 通过改进文献 [15] 中的状态

空间分解技术和文献 [5∼7] 中的半马尔可夫核方法, 文献 [21,22] 研究了离散时间半马尔可夫切换奇异系统的稳

定性分析问题, 并给出相应闭环系统的同步控制器设计方法. 但目前关于半马尔可夫切换奇异系统异步控制器

设计的研究成果还很少, 而且由于需要考虑奇异矩阵对矩阵降幂技术的影响, 其研究并不是半马尔可夫切换标

准系统异步控制器设计问题的简单推广, 因而具有非常重要的理论和实际应用价值.

基于上述讨论, 本文将研究一类离散时间隐半马尔可夫切换奇异系统的稳定性分析与控制器设计问题, 主

要有以下 3 点创新: (i) 引入半马尔可夫过程建模随机切换信号, 有效地拓展了驻留时间的概率分布类型; (ii) 引

入隐半马尔可夫模型描述系统模态与控制模态的关系, 为解决随机切换奇异系统的异步控制器设计问题提供了

有效工具; (iii) 将只适用于标准系统的降幂、解耦等矩阵线性化技术推广应用于奇异系统, 构造了由原始系数矩

阵线性不等式表示的稳定性判别条件和控制增益矩阵的显式求解条件.

符号说明. 在本文中, C 表示复数集, R 表示实数集, Z 表示整数集, 对任意的 A ⊂ R, 令 RA = R ∩ A,

ZA = Z ∩A. 对任意的 m,n ∈ Z[1+∞), R
m×n 表示 m 行 n 列的矩阵集合, 对任意的矩阵 A ∈ Rm×n, AT 表示 A

的转置,对任意的矩阵 B ∈ Rn×n, rank(B)表示 B 的秩, B−1 表示 B 的逆矩阵, |B|表示 B 的行列式, B > 0表

示 B 是正定矩阵, B < 0 表示 B 是负定矩阵. (Ω,F ,P) 表示一个完备的概率空间, E 表示此概率空间上的数学

期望.

2 问题描述

首先给出离散时间半马尔可夫过程的正式定义.

定义1 (见文献 [9]) 设 {η(k), k ∈ Z[0,+∞)} 是一个取值于有限状态空间 N = {1, 2, . . . , N} 的离散时间随机
序列, {tn, n ∈ Z[0,+∞)} 是一个切换时刻序列, 且 t0 = 0. 如果对于任意的 i, j ∈ N , s ∈ Z[1,+∞), 有

P(η(tn+1) = j, tn+1 − tn = s|η(tm), tm,m = 0, 1, . . . , n) = P(η(tn+1) = j, tn+1 − tn = s|η(tn))

= P(η(t1) = j, t1 − t0 = s|η(t0)), (1)

称随机序列 {(η(tn), tn), n ∈ Z[0,+∞)}为齐次马尔可夫更新过程, 矩阵 Π(s) = [pij(s)]N×N 为其半马尔可夫核,其

中 pij(s) = P(η(tn+1) = j, tn+1 − tn = s|η(tn) = i). 进一步地, 如果对于任意的 k ∈ R[tn,tn+1), 有

η(k) = η(tn), (2)

称 {η(k), k ∈ Z[0,+∞)}是基于上述齐次马尔可夫更新过程 {(η(tn), tn), n ∈ Z[0,+∞)}的离散时间半马尔可夫过程.
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由式 (1) 可知, 随机序列 {η(tn), n ∈ Z[0,+∞)} 具有齐次马尔可夫性, 称其为齐次马尔可夫更新过程 {(η(tn),
tn), n ∈ Z[0,+∞)}的内嵌马尔可夫过程. 设该过程在模态 i ∈ N 的驻留时间记为 τi,其分布函数为 Fi(k) =

∑
j∈N∑k

s=1 pij(s), k ∈ Z[1,+∞).

本文考虑概率空间 (Ω,F ,P) 下的一类离散时间半马尔可夫切换奇异系统, 形式如下:

E · x(k + 1) = Aη(k)x(k) +Bη(k)u(k), (3)

其中 x(k) ∈ Rnx , nx ∈ Z[1,+∞) 是状态向量, u(k) ∈ Rnu , nu ∈ Z[1,+∞) 是控制项. 切换过程 {η(k),
k ∈ Z[0,+∞)}是一个取值于N = {1, 2, . . . , N}的离散时间半马尔可夫过程. 对于任意的 i ∈ N , Ai ∈ Rnx×nx 是系

数矩阵, Bi ∈ Rnx×nu 是输入矩阵. 系统 (3)左侧的矩阵 E ∈ Rnx×nx 是一个奇异矩阵,设其秩 rank(E) = q 6 nx.

本文假设系统模态无法实时观测, 从而导致控制项模态与系统真实模态存在异步现象. 为此, 引入一个取值

于有限状态空间 M = {1, 2, . . . ,M} 的随机序列 {η∗(k), k ∈ Z[0,+∞)} 来刻画控制项模态的演化规律. 定义输出

概率

λia = P(η∗(k) = a|η(k) = i), i ∈ N , a ∈ M, (4)

满足
∑M

a=1 λia = 1, Λ = [λia]N×M 称为输出概率矩阵. 控制项模态由系统真实模态和此输出概率矩阵决定, 并

定义如下形式的状态反馈控制项:

u(k) = Kη∗(k)x(k), (5)

其中 Kη∗(k) 为需要求解的控制增益矩阵. 相应地, 系统 (3) 的闭环系统有如下形式:

E · x(k + 1) = Aη(k)η∗(k)x(k), (6)

其中系数矩阵为

Aia = Ai +BiKa, i ∈ N , a ∈ M, (7)

称系统 (6) 为离散时间隐半马尔可夫切换奇异系统.

定义2 (见文献 [5,13,14]) (a)对于任意的 (i, a) ∈ N ×M, 如果存在 v ∈ C, 使得 |vE −Aia|不恒等于零, 则

称 (E,Aia) 是正则的, 也称系统 (6) 是正则的. 若进一步地, 有 deg(|vE −Aia|) = rank(E), 则称 (E,Aia) 是因果

的, 也称系统 (6) 是因果的.

(b) 如果对于任意给定的初值 x(t0) = x0 ∈ Rnx , η(t0) = η0 ∈ N , 有如下等式成立:

lim
k→+∞

E(||x(k)||2) = 0, (8)

则称系统 (6) 是均方稳定的.

如果存在一组正整数 {T i
max, i ∈ N}, 使得当 η(tn) = i ∈ N , tn+1 − tn 6 T i

max 时, 有式 (8) 成立, 则称系统

(6) 是 σ-均方稳定的.

(c) 如果系统 (6) 满足正则性, 因果性, σ-均方稳定性, 则称系统 (6) 是 σ-均方容许的.

3 主要内容

3.1 稳定性分析

首先对离散时间隐半马尔可夫切换奇异系统 (6) 进行稳定性分析, 构造由系数矩阵 {Aia, i ∈ N , a ∈ M}, 半
马尔可夫核矩阵 Π(s) 和输出概率矩阵 Λ 表示的系统正则性, 因果性和稳定性判别条件.
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定理1 给定常数 hi ∈ R(0,+∞) 和 T i
max ∈ Z[1,+∞), i ∈ N ,如果存在一组矩阵 {Pi,Hi(s), i ∈ N , s ∈ Z[1,T i

max]
}

满足如下条件:

ETPiE > 0, (9)

AT
iaPiAia < hiE

TPiE, a ∈ M, (10)

∑
a∈M

λiaA
T
ia

∑
j∈N

p̃ij(l + 1)Pj +Hi(l + 1)

Aia − ETHi(l)E < 0, l ∈ Z[1,T i
max−1], (11)

∑
a∈M

λiaA
T
ia

∑
j∈N

p̃ij(1)Pj +Hi(1)

Aia − ETPiE < 0, (12)

其中

p̃ij(k) =
pij(k)∑

j∈N
∑T i

max

k=1 pij(k)
, k ∈ Z[1,T i

max]
, (13)

则系统 (6) 是 σ-均方容许的.

证明 首先, 证明条件 (9) 和 (10) 可以保证系统 (6) 的正则性和因果性. 在系统 (6) 中, 由于 rank(E) = q,

所以存在可逆矩阵 M,N ∈ Rnx×nx , 使得

Ê =

 I 0

0 0

 = MEN, Âia =

 Â
(1)
ia Â

(2)
ia

Â
(3)
ia Â

(4)
ia

 = MAiaN, (14)

其中 I ∈ Rq×q 是单位矩阵, Â
(1)
ia ∈ Rq×q, Â

(4)
ia ∈ R(nx−q)×(nx−q). 设

P̂i =

 P̂
(1)
i P̂

(2)
i

∗ P̂
(4)
i

 = (MT)−1PiM
−1, (15)

其中符号 ∗ 表示对称矩阵中相应的分块矩阵. 由条件 (9) 和矩阵 N 的可逆性, 可知 I 0

0 0

 P̂i

 I 0

0 0

 = (MEN)T
(
MT

)−1
PiM

−1MEN = NTETPiEN > 0, (16)

于是 P̂
(1)
i > 0. 由条件 (10) 可知

NTAT
iaM

T
(
MT

)−1
PiM

−1MAiaN − hiN
TETMT

(
MT

)−1
PiM

−1MEN

= ÂT
iaP̂iÂia − hiÊ

TP̂iÊ

=

# #

#
(
Â

(2)
ia

)T
P̂

(1)
i Â

(2)
ia +Her

((
Â

(2)
ia

)T
P̂

(2)
i Â

(4)
ia

)
+
(
Â

(4)
ia

)T
P̂

(4)
i Â

(4)
ia

 < 0, (17)

其中 # 表示与后续证明无关系的矩阵分块. 由上式可知, 对所有的 i ∈ N , a ∈ M, 有(
Â

(2)
ia

)T
P̂

(1)
i Â

(2)
ia +Her

((
Â

(2)
ia

)T
P̂

(2)
i Â

(4)
ia

)
+
(
Â

(4)
ia

)T
P̂

(4)
i Â

(4)
ia < 0, (18)

类似于文献 [13] 中定理 2.3 的证明步骤, 通过结合事实 P̂
(1)
i > 0, 可以得到

Her

((
Â

(2)
ia

)T
P̂

(2)
i Â

(4)
ia

)
+
(
Â

(4)
ia

)T
P̂

(4)
i Â

(4)
ia < 0, (19)
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可知 Â
(4)
ia 是可逆, 所以系统 (6) 满足正则性和因果性.

接下来, 证明系统 (6) 是 σ-均方稳定的. 令

ξ(k) =

 ξ(1)(k)

ξ(2)(k)

 = N−1x(k), (20)

由 Â
(4)
ia 的可逆性, 结合等式 (14), 可以得到系统 (6) 的分解表达式

ξ(1)(k + 1) = Aη(k)η∗(k)ξ
(1)(k), (21)

ξ(2)(k) =
(
Â

(4)
ia

)−1

Â
(3)
ia ξ(1)(k), (22)

其中 Aia = Â
(1)
ia − Â

(2)
ia (Â

(4)
ia )−1Â

(3)
ia . 构造如下形式的 Lyapunov 函数:

V (x(k), η(k)) =
[
xT(k)

]
ETPη(k)Ex(k), (23)

由式 (14), (15) 和 (20) 可知

V (x(k), η(k)) =
[
xT(k)

] (
N−1

)T
NTETMT

(
MT

)−1
Pη(k)M

−1MENN−1x(k)

=
[
ξ(1)(k)

]T
P̂

(1)
η(k)ξ

(1)(k), (24)

令

Lia =

 I 0

−
(
Â

(4)
ia

)−1

Â
(3)
ia I

 , (25)

由矩阵 N,Lia 的可逆性和条件 (10) 可知Aia Â
(2)
ia

0 Â
(4)
ia

T  P̂
(1)
i P̂

(2)
i

∗ P̂
(4)
i

Aia Â
(2)
ia

0 Â
(4)
ia

− hi

 P̂
(1)
i 0

0 0


= LT

iaN
TAT

iaM
T
(
MT

)−1
PiM

−1MAiaNLia − hiL
T
iaN

TETMT
(
MT

)−1
PiM

−1MENLia < 0, (26)

从而有

AT
iaP̂

(1)
i Aia < hiP̂

(1)
i , (27)

结合 hi ∈ R(0,+∞) 和 P̂
(1)
i > 0, 可知 P̂

(1)
i > 0.

由式 (24) 和条件期望的定义, 可计算得到

E [V (x (tn+1) , η (tn+1)) |x(tn), η(tn) = i]− V (x(tn), η(tn) = i) =
[
ξ(1)(tn)

]T
Piξ

(1)(tn), (28)

其中 Pi =
∑T i

max
τ=1

∑
j∈N

∑
a0∈M · · ·

∑
aτ−1∈M p̃ij(τ)(

∏τ−1
s=0 λiasAT

ias
)P̂

(1)
j (

∏τ−1
s=0 AT

ias
)T − P̂

(1)
i .

设 {Ĥi(τ, s), τ ∈ Z[1,T i
max]

, s ∈ Z[1,τ ]} 为一列辅助矩阵, 其中 Ĥi(τ, τ) =
∑

j∈N p̃ij(τ)P̂
(1)
j , 则有

Pi =
∑

a0∈M

λia0AT
ia0

∑
j∈N

p̃ij(1)P̂
(1)
j Aia0 +

T i
max∑
τ=2

∑
a0∈M

· · ·
∑

aτ−2∈M

[(
τ−2∏
s=0

λiasAT
ias

)

×

( ∑
aτ−1∈M

λiaτ−1AT
iaτ−1

∑
j∈N

p̃ij(τ)P̂
(1)
j Aiaτ−1

)(
τ−2∏
s=0

AT
ias

)T]
− P̂

(1)
i (29)
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=
∑

a0∈M

λia0AT
ia0

∑
j∈N

p̃ij(1)P̂
(1)
j Aia0 +

T i
max∑
τ=2

∑
a0∈M

λia0AT
ia0

Ĥi(τ, 1)Aia0 − P̂
(1)
i

+

T i
max∑
τ=2

τ−2∑
m=0

{ ∑
a0∈M

· · ·
∑

am∈M

[(
m∏
s=0

λiasAT
ias

)( ∑
am+1∈M

λiam+1AT
iam+1

Ĥi(τ,m+ 2)Aiam+1

− Ĥi(τ,m+ 1)

)(
m∏
s=0

AT
ias

)T]}
. (30)

令 Ĥi(l) =
∑T i

max

τ=l+1 Hi(τ, l), l ∈ Z[1,T i
max−1], 则有 Pi = P

(1)
i +P

(2)
i , 其中

P
(1)
i =

∑
a0∈M

λia0AT
ia0

∑
j∈N

p̃ij(1)P̂
(1)
j Aia0 +

∑
a0∈M

λia0AT
ia0

Ĥi(1)Aia0 − P̂
(1)
i , (31)

P
(2)
i =

T i
max−2∑
m=0

T i
max∑

τ=m+2

{ ∑
a0∈M

· · ·
∑

am∈M

[(
m∏
s=0

λiasAT
ias

)( ∑
am+1∈M

λiam+1AT
iam+1

Ĥi(τ,m+ 2)Aiam+1

− Ĥi(τ,m+ 1)

)(
m∏
s=0

AT
ias

)T]}

=

T i
max−2∑
m=0

{ ∑
a0∈M

· · ·
∑

am∈M

[(
m∏
s=0

λiasAT
ias

)( ∑
am+1∈M

λiam+1AT
iam+1

Ĥi(m+ 2,m+ 2)Aiam+1

+
∑

am+1∈M

λiam+1AT
iam+1

Ĥi(m+ 2)Aiam+1 − Ĥi(m+ 1)

)(
m∏
s=0

AT
ias

)T]}
. (32)

对任意的 i ∈ N , s ∈ Z[1,T i
max]

, 令

Hi(s) = MT

 Ĥi(s) #

# #

M, (33)

结合式 (6), (14), (15), (20), (21), 可以得到

xT(tn)A
T
η(tn)η∗(tn)

(
p̃η(tn)η(tn+1)(1)Pη(tn+1) +Hη(tn)(1)

)
Aη(tn)η∗(tn)x(tn)

= xT(tn + 1)ET
(
p̃η(tn)η(tn+1)(1)Pη(tn+1) +Hη(tn)(1)

)
Ex(tn + 1)

= xT(tn + 1)(N−1)TNTETMT(MT)−1
(
p̃η(tn)η(tn+1)(1)Pη(tn+1) +Hη(tn)(1)

)
M−1MENN−1x(tn + 1)

= ξT(tn + 1)ÊT
(
p̃η(tn)η(tn+1)(1)P̂η(tn+1) +Hη(tn)(1)

)
Êξ(tn + 1)

=
[
ξ(1)(tn)

]T
AT

η(tn)η∗(tn)

(
p̃η(tn)η(tn+1)(1)P̂

(1)
η(tn+1)

+ Ĥη(tn)(1)
)
Aη(tn)η∗(tn)ξ

(1)(tn), (34)

结合等式 (31) 和条件 (12) 可以得到 P
(1)
i < 0. 类似地, 由条件 (11), 可以得到 P

(2)
i < 0. 因此有Pi < 0.

令 α = maxi∈N {λmax(−Pi)} ∈ R(0,+∞), 结合式 (28) 可以得到

E [V (x(tn+1), η(tn+1)) |x(tn), η(tn) = i]− V (x(tn), η(tn) = i) < −α ·
∥∥∥ξ(1)(tn)∥∥∥2 , (35)

从而有

α ·
+∞∑
n=0

E

(∥∥∥ξ(1)(tn)∥∥∥2) < E [V (x(t0), η(t0))] < +∞, (36)
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可以得到

lim
n→+∞

E

(∥∥∥ξ(1)(tn)∥∥∥2) = 0. (37)

结合式 (20), (21) 和 (22), 有

lim
n→+∞

E
(
∥x(tn)∥2

)
= 0. (38)

另一方面, 由于

E [V (x(tn + k), η(tn + k))|x(tn), η(tn) = i]

=
[
ξ(1)(tn)

]T ∑
a0∈M

· · ·
∑

ak−1∈M
λia0 · · ·λiak−1

AT
ia0

· · · AT
iak−1

P̂
(1)
i Aiak−1

· · · Aia0

 ξ(1)(tn), (39)

结合 (27), 对于任意的 k ∈ Z[1,T i
max−1], 有∑

a0∈M
· · ·

∑
ak−1∈M

λia0 · · ·λiak−1
AT

ia0
· · · AT

iak−1
P̂

(1)
i Aiak−1

· · · Aia0

< hi

∑
a0∈M

· · ·
∑

ak−2∈M

λia0 · · ·λiak−2
AT

ia0
· · · AT

iak−2
P̂

(1)
i Aiak−2

· · · Aia0

< hk
i P̂

(1)
i . (40)

由于 P̂
(1)
i > 0, 令 β1 = mini∈N {λmin(P̂

(1)
i )} ∈ R(0,+∞), β2 = maxi∈N {λmax(P̂

(1)
i )} ∈ R(0,+∞), 由式 (23), (39) 和

(40) 可以得到

β1 ·E
(∥∥∥ξ(1)(tn + k)

∥∥∥2) 6 E [V (x(tn + k), η(tn + k))]

< max
i∈N

{
h
T i
max

i , 1
}
E [V (x(tn), η(tn))] 6 max

i∈N

{
h
T i
max

i , 1
}
· β2 ·E

(∥∥∥ξ(1)(tn)∥∥∥2) , (41)

结合式 (37), 可以证明

lim
k→+∞

E

(∥∥∥ξ(1)(k)∥∥∥2) = 0, (42)

结合式 (20), (21) 和 (22), 有

lim
k→+∞

E
(
||x(k)||2

)
= 0. (43)

证毕.

注释1 定理 1 构造了系统 (6) σ-均方容许性的一种新型判别条件, 创新之处体现在以下 4 个方面.

(i) 条件 (9) 和 (10) 可以保证系统的正则性与因果性, 进而可以保证系统 (6) 与其分解表达式 (21), (22) 的

等价性, 为接下来的系统稳定性分析提供了便利, 而且条件 (9) 和 (10) 本身就是系统稳定性判别条件的一部分,

也就是说不需要额外的限制条件来保证系统正则性与因果性的成立, 这使得本定理所构造的判别条件具有较低

的保守性.

(ii) 定理 1 利用系统 (6) 的原始系数矩阵 Aη(k)η∗(k) 构造了系统的稳定性判别条件, 比起利用分解转化表达

式 (21) 中系数矩阵 Ãη(k)η∗(k) 的分块矩阵 Aη(k)η∗(k) 构造的稳定性判别条件, 从数学表达式的角度看更加规范、

美观, 而且最重要的是为有后续控制器求解问题提供了极大的便利.
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(iii) 从表达式 (28) 和 (30) 可以看出, 由于需要考虑输出概率 λη(k)η∗(k) 的影响, 文献 [21, 22] 中的研究方法

并不适用于系统 (6) 的研究, 本定理改进了文献 [5∼7] 中的矩阵降幂技术, 结合矩阵还原技术, 将式 (29) 与 (40)

中 Aη(k)η∗(k) 的幂项表达式转化为条件 (11) 和 (12) 中的系统原始系数矩阵 Aη(k)η∗(k) 的线性表达式.

(iv) 与文献 [5∼7] 中直接应用矩阵降幂技术得到系数矩阵线性不等式形式的稳定性判别条件相比, 本定理

中的矩阵降幂技术不是直接作用于系统 (6)的系数矩阵 Aia, 而是作用于状态分量 ξ(1)(k)的系数矩阵 Aia, 这就

需要首先利用状态空间分解技术、Lyapunov 稳定性分析方法、矩估计方法得到 Aia 幂项形式的稳定性判别条

件, 然后才能应用矩阵降幂技术和矩阵还原技术将其转化为 Aia 的线性不等式形式.

接下来, 通过引入满足条件 RE = 0 的矩阵 R, 可以将条件 (9) 转化为严格线性矩阵不等式.

定理2 给定一组常数 {hi ∈ R(0,+∞), T
i
max ∈ Z[1,+∞), i ∈ N} 和满足条件 RE = 0 的矩阵 R, 如果存在一组

正定矩阵 {Qi, i ∈ N} 和一组矩阵 {Hi(s), i ∈ N , s ∈ Z[1,T i
max]

}, 使得如下一组严格线性矩阵不等式成立:

AT
ia

(
Qi −RTΦiR

)
Aia < hiE

TQiE, (44)

∑
a∈M

λiaA
T
ia

∑
j∈N

p̃ij(l + 1)
(
Qj −RTΦjR

)
+Hi(l + 1)

Aia − ETHi(l)E < 0, l ∈ Z[1,T i
max−1], (45)

∑
a∈M

λiaA
T
ia

∑
j∈N

p̃ij(1)
(
Qj −RTΦjR

)
+Hi(1)

Aia − ETQiE < 0, (46)

则系统 (6) 是 σ-均方容许的.

证明 令 Pi = Qi −RTΦiR, 结合 Qi 的正定性, 可以得到

ETPiE = ET(Qi −RTΦiR)E = ETQiE > 0. (47)

所以,条件 (44)可以保证定理 1中条件 (9)的成立. 同理,条件 (45)和 (46)可以保证定理 1中条件 (10)和 (11)

的成立. 证毕.

如果M = N , 且设

λia =

1, a = i,

0, a ̸= i,
(48)

则隐半马尔可夫切换奇异系统 (6) 退化为如下的半马尔可夫切换奇异系统:

E · x(k + 1) = Ãη(k)x(k), (49)

其中 Ãi = Ai + BiKi, i ∈ N . 结合前面给出的定理 2, 可以得到离散时间半马尔可夫切换奇异系统的 σ-均方容

许性判别条件.

推论1 (见文献 [21]中定理 2)给定一组常数 {hi ∈ R(0,+∞), T
i
max ∈ Z[1,+∞), i ∈ N}和满足条件 RE = 0的

矩阵 R, 如果存在一组正定对称矩阵 {Qi, i ∈ N} 和一组矩阵 {Hi(s), i ∈ N , s ∈ Z[1,T i
max]

}, 使得如下一组严格线
性矩阵不等式成立:

ÃT
i

(
Qi −RTΦiR

)
Ãi < hiE

TQiE, (50)

ÃT
i

∑
j∈N

p̃ij(l + 1)
(
Qj −RTΦjR

)
+Hi(l + 1)

 Ãi − ETHi(l)E < 0, l ∈ Z[1,T i
max−1], (51)

ÃT
i

∑
j∈N

p̃ij(1)
(
Qj −RTΦjR

)
+Hi(1)

 Ãi − ETQiE < 0, (52)

则系统 (49) 是 σ-均方容许的.
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3.2 控制设计

定理 2 给出了可以保证系统 (6) 正则性, 因果性和 σ-均方稳定性的判别条件, 从条件 (44)∼(46) 的表达式

可以看出, 它们是关于系数矩阵 Aia, i ∈ N , a ∈ M 的严格线性矩阵不等式, 这为利用 Matlab 软件中的 LMI 工

具包判断系统的正则性, 因果性和 σ-均方稳定性提供了依据, 但从式 (7) 可以看到这些矩阵不等式相对于控制

增益矩阵 Ka, a ∈ M 而言不是线性的, 因此不能直接用来求解控制增益矩阵. 在接下来的定理 3 中, 通过利用

Schur 补方法、矩阵合同变换方法, 结合引入辅助矩阵 Ga, a ∈ M, 可以实现对 Lyapunov 矩阵 Qi, i ∈ N 和控制
增益矩阵 Ka, a ∈ M的解耦,进而将定理 2的条件转化为关于控制增益矩阵 Ka, a ∈ M的严格线性矩阵不等式

形式.

定理3 给定一组常数 {hi ∈ R(0,+∞), T
i
max ∈ Z[1,+∞), i ∈ N} 和满足条件 RE = 0 的矩阵 R, 如果存在一组

矩阵 {Zi, Yi, Ga, Va, Ji(s), i ∈ N , a ∈ M, s ∈ Z[1,T i
max]

}, 满足如下一组线性矩阵不等式:
∆ia ∗ ∗

AiGa +BiVa −Ga
T −Her(Ga) ∗

0 Ga −Yi

 < 0, (53)



Γi(m) ∗ ∗ ∗ · · · · · · ∗

Acol
i −Her(G) ∗ ∗ · · · · · · ∗

0 αi1(m+ 1)G −Y1 ∗ · · · · · · ∗

0 αi2(m+ 1)G 0 −Y2 · · · · · · ∗
...

...
...

...
. . .

...
...

0 αiN (m+ 1)G 0 0 · · · −YN ∗

0 G 0 0 · · · 0 −diagM{Ji(m+ 1)}


< 0, m ∈ Z[0,T i

max−1], (54)

其中 ∆ia = Zi + h−1
i Yi + Her (AiGa +BiVa −RAiGa −RBiVa − EGa), A

col
i = diag{

√
λi1 (AiG1 +BiV1)

T −GT
1 ,

. . . ,
√
λiM (AiGM +BiVM )

T−GT
M}, αij(s) = diagM

{√
p̃ij(s)I

}
, G = diag {G1, . . . , GM}, Yj = diagM {Yj , . . . , Yj},

γia(l) =
√
λiaHer(AiGa + BiVa) + λia[

∑
j∈N p̃ij(l + 1)Zj + Ji(l) − Her (RAiGa + RBiVa + EGa)], γia(0) =

√
λiaHer(AiGa+BiVa)+λia[

∑
j∈N p̃ij(1)Zj+Yi−Her(RAiGa+RBiVa+EGa)], Γi(m) = diag{γi1(m), γi2(m), . . . ,

γiM (m)}, i, j ∈ N , a ∈ M, s ∈ Z[1,T i
max]

, l ∈ Z[1,T i
max−1],m ∈ Z[0,T i

max]
, 则在控制增益矩阵

Ka = VaG
−1
a , a ∈ M (55)

的作用下, 系统 (6) 是 σ-均方容许的.

证明 由式 (7) 和 (55), 有

γia(l) =
√

λiaHer(AiaGa) + λia

∑
j∈N

p̃ij(l + 1)Zj + Ji(l)−Her(RAiaGa + EGa)

 , l ∈ Z[1,T i
max−1],

γia(0) =
√
λiaHer(AiaGa) + λia

∑
j∈N

p̃ij(l + 1)Zj + Yi −Her(RAiaGa + EGa)

 ,Acol
i = AiG − G,

其中 Ai = diag{
√
λi1Ai1, . . . ,

√
λiMAiM}, G = diag{G1, . . . , GM}. 令 Hi(m) = J−1

i (m), i ∈ N , m ∈ Z[1,T i
max]

, 结

合条件 (54) 和 Schur 补引理, 有 Γi(m) ∗

Acol
i GTdiagM{

∑
j∈N p̃ij(m+ 1)Qj +Hi(m+ 1)}G −Her(G)

 < 0,m ∈ Z[0,T i
max−1]. (56)
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由于以下不等式成立:

Zj −Her(RAiaGa) > −GT
aA

T
iaR

TZ−1
j RAiaGa, i, j ∈ N , a ∈ M, (57)

Ji(s)−Her(EGa) > −GT
aE

TJ−1
i (s)EGa, i ∈ N , a ∈ M, s ∈ Z[1,T i

max]
, (58)

Yi −Her(EGa) > −GT
aE

TY −1
i EGa, i ∈ N , a ∈ M. (59)

令 Φj = Z−1
j , Qi = Y −1

i , i, j ∈ N , 则有以下不等式成立:

γia(l) >
√
λiaHer(AiaGa)− λiaG

T
a

AT
iaR

T
∑
j∈N

p̃ij(l + 1)ΦjRAia + ETHi(l)E

Ga, l ∈ Z[1,T i
max−1],

γia(0) >
√
λiaHer(AiaGa)− λiaG

T
a

AT
iaR

T
∑
j∈N

p̃ij(l + 1)ΦjRAia + ETQiE

Ga, (60)

进而可以得到

Γi(l) > Her(AiG)− GT

[
AT

i diagM

(∑
j∈N

p̃ij(l + 1)RTΦjR

)
Ai

− diag
{
λi1E

THi(l)E, . . . , λiMETHi(l)E
}]

G, l ∈ Z[1,T i
max−1], (61)

Γi(0) > Her(AiG)− GT

[
AT

i diagM

(∑
j∈N

p̃ij(l + 1)RTΦjR

)
Ai

− diag
{
λi1E

TQiE, . . . , λiMETQiE
}]

G. (62)

令 La = G−1
a , a ∈ M and L = diag{L1, . . . , LM}, 结合不等式 (62), 并利用 diag(L,L) 对式 (56) 进行合同变换,

可以得到  Θi(m) ∗

LTAi − L diagM{
∑

j∈N p̃ij(m+ 1)Qj +Hi(m+ 1)} −Her(L)

 < 0, m ∈ Z[0,T i
max−1], (63)

其中 Θi(l) = Her(LTAi) − AT
i diagM (

∑
j∈N p̃ij(l + 1)RTΦjR)Ai − diag{λi1E

THi(l)E, . . . , λiMETHi(l)E}, l ∈
Z[1,T i

max−1], Θi(0) = Her(LTAi) − AT
i diagM (

∑
j∈N p̃ij(1)R

TΦjR)Ai − diag{λi1E
TQiE, . . . , λiMET

·QiE}. 令 IM =

M︷ ︸︸ ︷
(I, . . . , I)T, 由于此矩阵是列满秩的, 当 l ∈ Z[1,T i

max−1] 时, 有

∑
al∈M

λial
AT

ial

(∑
j∈N

p̃ij(l + 1)Qj +Hi(l + 1)

)
Aial

−
∑

al∈M

λial
AT

ial

∑
j∈N

p̃ij(l + 1)RTΦjRAial

− ETHi(l)E

= [ITM ,AT
i ]

 Θi ∗

LTAi − L diagM{
∑

j∈N p̃ij(l + 1)Qj +Hi(l + 1)} −Her(L)

 IM

Ai

 < 0. (64)

同理,

∑
a0∈M

λia0A
T
ia0

(∑
j∈N

p̃ij(1)Qj +Hi(1)

)
Aia0 −

∑
a0∈M

λia0A
T
ia0

∑
j∈N

p̃ij(1)R
TΦjRAia0
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− ETQiE

= [ITM ,AT
i ]

 Θi(0) ∗

LTAi − L diagM{
∑

j∈N p̃ij(1)Qj +Hi(1)} −Her(L)

 IM

Ai

 < 0, (65)

其中 Ai = (
√
λi1A

T
i1,

√
λi2A

T
i2, . . . ,

√
λiMAT

iM )T. 因此条件 (54) 可以保证定理 2 中的条件 (45) 和 (46) 成立.

由式 (7) 和 (55), 可以得到

∆ia = Zi + h−1
i Yi +Her

(
AiaGa −RAiaGa − EGa

)
, (66)

结合不等式

Zi + h−1
i Yi −Her(RAiaGa + EGa) > −GT

a (A
T
iaR

TΦiRAia + hiE
TQiE)Ga (67)

和条件 (53), 可以得到Her(AiaGa)−GT
a (A

T
iaR

TΦiRAia + hiE
TQiE)Ga ∗

AiaGa −GT
a GT

aQiGa −Her(Ga)

 < 0, (68)

利用 diag(La, La) 对上式进行合同中变换, 可以得到Her(La
TAia)−Ψia ∗

La
TAia − La Qi −Her(La)

 < 0. (69)

从而有

AT
ia(Qi −RTΦiR)AT

ia − hiE
TQiE

= [I AT
ia]

Her(LT
aAia)−AT

iaR
TΦiRAia + hiE

TQiE ∗

La
TAia − La Qi −Her(La)

 I

Aia

 < 0. (70)

因此, 条件 (53) 可以保证定理 2 中的条件 (44) 成立. 证毕.

4 实例验证

本例中考虑直流电机模型 (见文献 [14]), 令 u(t), i(t), ω(t) 表示电枢电压、电枢电流、轴转速, 由电路与机

械基本定理可以得到如下关系式: u(t) = Rai(t) +Keω(t),

dω(t)

dt
=

Kf

J
i(t)− b

J
ω(t),

(71)

其中 Ra, Ke, Kf , b, J 分别表示电阻、电动势常数、扭矩常数、阻尼比、转子与负载产生的转动惯量. 当负载发

生随机突变时, 转动惯量 J 也相应发生随机突变, 本例中设转动惯量有轻载 (取值为 J1) 和重载 (取值为 J2) 两

个状态, 其切换服从半马尔可夫核为

Π(s) =

 0 0.4(s−1)1.3 − 0.4s
1.3

0.6(s−1)1.5 − 0.6s
1.5

0

 , s ∈ Z[1,+∞) (72)
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的半马尔可夫过程 η(k). 设采样时间为 T ∗, 结合式 (71) 可得到如下离散时间半马尔可夫切换奇异系统:

Ex(k + 1) = Aη(k)x(k) +Bη(k)u(k), (73)

其中电压 u(k) 是控制项,

E =

 0 0

0 1

 , x(k) =

 i(k)

ω(k)

 , Aη(k) =

 Ra Ke

KfT
∗

Jη(k)
1− bT ∗

Jη(k)

 , Bη(k) =

 0

T∗

Jη(k)

 .

将参数取值为 Ra = 0.5, Ke = 0.2, Kf = 0.1, b = 0.02, T ∗ = 0.1, 可得两个子系统的系数矩阵:

A1 =

 0.5 0.2
0.1× 0.1

J1
1− 0.02× 0.1

J1

 , A2 =

 0.5 0.2
0.1× 0.1

J2
1− 0.02× 0.1

J2

 , B1 =

 0
0.1

J1

 , B2 =

 0
0.1

J2

 . (74)

当 J1 = 0.01, J2 = 0.05 时, 考虑到切换过程 η(k) 的随机性, 图 1(a) 描绘了在没有控制项 u(k) 作用下系统

E · x(k + 1) = Aη(k)x(k) (75)

的 100 条状态轨迹, 可以发现此时系统是不稳定的. 假设系统模态无法直接观测, 令控制项 u(k) 有如下形式:

u(k) = Kη∗(k)x(k), (76)

其中随机序列 η∗(k) 用来描述控制项模态的演化过程, 设该过程取值于M = {1, 2}, 且输出概率矩阵为

Λ =

 p 1− p

1− q q

 . (77)

将式 (76) 代入式 (73), 有如下形式的离散时间隐半马尔可夫切换奇异系统:

E · x(k + 1) = Aη(k)x(k) +Bη(k)Kη∗(k)x(k). (78)

取 T 1
max = T 2

max = 6, 通过利用 Matlab 软件中的 LMI 工具箱, 由定理 3 条件中的严格线性矩阵不等式 (53) 和

(54), 可求得如下控制增益矩阵.

当 p = 0.1, q = 0.2 时,

K1 =
[
−0.1884 −0.3565

]
, K2 =

[
−0.1123 −0.2597

]
, (79)

当 p = 0.4, q = 0.5 时,

K1 =
[
−0.1884 −0.3565

]
, K2 =

[
−0.1123 −0.2597

]
, (80)

当 p = 0.8, q = 0.9 时,

K1 =
[
−0.1288 −0.2497

]
, K2 =

[
−0.1271 −0.2149

]
. (81)

图 1(b)∼(d) 分别描绘了当 (p, q) = (0.1, 0.2), (0.4, 0.5), (0.8, 0.9) 时, 系统 (78) 在各自控制增益矩阵 K1,K2 作用

下的 100 条状态轨迹, 可以看到系统是稳定的, 表明定理 3 给出的控制器设计方法是实用而有效的.
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图 1 (网络版彩图) 系统 (75) 的状态轨迹和不同输出概率矩阵取值情形下控制系统 (78) 的状态轨迹. (a) 系统 (75) 的 100

条状态轨迹; (b) 当 p = 0.1, q = 0.2 时系统 (78) 在控制 (79) 作用下的 100 条状态轨迹; (c) 当 p = 0.4, q = 0.5 时系统

(78) 在控制 (80) 作用下的 100 条状态轨迹; (d) 当 p = 0.8, q = 0.9 时系统 (78) 在控制 (81) 作用下的 100 条状态轨迹.

Figure 1 (Color online) State trajectories of system (75) and control system (78) with different values of emission probability matrix
Λ. (a) 100 state trajectories of system (75); (b) when p = 0.1, q = 0.2, 100 state trajectories of system (78) with control (79); (c) when
p = 0.4, q = 0.5, 100 state trajectories of system (78) with control (80); (d) when p = 0.8, q = 0.9, 100 state trajectories of system (78)

with control (81).

5 结束语

本文研究了离散时间半马尔可夫切换奇异系统的异步控制器设计问题. 对于系统模态信息无法实时获知的

情形,引入隐半马尔可夫模型描述系统模态与控制模态的异步现象,改进状态空间分解技术、矩阵降幂技术和矩

阵还原技术, 得到由系统原始系数矩阵线性矩阵不等式表示的离散时间隐半马尔可夫切换奇异系统的正则性、

因果性和稳定性的充分性判别条件, 结合矩阵合同变换与 Schur 补技术等矩阵解耦方法, 得到相应的控制增益

矩阵显性求解条件, 并通过数值实例验证本文理论方法的有效性. 本文只讨论了当系统真实模态信息不确定时

的系统控制器设计问题, 由于现实应用环境的复杂性, 半马尔可夫切换奇异系统的许多参数信息, 如系统模态的

转移概率、控制模态的输出概率、系数矩阵部分参数等都有可能是不确定的. 在接下来的工作中, 我们将进一步

研究各类系统参数不确定情形下半马尔可夫切换奇异系统的稳定分析与控制综合问题.
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The stability analysis and control design problems for a class of discrete-
time hidden semi-Markov jump singular systems
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Abstract This paper studies the stability analysis and controller design problems for a class of discrete-time hidden

semi-Markov jump singular systems. Firstly, by comprehensively utilizing the singular matrix decomposition method, the

semi-Markov kernel approach, emission probability approach, matrix power elimination technique, and coefficient matrix

restoring technique, a novel sufficient conditions with a set of linear inequalities of the original system coefficient matrices that

guarantees regularity, causality, and σ-mean square stability can be constructed. Secondly, by combining the matrix congruent

transformation method and the matrix decoupling method, the existence condition of the state feedback asynchronous

controllers for such systems can be obtained. Finally, a numerical example is given to verify the effectiveness of our results.

Keywords semi-Markov kernel, singular system, emission probability, linear matrix inequality, asynchronous controller


